• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于氧化鉺-石墨烯氧化物復合納米材料的葡萄糖氧化酶直接電化學性能及對葡萄糖的檢測

    2016-11-28 08:06:55黃海平岳亞鋒姜立萍
    無機化學學報 2016年11期
    關鍵詞:葡萄糖氧化酶理工大學納米材料

    黃海平 徐 亮 岳亞鋒 姜立萍

    (1江西理工大學冶金與化學工程學院,贛州341000)

    (2生命分析化學國家重點實驗室,南京大學化學化工學院,南京210093)

    基于氧化鉺-石墨烯氧化物復合納米材料的葡萄糖氧化酶直接電化學性能及對葡萄糖的檢測

    黃海平1,2徐亮1岳亞鋒1姜立萍*,2

    (1江西理工大學冶金與化學工程學院,贛州341000)

    (2生命分析化學國家重點實驗室,南京大學化學化工學院,南京210093)

    將稀土納米材料Er2O3用于構建葡萄糖生物傳感器。Er2O3和氧化石墨烯形成復合基底,將葡萄糖氧化酶(GOD)固載在玻碳電極表面。首先利用SEM和XRD技術對所制備的Er2O3和氧化石墨烯納米材料進行表征。利用EIS和CV對整個生物傳感器制備過程進行表征。Er2O3的存在能有效地保持GOD的生物活性并加速其與電極之間的電子傳遞。由于Er2O3和氧化石墨烯之間的協(xié)同效應,使得制備的傳感器在CV圖中呈現(xiàn)一對明顯的氧化還原峰,證實GOD和電極之間的直接電子傳遞性能。當用于對葡萄糖的電催化氧化時,傳感器的CV響應隨著葡萄糖濃度的增加而變弱。在葡萄糖濃度為1~10 mmol·L-1范圍內,CV響應值與葡萄糖濃度成線性關系。此外,傳感器具有好的穩(wěn)定性和重現(xiàn)性。

    氧化鉺;石墨烯氧化物;葡萄糖氧化酶;生物傳感器

    0 Introduction

    Nowadays,the rare-earth based nanomaterials have attracted much interest due to their narrow emission bands,noncytotoxicity and excellent biocompatibility for construction of various desired biosensors. As back in 2002,Prof.Chen[1]first prepared the lanthanum hexacyanoferrate(LaHCF)modified platinum electrode by cyclic voltammetric(CV)technique.The modified electrode showed considerable electrochemical behavior and might be used for fabrication of electrochemical sensor.In 2006,Ru′s group[2]developed CeO2/Chitosan(CHIT)composite matrix for the immobilization of single-stranded DNA(ssDNA)probe and the fabrication of DNA biosensor.Combining the advantages of good biocompatibility and electronic conductivity,the prepared matrix exhibited the enhanced loading of ssDNA probe on the electrode surface.In order to improve the loading amount,the sensitivity and the selectivity,carbon nanotubes and other nanomaterials were employed to form the nanocomposite with CeO2[3].Under the synergistic effect of this nanocomposite matrix,the immobilization of the DNA probes was greatly enhanced and the sensitivity of the detection of target DNA was markedly improved.What′s more,some rare earth elements could also promote the conformational change of DNA secondary structure.For example,in the presence of Tb3+,the conformation of single stranded G-rich DNA probe could be changed to form the compact quadruplex[4].With their excellent biocompatibilities, rare earth elementscould enhance the catalytic activities of bio-enzymes.Many enzymes such as horseradish peroxidase(HRP)[5],glucose oxidase(GOD)[6],and cholesterol oxidase(ChOx)[7]were reported to be immobilized onto the rare earth based nanomaterials for the construction of biosensor.To take ChOx as an example,ChOx could be immobilized onto the sol-gel derived nano-structured cerium oxide with ITO as glass substrate.The result proved that the sol-gel NSCeO2film could provide better configuration for immobilization of ChOx.Another rare earth oxide of Tm2O3was employed for the immobilization of GOD[6]. The direct electron transfer(DET)with an apparent heterogeneous electron transfer rate constant was achieved on the GOD immobilized Nafion-Tm2O3film. Other elements like Y[8],Sm[9-10]were reported for the fabrication of biosensor for the detection of serum uric acid,oxidized low density lipoprotein,etc.The above successful reports for the achievement of enzymes DET and the electrochemical detection of small biomolecule proved a new promising strategy for the fabrication of electrochemical biosensors based on the rare earth oxide nanomaterials.Many other elements among the rare earth are still remain to be explored and studied.For this purpose,herein we synthesized Er2O3nanomaterial and studied its electrochemical property.

    As a novel two-dimensional monolayer nanomaterial,graphene[11]exhibited excellent thermal,electronic,and mechanical properties,such as high surface area,unique transport performance[12],excellent electrical conductivity,ultra-strong mechanical properties and high stability[13].In recent years,graphene oxide (GO)based materials were widely used for electrochemical biosensor applications[14-16].

    In this paper,in order to further expand the electrochemical study of rare earth elements,the Er2O3nanomaterial was firstly synthesized via hydrothermal homogeneous method and then characterized.Glucose oxidase(GOD),as an ideal model enzyme,was employed for use in the next bioelectrochemistry. Graphene oxide was used to form the composite with the prepared Er2O3nanomaterial so as to achieve better electrochemical performance.

    1 Experimental

    1.1Reagents and apparatus

    Chitosan(low molecular weight),GOD from Aspergillus niger(E.C.1.1.3.4,Type X-S,100~250 kU·g-1) and D-(+)-glucose were purchased from Sigma-Aldrich and used without further purification.Bulk Er2O3was obtained from Tongji Institute of Trace Element (Beijing,China).All other chemicals were of analytical grade and used without further purification. Millipore ultrapure water(Resistivity≥18.2 MΩ)wasused throughout the experiment.Phosphate buffer solution(PBS)(pH 7.0,0.1 mol·L-1)was employed as a supporting electrolyte by mixing the stock solutions of NaH2PO4and Na2HPO4.

