• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于氧化鉺-石墨烯氧化物復合納米材料的葡萄糖氧化酶直接電化學性能及對葡萄糖的檢測

    2016-11-28 08:06:55黃海平岳亞鋒姜立萍
    無機化學學報 2016年11期
    關鍵詞:葡萄糖氧化酶理工大學納米材料

    黃海平 徐 亮 岳亞鋒 姜立萍

    (1江西理工大學冶金與化學工程學院,贛州341000)

    (2生命分析化學國家重點實驗室,南京大學化學化工學院,南京210093)

    基于氧化鉺-石墨烯氧化物復合納米材料的葡萄糖氧化酶直接電化學性能及對葡萄糖的檢測

    黃海平1,2徐亮1岳亞鋒1姜立萍*,2

    (1江西理工大學冶金與化學工程學院,贛州341000)

    (2生命分析化學國家重點實驗室,南京大學化學化工學院,南京210093)

    將稀土納米材料Er2O3用于構建葡萄糖生物傳感器。Er2O3和氧化石墨烯形成復合基底,將葡萄糖氧化酶(GOD)固載在玻碳電極表面。首先利用SEM和XRD技術對所制備的Er2O3和氧化石墨烯納米材料進行表征。利用EIS和CV對整個生物傳感器制備過程進行表征。Er2O3的存在能有效地保持GOD的生物活性并加速其與電極之間的電子傳遞。由于Er2O3和氧化石墨烯之間的協(xié)同效應,使得制備的傳感器在CV圖中呈現(xiàn)一對明顯的氧化還原峰,證實GOD和電極之間的直接電子傳遞性能。當用于對葡萄糖的電催化氧化時,傳感器的CV響應隨著葡萄糖濃度的增加而變弱。在葡萄糖濃度為1~10 mmol·L-1范圍內,CV響應值與葡萄糖濃度成線性關系。此外,傳感器具有好的穩(wěn)定性和重現(xiàn)性。

    氧化鉺;石墨烯氧化物;葡萄糖氧化酶;生物傳感器

    0 Introduction

    Nowadays,the rare-earth based nanomaterials have attracted much interest due to their narrow emission bands,noncytotoxicity and excellent biocompatibility for construction of various desired biosensors. As back in 2002,Prof.Chen[1]first prepared the lanthanum hexacyanoferrate(LaHCF)modified platinum electrode by cyclic voltammetric(CV)technique.The modified electrode showed considerable electrochemical behavior and might be used for fabrication of electrochemical sensor.In 2006,Ru′s group[2]developed CeO2/Chitosan(CHIT)composite matrix for the immobilization of single-stranded DNA(ssDNA)probe and the fabrication of DNA biosensor.Combining the advantages of good biocompatibility and electronic conductivity,the prepared matrix exhibited the enhanced loading of ssDNA probe on the electrode surface.In order to improve the loading amount,the sensitivity and the selectivity,carbon nanotubes and other nanomaterials were employed to form the nanocomposite with CeO2[3].Under the synergistic effect of this nanocomposite matrix,the immobilization of the DNA probes was greatly enhanced and the sensitivity of the detection of target DNA was markedly improved.What′s more,some rare earth elements could also promote the conformational change of DNA secondary structure.For example,in the presence of Tb3+,the conformation of single stranded G-rich DNA probe could be changed to form the compact quadruplex[4].With their excellent biocompatibilities, rare earth elementscould enhance the catalytic activities of bio-enzymes.Many enzymes such as horseradish peroxidase(HRP)[5],glucose oxidase(GOD)[6],and cholesterol oxidase(ChOx)[7]were reported to be immobilized onto the rare earth based nanomaterials for the construction of biosensor.To take ChOx as an example,ChOx could be immobilized onto the sol-gel derived nano-structured cerium oxide with ITO as glass substrate.The result proved that the sol-gel NSCeO2film could provide better configuration for immobilization of ChOx.Another rare earth oxide of Tm2O3was employed for the immobilization of GOD[6]. The direct electron transfer(DET)with an apparent heterogeneous electron transfer rate constant was achieved on the GOD immobilized Nafion-Tm2O3film. Other elements like Y[8],Sm[9-10]were reported for the fabrication of biosensor for the detection of serum uric acid,oxidized low density lipoprotein,etc.The above successful reports for the achievement of enzymes DET and the electrochemical detection of small biomolecule proved a new promising strategy for the fabrication of electrochemical biosensors based on the rare earth oxide nanomaterials.Many other elements among the rare earth are still remain to be explored and studied.For this purpose,herein we synthesized Er2O3nanomaterial and studied its electrochemical property.

    As a novel two-dimensional monolayer nanomaterial,graphene[11]exhibited excellent thermal,electronic,and mechanical properties,such as high surface area,unique transport performance[12],excellent electrical conductivity,ultra-strong mechanical properties and high stability[13].In recent years,graphene oxide (GO)based materials were widely used for electrochemical biosensor applications[14-16].

    In this paper,in order to further expand the electrochemical study of rare earth elements,the Er2O3nanomaterial was firstly synthesized via hydrothermal homogeneous method and then characterized.Glucose oxidase(GOD),as an ideal model enzyme,was employed for use in the next bioelectrochemistry. Graphene oxide was used to form the composite with the prepared Er2O3nanomaterial so as to achieve better electrochemical performance.

    1 Experimental

    1.1Reagents and apparatus

    Chitosan(low molecular weight),GOD from Aspergillus niger(E.C.1.1.3.4,Type X-S,100~250 kU·g-1) and D-(+)-glucose were purchased from Sigma-Aldrich and used without further purification.Bulk Er2O3was obtained from Tongji Institute of Trace Element (Beijing,China).All other chemicals were of analytical grade and used without further purification. Millipore ultrapure water(Resistivity≥18.2 MΩ)wasused throughout the experiment.Phosphate buffer solution(PBS)(pH 7.0,0.1 mol·L-1)was employed as a supporting electrolyte by mixing the stock solutions of NaH2PO4and Na2HPO4.

    X-ray diffraction(XRD)patterns were recorded on an X-ray diffractometer(PANalytical X′Pert Pro) with Cu Kα radiation(λ=0.154 18 nm)for crystal phase identification.The XRD was operated at 40 kV accelerating voltage and 40 mA tube current,with the degree range of 5°~80°.Scanning electron microscope (SEM)was taken using a Philips XL30 microscope, using an accelerating voltage of 200 kV.The electrochemical impedance spectroscopy(EIS)analyses were performed on an Autolab PGSTAT12(Ecochemie,BV, The Netherlands)with the frequency range of 0.1~1.0×105Hz.A CHI 660D Electrochemical Workstation(Shanghai CH Instruments Co.,China)was used for the cyclic voltammograms(CVs).The electrochemical system consisted of a modified glassy carbon electrode(GCE)as working electrode,a platinum wire auxiliary electrode and a saturated calomel electrode (SCE)as reference electrode.

    1.2Synthesis of nanomaterials

    GO was synthesized according to the modified Hummers method[17-18].The last suspension was centrifuged under 3 000 r·min-1.The supernatant was collected and put in the refrigerator for further use.Er2O3nanomaterial was prepared according to the reported previously method with some modifications[6].In briefly,0.1 mmol bulk Er2O3was firstly dissolved in hot concentrated HCl(36%).After that,the pH value was adjusted by 0.2 mol·L-1NaOH solution to about 10.The solution was then poured into the Teflon-lined autoclaves(100 mL)and held at 150℃for 12 h. After cooled to room temperature naturally,the precipitates were collected by centrifugation and then calcined at 400℃for 2 h.