    X-ray diffraction(XRD)patterns were recorded on an X-ray diffractometer(PANalytical X′Pert Pro) with Cu Kα radiation(λ=0.154 18 nm)for crystal phase identification.The XRD was operated at 40 kV accelerating voltage and 40 mA tube current,with the degree range of 5°~80°.Scanning electron microscope (SEM)was taken using a Philips XL30 microscope, using an accelerating voltage of 200 kV.The electrochemical impedance spectroscopy(EIS)analyses were performed on an Autolab PGSTAT12(Ecochemie,BV, The Netherlands)with the frequency range of 0.1~1.0×105Hz.A CHI 660D Electrochemical Workstation(Shanghai CH Instruments Co.,China)was used for the cyclic voltammograms(CVs).The electrochemical system consisted of a modified glassy carbon electrode(GCE)as working electrode,a platinum wire auxiliary electrode and a saturated calomel electrode (SCE)as reference electrode.

    1.2Synthesis of nanomaterials

    GO was synthesized according to the modified Hummers method[17-18].The last suspension was centrifuged under 3 000 r·min-1.The supernatant was collected and put in the refrigerator for further use.Er2O3nanomaterial was prepared according to the reported previously method with some modifications[6].In briefly,0.1 mmol bulk Er2O3was firstly dissolved in hot concentrated HCl(36%).After that,the pH value was adjusted by 0.2 mol·L-1NaOH solution to about 10.The solution was then poured into the Teflon-lined autoclaves(100 mL)and held at 150℃for 12 h. After cooled to room temperature naturally,the precipitates were collected by centrifugation and then calcined at 400℃for 2 h.

    1.3Fabrication of biosensor

    First of all,the glassy carbon electrode(GCE,4 mm in diameter)was carefully polished to a mirror by 1.0,0.3 and 0.05 μm alumina powder.After ultrasonically cleaned in ethanol and water respectively,GCE was then dried by flowing N2before it was used.1 mg prepared Er2O3nanomaterial was dispersed in 1 mL H2O by ultrasonicating to form a stable suspension. Then a homogeneous solution,which finally contained about 6 mg·mL-1GOD,0.3 mg·mL-1Er2O3nanomaterial,0.6 mg·mL-1GO was formed by thoroughly mixing the Er2O3suspension,GO suspension with GOD solution(20 mg·mL-1)at 1∶1∶1 ratio(V/V).A volume of 10 μL of the resulting solution was dropped onto the pretreated GCE.The electrode was left in desiccator to dry at 4℃.At last,5 μL of 5 mg·mL-1chitosan solution was dripped onto the GOD/GO/ Er2O3/GCE for sealing.The GOD/GCE,GOD/Er2O3/ GCE,GOD/GO/GCE were fabricated through a similar procedure with pure water as the substitute.

    2 Results and discussion

    2.1Characterization of nanomaterials

    The morphology of the synthesized Er2O3nanomaterial was characterized by SEM,which was shown in Fig.1A.It could be seen from Fig.1A that the Er2O3were relatively uniform in square-shaped size with about 500 nm in length.Fig.1B was the XRD pattern of the as-synthesized GO.As indicated in the pattern,a well-defined d001peak of 2θ=10.3° confirmed that the GO formed a well-ordered layered structure[19].The surface of the prepared biosensor was shown in Fig.1C,which contained ternary nanocomposites of Er2O3nanomaterial,GO and GOD.As could be seen from Fig.1C,Er2O3nanomaterials and GODs were dispersed on the surface of GO.

    2.2Electrochemical characterization of the biosensor

    As an effective tool to inspect the estates of the electrode surface,EIS is widely used to understand the chemical transformations and processes associated with the conductive electrode surface[20].The electron transfer resistance of the electrochemical reaction,Ret, reveals the electron transfer kinetics of the redox electrochemical probe at the electrode interface. Another electrochemical technique of cyclic voltammogram(CV)is also considered as a powerful method to monitor the electron transfer behaviour between the solution species and the electrode.Herein,the EISand CV were used to examine the modified electrode after each self-assembly step,which were shown in Fig.2.

    Fig.1(A)SEM of the prepared Er2O3Nanomaterial;(B)XRD pattern of the prepared graphene oxide; (C)SEM of the ternary composites containing Er2O3nanomaterial,GO and GOD

    Fig.2 EIS(A)and CV(B)of the electrode at different stages in 0.1 mol·L-1KCl+2 mmol·L-1[Fe(CN6)]3-/[Fe(CN6)]4-

    As presented by the EIS spectrum in Fig.2A,the GO modified electrode(curve a in Fig.2A)showed relative small electron-transfer resistance(Ret)as compared to the Er2O3modified electrode(curve b in Fig. 2A),which suggested that the GO owned better electronic conductivity than Er2O3.After the GOD was mixed with Er2O3and coated on the bare electrode (curve d in Fig.2A),the resistance increased dramatically.This phenomenon could be attributed to the hindrance effect of electron-transfer kinetics between the redox probe and electrode surface[21].The similar result was also observed when GOD was mixed with GO(curve c in Fig.2A).Accordingly,the ternary nanocomposites GOD/GO/Er2O3modified electrode exhibited a moderate Ret(curve e in Fig.2A),which wassmaller than the GOD/Er2O3and larger than the GOD/ GO modified electrode.

    Fig.2B showed the CVs of the redox probe [Fe(CN6)]3-/[Fe(CN6)]4-on the modified electrode at different stages.As could be seen in Fig.2B,stepwise modifications on the GCE were accompanied by the changes in the amperometric response of the redox probe.On the GO modified electrode,a pair of welldefined redox peaks was observed(curve a in Fig.2B), showing the excellent electron-transfer kinetics of [Fe(CN6)]3-/[Fe(CN6)]4-,so as the Er2O3modified GCE (curve b in Fig.2B).After the GOD was mixed with GO,the amperometric response decreased and the peak-to-peak separation enlarged(curve c in Fig.2B), due to the fact that the bulky GOD molecules blocked the electron exchange.The CV response was further decreased after GOD was mixed with Er2O3(curve d in Fig.2B).The shape of the redox peaks become better than Er2O3/GOD when GO was added to form the ternary nanocomposites(curve e in Fig.2B).From the above results,it was obvious that the CV changes were consistent with the EIS changes.

    2.3Direct electrochemistry of GOD/GO/Er2O3/ GCE

    For the purpose of investigating the direct electrochemical property of the modified electrodes, the cyclic voltammograms(CV)of the modified electrodes at different steps were detected.Fig.3A was the CV of GOD/GCE,GOD/Er2O3/GCE,GOD/GO/GCE and GOD/GO/Er2O3/GCE in PBS solution(0.1 mol·L-1, pH 7.0)at the scan rate of 100 mV·s-1.

    As could be seen from the results,when the GOD was directly dropped onto the GCE surface(curve a in Fig.3A),a very small redox wave was observed.This wave could be attributed to the characteristic of a reversible electron transfer process between the redox active center(flavin-adenine dinucleotide,FAD)in GOD and the electrode[22-23].The CV curve of the GOD/ GO/GCE(curve c in Fig.3A)showed more distinguished redox waves with larger peak current,which was attributed to the excellent biocompatibility and electronical conductivity of GO.A comparison with the CV curves of the GOD/Er2O3/GCE(curve b in Fig. 3A)and GOD/GO/GCE presented similar redox waves, which proved that the prepared Er2O3nanomaterial could also provide a friendly microenvironment to maintain the bioactivity of GOD and the electron transfer between the modified electrode and GOD. Furthermore,after GOD was mixed with GO and Er2O3to form the ternary nanocomposites,the GOD/GO/ Er2O3/GCE(curve d in Fig.3A)displayed a pair of more distinct and better-defined redox peaks, indicating the faster DET rate between the redoxactive site of GOD and GCE.The synergistic effect of the GO/Er2O3nanocomposite was considered to effectively accelerate electrical transfer between redox-active center of GOD and electrode surface, leading to the increased peak current.Combining theSEM picture and CV curves,it could be deduced that GO not only promoted the electron transfer rate,but also provided the necessary supported matrix to form the ternary nanocomposites.

    Fig.3(A)CV of the modified electrodes at different steps in PBS solution(0.1 mol·L-1,pH 7.0)at the scan rate of 100 mV·s-1; (B)CVs of GOD/GO/Er2O3/GCE measured in PBS solution(0.1 mol·L-1,pH 7.0)at the different scan rates

    For the purpose of further understanding the property of electron transfer between the GOD and the electrode,the cyclic voltammograms of the GOD/GO/ Er2O3/GCE at various scan rates were investigated, which were displayed in Fig.3B.It could be obviously seen from Fig.3B that the redox peak currents increased with the increase of the scan rates in the range of 10~200 mV·s-1,coupled with slightly enlarged peak-to-peak separation.Inset in Fig.3B was the calibration plot of the peak current vs the scan rate. The redox peak currents linearly increased with the increase of the scan rates,confirming that this redox reaction of GOD was a surface-controlled electrochemical process,not a diffusion-controlled process[24-25].

    2.4Detection of glucose

    The amperometric response of the prepared biosensor to the target was investigated in various concentrations of glucose.As was proved,via the enzyme catalyzed reaction,the D-(+)-glucose could result in the reductive form of GOD(GOD-FADH2) according to the following chemical equations[26-27]:

    GOD-FAD+2e+2H+?GOD-FADH2(1) Glucose+GOD-FAD→gluconolactone+GOD-FADH2(2) Therefore,when glucose was added,the electrocatalytic reaction(Eq.1)would be restrained by the enzyme catalyzed reaction(Eq.2).This directly induced the decrease of the GOD-FAD concentration, followed by the decrease of the reduction current.

    Fig.4A was the typical cyclic voltammograms of the prepared biosensor in blank 0.1 mol·L-1PBS solution with the different concentrations of glucose from 0 to 10.0 mmol·L-1.With more glucose added to the PBS solution,the reduction current decreased,i.e., the higher glucose concentration caused the decrease of the reduction current.Fig.4B is the CV response calibration curve of the prepared biosensor against the concentrations of glucose.The calibration curve corresponding to the CV response is linear against the concentrations of glucose ranging from 1 to 10 mmol· L-1with the detection limit of 0.3 mmol·L-1(S/N=3).The regression equation is i(μA)=-12.94+0.85c(mmol·L-1) with the correlation coefficient(R)of 0.998.