    1.3Fabrication of biosensor

    First of all,the glassy carbon electrode(GCE,4 mm in diameter)was carefully polished to a mirror by 1.0,0.3 and 0.05 μm alumina powder.After ultrasonically cleaned in ethanol and water respectively,GCE was then dried by flowing N2before it was used.1 mg prepared Er2O3nanomaterial was dispersed in 1 mL H2O by ultrasonicating to form a stable suspension. Then a homogeneous solution,which finally contained about 6 mg·mL-1GOD,0.3 mg·mL-1Er2O3nanomaterial,0.6 mg·mL-1GO was formed by thoroughly mixing the Er2O3suspension,GO suspension with GOD solution(20 mg·mL-1)at 1∶1∶1 ratio(V/V).A volume of 10 μL of the resulting solution was dropped onto the pretreated GCE.The electrode was left in desiccator to dry at 4℃.At last,5 μL of 5 mg·mL-1chitosan solution was dripped onto the GOD/GO/ Er2O3/GCE for sealing.The GOD/GCE,GOD/Er2O3/ GCE,GOD/GO/GCE were fabricated through a similar procedure with pure water as the substitute.

    2 Results and discussion

    2.1Characterization of nanomaterials

    The morphology of the synthesized Er2O3nanomaterial was characterized by SEM,which was shown in Fig.1A.It could be seen from Fig.1A that the Er2O3were relatively uniform in square-shaped size with about 500 nm in length.Fig.1B was the XRD pattern of the as-synthesized GO.As indicated in the pattern,a well-defined d001peak of 2θ=10.3° confirmed that the GO formed a well-ordered layered structure[19].The surface of the prepared biosensor was shown in Fig.1C,which contained ternary nanocomposites of Er2O3nanomaterial,GO and GOD.As could be seen from Fig.1C,Er2O3nanomaterials and GODs were dispersed on the surface of GO.

    2.2Electrochemical characterization of the biosensor

    As an effective tool to inspect the estates of the electrode surface,EIS is widely used to understand the chemical transformations and processes associated with the conductive electrode surface[20].The electron transfer resistance of the electrochemical reaction,Ret, reveals the electron transfer kinetics of the redox electrochemical probe at the electrode interface. Another electrochemical technique of cyclic voltammogram(CV)is also considered as a powerful method to monitor the electron transfer behaviour between the solution species and the electrode.Herein,the EISand CV were used to examine the modified electrode after each self-assembly step,which were shown in Fig.2.

    Fig.1(A)SEM of the prepared Er2O3Nanomaterial;(B)XRD pattern of the prepared graphene oxide; (C)SEM of the ternary composites containing Er2O3nanomaterial,GO and GOD

    Fig.2 EIS(A)and CV(B)of the electrode at different stages in 0.1 mol·L-1KCl+2 mmol·L-1[Fe(CN6)]3-/[Fe(CN6)]4-

    As presented by the EIS spectrum in Fig.2A,the GO modified electrode(curve a in Fig.2A)showed relative small electron-transfer resistance(Ret)as compared to the Er2O3modified electrode(curve b in Fig. 2A),which suggested that the GO owned better electronic conductivity than Er2O3.After the GOD was mixed with Er2O3and coated on the bare electrode (curve d in Fig.2A),the resistance increased dramatically.This phenomenon could be attributed to the hindrance effect of electron-transfer kinetics between the redox probe and electrode surface[21].The similar result was also observed when GOD was mixed with GO(curve c in Fig.2A).Accordingly,the ternary nanocomposites GOD/GO/Er2O3modified electrode exhibited a moderate Ret(curve e in Fig.2A),which wassmaller than the GOD/Er2O3and larger than the GOD/ GO modified electrode.

    Fig.2B showed the CVs of the redox probe [Fe(CN6)]3-/[Fe(CN6)]4-on the modified electrode at different stages.As could be seen in Fig.2B,stepwise modifications on the GCE were accompanied by the changes in the amperometric response of the redox probe.On the GO modified electrode,a pair of welldefined redox peaks was observed(curve a in Fig.2B), showing the excellent electron-transfer kinetics of [Fe(CN6)]3-/[Fe(CN6)]4-,so as the Er2O3modified GCE (curve b in Fig.2B).After the GOD was mixed with GO,the amperometric response decreased and the peak-to-peak separation enlarged(curve c in Fig.2B), due to the fact that the bulky GOD molecules blocked the electron exchange.The CV response was further decreased after GOD was mixed with Er2O3(curve d in Fig.2B).The shape of the redox peaks become better than Er2O3/GOD when GO was added to form the ternary nanocomposites(curve e in Fig.2B).From the above results,it was obvious that the CV changes were consistent with the EIS changes.