    The stability of the biosensor was investigated in 0.1 mol·L-1PBS.The relative standard deviations(RSD) were 4.1%for 10 successive assays in the presence of 1.0 mmol·L-1glucose,indicating that the enzyme electrode was stable in buffer solution.The fabrication reproducibility for four electrodes gave a RSD of 6.5% for CV determination at 1.0 mmol·L-1glucose.After storing at 4℃in the refrigerator for 10 days,the response to 1.0 mmol·L-1glucose retained 95.8%of its initial current,demonstrating good long-term stability.It can be attributed to the biocompatibility ofthe GO/Er2O3nanocomposite,which can provide an excellent microenvironment for GOD to retain its bioactivity

    Fig.4(A)CVs of GOD/GO/Er2O3/GCE in PBS solution(0.1 mol·L-1,pH 7.0)with different glucose concentration; (B)Calibration plot of response current vs glucose concentration

    3 Conclusions

    In summary,the rare earth oxide of Er2O3was employed to form the nanocompositewith GO.SEM and XRD were used to characterize the prepared nanomaterials.The EIS and CV were used to check the electrochemical behaviors of different modified electrode.The results proved that the nanomaterials owned good electronical conductivity.The direct electrochemical properties of GOD/GO/Er2O3/GCE suggested that the Er2O3/GO supported matrix could effectively immobilize GOD onto the GCE,while still maintaining the excellent bioactivity.Detecting performance of the prepared biosensor towards the electrocatalytic oxidation to glucose revealed a wide linear range,good stability and reproducibility.On the basis of the above electrochemical measurements,the Er2O3nanomaterial,which owns good electronical conductivity and biocompatibility,exhibits great potential applications in the field of electrochemical biosensor.This provides the possibility of novel nanomaterials for the construction of electrochemical biosensor.Further work is still in progress to explore new rare earth elements nanomaterials for the electrochemical and biological applications.

    References:

    [1]Liu S Q,Chen H Y.J.Electroanal.Chem.,2002,528(1/2): 190-195

    [2]Feng K J,Yang Y H,Wang Z J,et al.Talanta,2006,70(3): 561-565

    [3]Zhang W,Yang T,Zhuang X M,et al.Biosens.Bioelectron., 2009,24(8):2417-2422

    [4]Zhang J,Chen J H,Chen R C,et al.Biosens.Bioelectron., 2009,25(2):378-382

    [5]Xiao X L,Luan Q F,Yao X,et al.Biosens.Bioelectron.,2009, 24(8):2447-2451

    [6]Li Y,Gao Y F,Zhou Y,et al.J.Electroanal.Chem.,2010, 642(1):1-5

    [7]Ansari A A,Kaushik A,Solanki P R,et al.Electrochem. Commun.,2008,10(9):1246-1249

    [8]Kodaira C A,Lourenco A V S,Felinto M C F C.et al.J. Lumin.,2011,131(4):727-731

    [9]Chinnu M K,Anan K V,Kumar R M,et al.Mater.Lett., 2013,113:170-173

    [10]Wu M H,Lin T W,Huang M D,et al.Sens.Actuators B, 2010,146(1):342-348

    [11]Novoselov K S,Geim A K,Morozov S V,et al.Science,2004, 306(5696):666-669

    [12]Du X,Skachko L,Barker A,et al.Nat.Nanotechnol.,2008, 3:491-495

    [13]Balandin A A,Ghosh S,Bao W,et al.Nano Lett.,2008,8 (3):902-907

    [14]Wang W X,Ge L,Sun X M,et al.Mater.Inter.,2015,7(51): 28566-28575

    [15]Zhang R Z,Sun C L,Lu Y J,et al.Anal.Chem.,2015,87 (24):12262-12269

    [16]Liu J Y,Wang X H,Wang T S,et al.ACS Appl.Mater. Interface,2014,6(22):19997-20002

    [17]Hummers W,Offeman R.J.Am.Chem.Soc.,1958,80(6): 1339-1339

    [18]Wang Z J,Zhou X Z,Zhang J,et al.J.Phys.Chem.C, 2005,113(32):14071-14075

    [19]Lambert T N,Chave C A,Sanch B H,et al.J.Phys.Chem. C,2009,113(46):19812-19823

    [20]Bard A J,Faulkner L R.Electrochemical Methods:Fundamentals and Applications.New York:Wiley,1980.

    [21]Deng S Y,Jian G Q,Lei J P,et al.Biosens.Bioelectron., 2009,25(2):373-377

    [22]Zhang Y J,Shen Y F,Han D X,et al.Biosens.Bioelectron., 2007,23(3):438-443

    [23]Zhou Y,Yang H,Chen H Y.Talanta,2008,76(2):419-423

    [24]Ivanova E V,Magner E.Electrochem.Commun.,2005,7(4): 323-327

    [25]Deng C Y,Chen J H,Chen X L,et al.Biosens.Bioelectron., 2008,23(8):1272-1277

    [26]Yang L Q,Ren X L,Tang F Q,et al.Biosens.Bioelectron., 2009,25(4):889-895

    [27]Liu S Q,Ju H X.Biosens.Bioelectron.,2003,19(3):177-183

    Er2O3-Graphene Oxide Nanocomposite Supported Glucose Oxidase: Direct Electrochemistry and Biosensing to Glucose

    HUANG Hai-Ping1,2XU Liang1YUE Ya-Feng1JIANG Li-Ping*,2
    (1School of Metallurgy and Chemical Engineering,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,China)
    (2State Key Laboratory of Analytical Chemistry for Life Sciences,School of Chemistry& Chemical Engineering,Nanjing University,Nanjing 210093,China)

    A new rare earth oxide of Er2O3was employed for the construction of glucose biosensor.Er2O3was mixed with graphene oxide(GO)to form the supported matrix for immobilization of glucose oxidase(GOD)onto the glassy carbon electrode(GCE).The nanomaterials of Er2O3and GO were firstly synthesized and characterized by SEM,XRD.The fabrication process for the biosensor was monitored by electrochemical impedance spectroscopy (EIS)and cyclic voltammetry(CV).The presence of Er2O3could effectively maintain the bioactivity of GOD and enhance the electron transfer rate.The prepared biosensor showed a pair of distinct and well-defined redox peaks,indicating the fast direct electron transfer(DET)rate between the redox-active site of GOD and GCE,which could be attributed to the synergistic effect of the GO/Er2O3nanocomposite.When employed to the electrocatalytic detection of glucose,the CV response of the prepared biosensor decreased against the concentrations of glucose. The calibration curve corresponding to the CV response was linear against the concentrations of glucose ranging from 1 to 10 mmol·L-1.Moreover,the biosensor showed good stability and reproducibility.