    2.3Direct electrochemistry of GOD/GO/Er2O3/ GCE

    For the purpose of investigating the direct electrochemical property of the modified electrodes, the cyclic voltammograms(CV)of the modified electrodes at different steps were detected.Fig.3A was the CV of GOD/GCE,GOD/Er2O3/GCE,GOD/GO/GCE and GOD/GO/Er2O3/GCE in PBS solution(0.1 mol·L-1, pH 7.0)at the scan rate of 100 mV·s-1.

    As could be seen from the results,when the GOD was directly dropped onto the GCE surface(curve a in Fig.3A),a very small redox wave was observed.This wave could be attributed to the characteristic of a reversible electron transfer process between the redox active center(flavin-adenine dinucleotide,FAD)in GOD and the electrode[22-23].The CV curve of the GOD/ GO/GCE(curve c in Fig.3A)showed more distinguished redox waves with larger peak current,which was attributed to the excellent biocompatibility and electronical conductivity of GO.A comparison with the CV curves of the GOD/Er2O3/GCE(curve b in Fig. 3A)and GOD/GO/GCE presented similar redox waves, which proved that the prepared Er2O3nanomaterial could also provide a friendly microenvironment to maintain the bioactivity of GOD and the electron transfer between the modified electrode and GOD. Furthermore,after GOD was mixed with GO and Er2O3to form the ternary nanocomposites,the GOD/GO/ Er2O3/GCE(curve d in Fig.3A)displayed a pair of more distinct and better-defined redox peaks, indicating the faster DET rate between the redoxactive site of GOD and GCE.The synergistic effect of the GO/Er2O3nanocomposite was considered to effectively accelerate electrical transfer between redox-active center of GOD and electrode surface, leading to the increased peak current.Combining theSEM picture and CV curves,it could be deduced that GO not only promoted the electron transfer rate,but also provided the necessary supported matrix to form the ternary nanocomposites.

    Fig.3(A)CV of the modified electrodes at different steps in PBS solution(0.1 mol·L-1,pH 7.0)at the scan rate of 100 mV·s-1; (B)CVs of GOD/GO/Er2O3/GCE measured in PBS solution(0.1 mol·L-1,pH 7.0)at the different scan rates

    For the purpose of further understanding the property of electron transfer between the GOD and the electrode,the cyclic voltammograms of the GOD/GO/ Er2O3/GCE at various scan rates were investigated, which were displayed in Fig.3B.It could be obviously seen from Fig.3B that the redox peak currents increased with the increase of the scan rates in the range of 10~200 mV·s-1,coupled with slightly enlarged peak-to-peak separation.Inset in Fig.3B was the calibration plot of the peak current vs the scan rate. The redox peak currents linearly increased with the increase of the scan rates,confirming that this redox reaction of GOD was a surface-controlled electrochemical process,not a diffusion-controlled process[24-25].

    2.4Detection of glucose

    The amperometric response of the prepared biosensor to the target was investigated in various concentrations of glucose.As was proved,via the enzyme catalyzed reaction,the D-(+)-glucose could result in the reductive form of GOD(GOD-FADH2) according to the following chemical equations[26-27]:

    GOD-FAD+2e+2H+?GOD-FADH2(1) Glucose+GOD-FAD→gluconolactone+GOD-FADH2(2) Therefore,when glucose was added,the electrocatalytic reaction(Eq.1)would be restrained by the enzyme catalyzed reaction(Eq.2).This directly induced the decrease of the GOD-FAD concentration, followed by the decrease of the reduction current.