    Er2O3;graphene oxide;glucose oxidase;biosensor

    TB333

    A

    1001-4861(2016)11-2034-07

    10.11862/CJIC.2016.268

    2016-05-28。收修改稿日期:2016-09-30。

    國家自然科學基金(No.21465013,21475057,21005034)、中國博士后科學基金(No.2014M551550)、江西省自然科學基金(No.20114BAB213014,GJJ13433)和江西理工大學清江青年英才支持計劃資助項目。

    *通信聯(lián)系人。E-mail:jianglp@nju.edu.cn

    猜你喜歡
    葡萄糖氧化酶理工大學納米材料
    武器中的納米材料
    學與玩(2022年8期)2022-10-31 02:41:56
    昆明理工大學
    二維納米材料在腐蝕防護中的應用研究進展
    昆明理工大學
    昆明理工大學
    浙江理工大學
    葡萄糖氧化酶的研究進展及其在豬生產中的應用分析
    飼料博覽(2019年7期)2019-02-12 22:28:15
    齒輪狀SBA-15的制備及其對葡萄糖氧化酶的吸附行為研究
    陶瓷學報(2019年5期)2019-01-12 09:17:42
    葡萄糖氧化酶在斷奶仔豬日糧上的應用研究進展
    MoS2納米材料的制備及其催化性能
    97人妻天天添夜夜摸| 一级毛片高清免费大全| 久久久久国产一级毛片高清牌| 日本撒尿小便嘘嘘汇集6| 超色免费av| 露出奶头的视频| 国产黄a三级三级三级人| 久久久水蜜桃国产精品网| 亚洲人成伊人成综合网2020| 大型av网站在线播放| 在线天堂中文资源库| 国产精品久久久人人做人人爽| 丝袜在线中文字幕| 又黄又爽又免费观看的视频| 日本三级黄在线观看| 欧美成狂野欧美在线观看| 在线看a的网站| 高清黄色对白视频在线免费看| 欧美日本中文国产一区发布| 国产免费av片在线观看野外av| av天堂在线播放| 亚洲成人久久性| 欧美日韩国产mv在线观看视频| 亚洲第一欧美日韩一区二区三区| 久久草成人影院| 免费在线观看黄色视频的| 色婷婷久久久亚洲欧美| 午夜两性在线视频| 色综合婷婷激情| 国产aⅴ精品一区二区三区波| 最新在线观看一区二区三区| 日本一区二区免费在线视频| 成人手机av| 日韩av在线大香蕉| 亚洲一码二码三码区别大吗| 久久中文字幕一级| 欧美激情极品国产一区二区三区| 在线免费观看的www视频| 亚洲美女黄片视频| 97碰自拍视频| 国产在线观看jvid| av天堂在线播放| 午夜精品国产一区二区电影| 久久人人精品亚洲av| 国产真人三级小视频在线观看| 亚洲av成人av| 99国产综合亚洲精品| 久久精品亚洲av国产电影网| 亚洲欧美精品综合久久99| 成年人黄色毛片网站| 在线观看免费日韩欧美大片| 满18在线观看网站| 99国产综合亚洲精品| 女生性感内裤真人,穿戴方法视频| 日本 av在线| 99国产极品粉嫩在线观看| 妹子高潮喷水视频| 高清欧美精品videossex| 成人影院久久| 日本撒尿小便嘘嘘汇集6| 欧美乱妇无乱码| 国产亚洲精品久久久久5区| 中文字幕人妻丝袜一区二区| 丁香欧美五月| 精品国产亚洲在线| 色老头精品视频在线观看| 窝窝影院91人妻| 久久久国产一区二区| 精品国产一区二区久久| 超色免费av| 一个人观看的视频www高清免费观看 | 成人手机av| 国产精品爽爽va在线观看网站 | 99热国产这里只有精品6| 亚洲av第一区精品v没综合| 最好的美女福利视频网| 99久久久亚洲精品蜜臀av| 亚洲专区字幕在线| 国产成人av激情在线播放| 亚洲第一欧美日韩一区二区三区| 99在线视频只有这里精品首页| 天堂中文最新版在线下载| 日韩欧美一区视频在线观看| 欧美精品亚洲一区二区| 91在线观看av| 91精品国产国语对白视频| 亚洲精品国产一区二区精华液| 国产麻豆69| 99精国产麻豆久久婷婷| 欧美国产精品va在线观看不卡| 亚洲欧洲精品一区二区精品久久久| 老司机午夜十八禁免费视频| 在线观看免费日韩欧美大片| 欧美激情高清一区二区三区| 日韩欧美三级三区| 亚洲成人精品中文字幕电影 | 亚洲一区二区三区色噜噜 | 国产精品综合久久久久久久免费 | 久久九九热精品免费| 十八禁网站免费在线| 在线观看一区二区三区激情| 亚洲三区欧美一区| 亚洲精品粉嫩美女一区| 日韩大码丰满熟妇| 国产亚洲精品久久久久5区| 91麻豆精品激情在线观看国产 | 午夜福利在线观看吧| 中文字幕人妻丝袜一区二区| 色在线成人网| 国产高清视频在线播放一区| 老司机在亚洲福利影院| 香蕉久久夜色| 免费在线观看日本一区| 正在播放国产对白刺激| 精品久久蜜臀av无| 国产麻豆69| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美一区二区三区黑人| 