    Fig.4A was the typical cyclic voltammograms of the prepared biosensor in blank 0.1 mol·L-1PBS solution with the different concentrations of glucose from 0 to 10.0 mmol·L-1.With more glucose added to the PBS solution,the reduction current decreased,i.e., the higher glucose concentration caused the decrease of the reduction current.Fig.4B is the CV response calibration curve of the prepared biosensor against the concentrations of glucose.The calibration curve corresponding to the CV response is linear against the concentrations of glucose ranging from 1 to 10 mmol· L-1with the detection limit of 0.3 mmol·L-1(S/N=3).The regression equation is i(μA)=-12.94+0.85c(mmol·L-1) with the correlation coefficient(R)of 0.998.

    The stability of the biosensor was investigated in 0.1 mol·L-1PBS.The relative standard deviations(RSD) were 4.1%for 10 successive assays in the presence of 1.0 mmol·L-1glucose,indicating that the enzyme electrode was stable in buffer solution.The fabrication reproducibility for four electrodes gave a RSD of 6.5% for CV determination at 1.0 mmol·L-1glucose.After storing at 4℃in the refrigerator for 10 days,the response to 1.0 mmol·L-1glucose retained 95.8%of its initial current,demonstrating good long-term stability.It can be attributed to the biocompatibility ofthe GO/Er2O3nanocomposite,which can provide an excellent microenvironment for GOD to retain its bioactivity

    Fig.4(A)CVs of GOD/GO/Er2O3/GCE in PBS solution(0.1 mol·L-1,pH 7.0)with different glucose concentration; (B)Calibration plot of response current vs glucose concentration

    3 Conclusions

    In summary,the rare earth oxide of Er2O3was employed to form the nanocompositewith GO.SEM and XRD were used to characterize the prepared nanomaterials.The EIS and CV were used to check the electrochemical behaviors of different modified electrode.The results proved that the nanomaterials owned good electronical conductivity.The direct electrochemical properties of GOD/GO/Er2O3/GCE suggested that the Er2O3/GO supported matrix could effectively immobilize GOD onto the GCE,while still maintaining the excellent bioactivity.Detecting performance of the prepared biosensor towards the electrocatalytic oxidation to glucose revealed a wide linear range,good stability and reproducibility.On the basis of the above electrochemical measurements,the Er2O3nanomaterial,which owns good electronical conductivity and biocompatibility,exhibits great potential applications in the field of electrochemical biosensor.This provides the possibility of novel nanomaterials for the construction of electrochemical biosensor.Further work is still in progress to explore new rare earth elements nanomaterials for the electrochemical and biological applications.

    References:

    [1]Liu S Q,Chen H Y.J.Electroanal.Chem.,2002,528(1/2): 190-195

    [2]Feng K J,Yang Y H,Wang Z J,et al.Talanta,2006,70(3): 561-565

    [3]Zhang W,Yang T,Zhuang X M,et al.Biosens.Bioelectron., 2009,24(8):2417-2422

    [4]Zhang J,Chen J H,Chen R C,et al.Biosens.Bioelectron., 2009,25(2):378-382

    [5]Xiao X L,Luan Q F,Yao X,et al.Biosens.Bioelectron.,2009, 24(8):2447-2451

    [6]Li Y,Gao Y F,Zhou Y,et al.J.Electroanal.Chem.,2010, 642(1):1-5

    [7]Ansari A A,Kaushik A,Solanki P R,et al.Electrochem. Commun.,2008,10(9):1246-1249

    [8]Kodaira C A,Lourenco A V S,Felinto M C F C.et al.J. Lumin.,2011,131(4):727-731