亚洲熟妇中文字幕五十中出 | 免费在线观看黄色视频的| 午夜免费激情av| 亚洲欧美一区二区三区黑人| 成人亚洲精品一区在线观看| 两个人免费观看高清视频| 亚洲少妇的诱惑av| 亚洲一区二区三区色噜噜 | 嫁个100分男人电影在线观看| 午夜老司机福利片| 男女高潮啪啪啪动态图| 日本wwww免费看| 在线观看免费视频网站a站| 国产午夜精品久久久久久| 国产精品 国内视频| 国产精品亚洲av一区麻豆| 亚洲欧美一区二区三区久久| 手机成人av网站| 12—13女人毛片做爰片一| 国产欧美日韩一区二区三| 99国产精品免费福利视频| 久久精品91无色码中文字幕| 一级作爱视频免费观看| 国产精品亚洲av一区麻豆| 久久影院123| 丝袜美足系列| 777久久人妻少妇嫩草av网站| 亚洲精品一区av在线观看| 99在线人妻在线中文字幕| 久久人妻熟女aⅴ| 亚洲成国产人片在线观看| 色尼玛亚洲综合影院| 91在线观看av| 老汉色∧v一级毛片| 国产不卡一卡二| cao死你这个sao货| 99久久国产精品久久久| 久久久国产一区二区| 99久久99久久久精品蜜桃| 搡老熟女国产l中国老女人| 嫩草影视91久久| 日本黄色日本黄色录像| 女生性感内裤真人,穿戴方法视频| 午夜精品在线福利| 啦啦啦在线免费观看视频4| 91在线观看av| 嫩草影视91久久| 俄罗斯特黄特色一大片| 超色免费av| 高潮久久久久久久久久久不卡| 国产亚洲精品久久久久久毛片| 免费少妇av软件| 露出奶头的视频| 亚洲成a人片在线一区二区| 日韩大尺度精品在线看网址 | 亚洲中文字幕日韩| 激情视频va一区二区三区| 男女床上黄色一级片免费看| 在线观看免费日韩欧美大片| 99精品久久久久人妻精品| 成人国语在线视频| 亚洲欧洲精品一区二区精品久久久| netflix在线观看网站| 九色亚洲精品在线播放| 人人妻,人人澡人人爽秒播| 国产真人三级小视频在线观看| 国产一区二区三区综合在线观看| 淫秽高清视频在线观看| 日韩av在线大香蕉| 欧美色视频一区免费| 成年女人毛片免费观看观看9| 91大片在线观看| 一本综合久久免费| 在线观看66精品国产| 老司机靠b影院| 男女下面进入的视频免费午夜 | 亚洲精品粉嫩美女一区| 午夜免费成人在线视频| 国产亚洲av高清不卡| 91字幕亚洲| 亚洲av美国av| 少妇裸体淫交视频免费看高清 | 免费观看人在逋| 亚洲av日韩精品久久久久久密| 久久九九热精品免费| 亚洲精品国产一区二区精华液| 高清欧美精品videossex| 99国产极品粉嫩在线观看| 久久久久久久午夜电影 | 女人被躁到高潮嗷嗷叫费观| 亚洲成av片中文字幕在线观看| 久久性视频一级片| 日日夜夜操网爽| 国产深夜福利视频在线观看| 免费高清在线观看日韩| 国产欧美日韩一区二区精品| xxx96com| 中文亚洲av片在线观看爽| 亚洲片人在线观看| 久久久国产精品麻豆| 久久人妻熟女aⅴ| 桃色一区二区三区在线观看| 亚洲精品av麻豆狂野| 黄网站色视频无遮挡免费观看| 少妇被粗大的猛进出69影院| 国产精品久久久久久人妻精品电影| 三级毛片av免费| 校园春色视频在线观看| 久久国产亚洲av麻豆专区| 一边摸一边抽搐一进一出视频| 每晚都被弄得嗷嗷叫到高潮| 国产成人系列免费观看| 欧美激情 高清一区二区三区| 久久中文字幕人妻熟女| 久久精品91无色码中文字幕| 精品无人区乱码1区二区| 两个人看的免费小视频| 亚洲av片天天在线观看| 亚洲欧美日韩另类电影网站| 亚洲国产毛片av蜜桃av| 国产一卡二卡三卡精品| 精品久久久久久久毛片微露脸| 麻豆av在线久日| 色婷婷av一区二区三区视频| 级片在线观看| 一本大道久久a久久精品| 亚洲一区二区三区色噜噜 | 成人免费观看视频高清| 欧美在线一区亚洲| 99精品久久久久人妻精品| 久久久久国产一级毛片高清牌| 亚洲精品久久午夜乱码| 国产精品一区二区精品视频观看| 午夜精品国产一区二区电影| 国产精品久久久人人做人人爽| 亚洲精品国产精品久久久不卡| 日日干狠狠操夜夜爽| 久久九九热精品免费| 日韩大尺度精品在线看网址 | 国产精品亚洲av一区麻豆| 老司机福利观看| 国产精品一区二区精品视频观看| 亚洲av美国av| 国产精品秋霞免费鲁丝片| 看免费av毛片| 亚洲av五月六月丁香网| 精品电影一区二区在线| 国产免费av片在线观看野外av| 狠狠狠狠99中文字幕| 久99久视频精品免费| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品一区二区www| 不卡一级毛片| 日韩 欧美 亚洲 中文字幕| 久久久国产精品麻豆| 男人的好看免费观看在线视频 | 一区二区三区激情视频| 亚洲第一欧美日韩一区二区三区| 亚洲欧美日韩高清在线视频| 欧美 亚洲 国产 日韩一| 精品电影一区二区在线| 亚洲男人天堂网一区| 在线观看午夜福利视频| 国产激情久久老熟女| 国产亚洲精品一区二区www| 午夜视频精品福利| 久久精品国产清高在天天线| 香蕉丝袜av| 国产极品粉嫩免费观看在线| 国产aⅴ精品一区二区三区波| 日韩国内少妇激情av| 国产精品综合久久久久久久免费 | 高潮久久久久久久久久久不卡| 午夜激情av网站| 久久久久亚洲av毛片大全| 久久中文看片网| 满18在线观看网站| 精品一区二区三区四区五区乱码| 欧美久久黑人一区二区| 亚洲 欧美 日韩 在线 免费| 亚洲欧美精品综合一区二区三区| www.自偷自拍.com| videosex国产| 真人一进一出gif抽搐免费| 亚洲精品国产色婷婷电影| 岛国在线观看网站| 99国产极品粉嫩在线观看| 国产一区二区在线av高清观看| 在线观看免费日韩欧美大片| 精品久久蜜臀av无| 午夜91福利影院| 999久久久国产精品视频| 国产精品一区二区三区四区久久 | 亚洲精品国产一区二区精华液| 久久久久久久久中文| 一级黄色大片毛片| 欧美黑人精品巨大| 男女之事视频高清在线观看| 美女 人体艺术 gogo| 精品久久久精品久久久| 99久久人妻综合| 成年人免费黄色播放视频| 青草久久国产| av国产精品久久久久影院| 天堂俺去俺来也www色官网| 国产不卡一卡二| 天堂中文最新版在线下载| 十分钟在线观看高清视频www| 亚洲av片天天在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲久久久国产精品| 超色免费av| 91大片在线观看| 天堂俺去俺来也www色官网| 亚洲视频免费观看视频| a级毛片在线看网站| 精品午夜福利视频在线观看一区| 一本综合久久免费| 亚洲成人精品中文字幕电影 | 国产色视频综合| av国产精品久久久久影院| 亚洲精品中文字幕在线视频| 深夜精品福利| 午夜免费激情av| 欧美久久黑人一区二区| 丝袜在线中文字幕| 国产一区二区三区综合在线观看| 成人手机av| 欧美久久黑人一区二区| 亚洲中文字幕日韩| 亚洲久久久国产精品| 久久午夜亚洲精品久久| 国内久久婷婷六月综合欲色啪| 欧美国产精品va在线观看不卡| 亚洲成人免费av在线播放| 99国产综合亚洲精品| aaaaa片日本免费| 中文字幕精品免费在线观看视频| 亚洲男人天堂网一区| 一级片免费观看大全| 黄色片一级片一级黄色片| 国产精品一区二区在线不卡| 免费在线观看视频国产中文字幕亚洲| 亚洲精品国产区一区二| 午夜福利一区二区在线看| 性色av乱码一区二区三区2| 国产成人一区二区三区免费视频网站| 少妇的丰满在线观看| 亚洲专区国产一区二区| 亚洲精品美女久久久久99蜜臀| 亚洲免费av在线视频| 久久精品亚洲精品国产色婷小说| 天天躁夜夜躁狠狠躁躁| 欧美日本中文国产一区发布| 亚洲国产欧美一区二区综合| 亚洲第一欧美日韩一区二区三区| 一本大道久久a久久精品| 久久人人97超碰香蕉20202| 美女高潮喷水抽搐中文字幕| 亚洲国产欧美一区二区综合| 欧美成人免费av一区二区三区| 咕卡用的链子| 男女午夜视频在线观看| 淫秽高清视频在线观看| 一级作爱视频免费观看| 最近最新中文字幕大全电影3 | 伊人久久大香线蕉亚洲五| 日韩三级视频一区二区三区| 久久性视频一级片| 精品久久久久久久久久免费视频 | 男女午夜视频在线观看| 国产精品自产拍在线观看55亚洲| 精品无人区乱码1区二区| 在线观看免费高清a一片| 欧美日韩黄片免| 亚洲激情在线av| 高清毛片免费观看视频网站 | 亚洲av片天天在线观看| 精品人妻1区二区| 久久久精品欧美日韩精品| aaaaa片日本免费| netflix在线观看网站| 最好的美女福利视频网| 免费看十八禁软件| 亚洲va日本ⅴa欧美va伊人久久| 国产三级黄色录像| 久久国产精品人妻蜜桃| 国产xxxxx性猛交| 久久香蕉激情| netflix在线观看网站| 亚洲精品国产精品久久久不卡| 免费av中文字幕在线| 天天躁夜夜躁狠狠躁躁| 久久精品91无色码中文字幕| 国产伦一二天堂av在线观看| 一个人免费在线观看的高清视频| 免费观看精品视频网站| 夜夜看夜夜爽夜夜摸 | 国产极品粉嫩免费观看在线| 高清欧美精品videossex| 精品国产美女av久久久久小说| 在线观看免费日韩欧美大片| 午夜精品久久久久久毛片777| 老司机深夜福利视频在线观看| 日韩三级视频一区二区三区| 制服人妻中文乱码| 亚洲国产精品999在线| 久久亚洲真实| 窝窝影院91人妻| 免费看十八禁软件| 国产野战对白在线观看| 日日干狠狠操夜夜爽| 成人影院久久| 国产深夜福利视频在线观看| 欧美日韩乱码在线| 国产成人免费无遮挡视频| 美女大奶头视频| 亚洲人成电影观看| 欧美国产精品va在线观看不卡| 亚洲精品美女久久久久99蜜臀| www.熟女人妻精品国产| 一区福利在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲精品一区av在线观看| 69精品国产乱码久久久| 欧美精品亚洲一区二区| 中文字幕另类日韩欧美亚洲嫩草| 国产在线精品亚洲第一网站| 亚洲美女黄片视频| 波多野结衣一区麻豆| 欧美激情久久久久久爽电影 | 精品一区二区三区视频在线观看免费 | 麻豆久久精品国产亚洲av | 老司机亚洲免费影院| 一二三四社区在线视频社区8| 日本vs欧美在线观看视频| 欧美亚洲日本最大视频资源| 日韩人妻精品一区2区三区| 一级毛片高清免费大全| 日本欧美视频一区| av福利片在线| 精品国产超薄肉色丝袜足j| 亚洲精品中文字幕一二三四区| 亚洲av片天天在线观看| 亚洲激情在线av| 色综合欧美亚洲国产小说| 91字幕亚洲| 成人手机av| 久久国产精品影院| 久久精品国产亚洲av高清一级| 看免费av毛片| 久久天堂一区二区三区四区| 法律面前人人平等表现在哪些方面| 无限看片的www在线观看| 欧美日本中文国产一区发布| 久久影院123| 精品国产一区二区三区四区第35| 99久久国产精品久久久| 亚洲中文字幕日韩| 交换朋友夫妻互换小说| 一级毛片高清免费大全| 亚洲熟妇熟女久久| 最新美女视频免费是黄的| 亚洲国产看品久久| 成年女人毛片免费观看观看9| 国产深夜福利视频在线观看| 91精品三级在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品影院久久| 精品国产一区二区久久| 欧美日韩精品网址| 日本a在线网址| 色播在线永久视频| 欧美日本中文国产一区发布| 中出人妻视频一区二区| 久久国产乱子伦精品免费另类| 很黄的视频免费| 18禁观看日本| 国产精品成人在线| 在线观看www视频免费| 亚洲人成电影观看| 久久国产精品影院| 亚洲精品中文字幕一二三四区| 免费在线观看视频国产中文字幕亚洲| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久精品久久久| 亚洲性夜色夜夜综合| 在线国产一区二区在线| 亚洲男人天堂网一区| 高潮久久久久久久久久久不卡| 99国产精品免费福利视频| 午夜免费鲁丝| 亚洲久久久国产精品| 色综合欧美亚洲国产小说| 在线观看一区二区三区激情| 两人在一起打扑克的视频| 婷婷精品国产亚洲av在线| 亚洲人成伊人成综合网2020| 波多野结衣高清无吗| 日韩有码中文字幕| 精品国产超薄肉色丝袜足j| 十八禁人妻一区二区| 成人精品一区二区免费| 一二三四社区在线视频社区8| 一级毛片女人18水好多| 国产精品一区二区三区四区久久 | 国产精品综合久久久久久久免费 | 国产精品九九99| 国产高清国产精品国产三级| 久久国产精品男人的天堂亚洲| 久久这里只有精品19| 身体一侧抽搐| 午夜免费激情av| 国产精品免费视频内射| 啪啪无遮挡十八禁网站| 老司机深夜福利视频在线观看| 淫秽高清视频在线观看| 日日爽夜夜爽网站| 国产一区二区激情短视频| 国产成人av激情在线播放| 精品乱码久久久久久99久播| 最新美女视频免费是黄的| 精品一品国产午夜福利视频| 久久久久国产一级毛片高清牌| 国产深夜福利视频在线观看| 日韩有码中文字幕| 悠悠久久av| 91国产中文字幕| 久热爱精品视频在线9| 欧美中文日本在线观看视频| 精品电影一区二区在线| 一区在线观看完整版| 妹子高潮喷水视频| 男人的好看免费观看在线视频 | www.自偷自拍.com| 99久久国产精品久久久| 久久欧美精品欧美久久欧美| 美女 人体艺术 gogo| 久久久久久人人人人人| 麻豆国产av国片精品| 999精品在线视频| 午夜免费激情av| 亚洲中文字幕日韩| 又大又爽又粗| 麻豆成人av在线观看| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区精品视频观看| 满18在线观看网站| 又黄又爽又免费观看的视频| 狠狠狠狠99中文字幕| 亚洲色图av天堂| 久久亚洲真实| 一级a爱视频在线免费观看| 一级,二级,三级黄色视频| 国产一区二区三区视频了| 三级毛片av免费| 亚洲少妇的诱惑av| 亚洲免费av在线视频| 91成人精品电影| 久久久国产成人精品二区 | 国产国语露脸激情在线看| 好男人电影高清在线观看| 很黄的视频免费| 男女午夜视频在线观看| 国产亚洲欧美98| 国产成人系列免费观看| 在线av久久热| 日本五十路高清| 性少妇av在线| 午夜影院日韩av| 狂野欧美激情性xxxx| 天天影视国产精品| 欧美中文综合在线视频| 亚洲成人国产一区在线观看| 人妻丰满熟妇av一区二区三区| 国产三级黄色录像| 黑人操中国人逼视频| 大陆偷拍与自拍| 国产亚洲精品综合一区在线观看 | 51午夜福利影视在线观看| 色婷婷久久久亚洲欧美| 日韩av在线大香蕉| 久久香蕉精品热| 欧美成狂野欧美在线观看| 亚洲专区中文字幕在线| 桃色一区二区三区在线观看| 丁香欧美五月| 美女扒开内裤让男人捅视频| 久久天堂一区二区三区四区| 久久热在线av| 黄色视频不卡| 91九色精品人成在线观看| 大型av网站在线播放| 侵犯人妻中文字幕一二三四区| 18禁裸乳无遮挡免费网站照片 | 19禁男女啪啪无遮挡网站| 色综合婷婷激情|