    [9]Chinnu M K,Anan K V,Kumar R M,et al.Mater.Lett., 2013,113:170-173

    [10]Wu M H,Lin T W,Huang M D,et al.Sens.Actuators B, 2010,146(1):342-348

    [11]Novoselov K S,Geim A K,Morozov S V,et al.Science,2004, 306(5696):666-669

    [12]Du X,Skachko L,Barker A,et al.Nat.Nanotechnol.,2008, 3:491-495

    [13]Balandin A A,Ghosh S,Bao W,et al.Nano Lett.,2008,8 (3):902-907

    [14]Wang W X,Ge L,Sun X M,et al.Mater.Inter.,2015,7(51): 28566-28575

    [15]Zhang R Z,Sun C L,Lu Y J,et al.Anal.Chem.,2015,87 (24):12262-12269

    [16]Liu J Y,Wang X H,Wang T S,et al.ACS Appl.Mater. Interface,2014,6(22):19997-20002

    [17]Hummers W,Offeman R.J.Am.Chem.Soc.,1958,80(6): 1339-1339

    [18]Wang Z J,Zhou X Z,Zhang J,et al.J.Phys.Chem.C, 2005,113(32):14071-14075

    [19]Lambert T N,Chave C A,Sanch B H,et al.J.Phys.Chem. C,2009,113(46):19812-19823

    [20]Bard A J,Faulkner L R.Electrochemical Methods:Fundamentals and Applications.New York:Wiley,1980.

    [21]Deng S Y,Jian G Q,Lei J P,et al.Biosens.Bioelectron., 2009,25(2):373-377

    [22]Zhang Y J,Shen Y F,Han D X,et al.Biosens.Bioelectron., 2007,23(3):438-443

    [23]Zhou Y,Yang H,Chen H Y.Talanta,2008,76(2):419-423

    [24]Ivanova E V,Magner E.Electrochem.Commun.,2005,7(4): 323-327

    [25]Deng C Y,Chen J H,Chen X L,et al.Biosens.Bioelectron., 2008,23(8):1272-1277

    [26]Yang L Q,Ren X L,Tang F Q,et al.Biosens.Bioelectron., 2009,25(4):889-895

    [27]Liu S Q,Ju H X.Biosens.Bioelectron.,2003,19(3):177-183

    Er2O3-Graphene Oxide Nanocomposite Supported Glucose Oxidase: Direct Electrochemistry and Biosensing to Glucose

    HUANG Hai-Ping1,2XU Liang1YUE Ya-Feng1JIANG Li-Ping*,2
    (1School of Metallurgy and Chemical Engineering,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,China)
    (2State Key Laboratory of Analytical Chemistry for Life Sciences,School of Chemistry& Chemical Engineering,Nanjing University,Nanjing 210093,China)

    A new rare earth oxide of Er2O3was employed for the construction of glucose biosensor.Er2O3was mixed with graphene oxide(GO)to form the supported matrix for immobilization of glucose oxidase(GOD)onto the glassy carbon electrode(GCE).The nanomaterials of Er2O3and GO were firstly synthesized and characterized by SEM,XRD.The fabrication process for the biosensor was monitored by electrochemical impedance spectroscopy (EIS)and cyclic voltammetry(CV).The presence of Er2O3could effectively maintain the bioactivity of GOD and enhance the electron transfer rate.The prepared biosensor showed a pair of distinct and well-defined redox peaks,indicating the fast direct electron transfer(DET)rate between the redox-active site of GOD and GCE,which could be attributed to the synergistic effect of the GO/Er2O3nanocomposite.When employed to the electrocatalytic detection of glucose,the CV response of the prepared biosensor decreased against the concentrations of glucose. The calibration curve corresponding to the CV response was linear against the concentrations of glucose ranging from 1 to 10 mmol·L-1.Moreover,the biosensor showed good stability and reproducibility.

    Er2O3;graphene oxide;glucose oxidase;biosensor

    TB333

    A

    1001-4861(2016)11-2034-07

    10.11862/CJIC.2016.268

    2016-05-28。收修改稿日期:2016-09-30。

    國家自然科學基金(No.21465013,21475057,21005034)、中國博士后科學基金(No.2014M551550)、江西省自然科學基金(No.20114BAB213014,GJJ13433)和江西理工大學清江青年英才支持計劃資助項目。

    *通信聯(lián)系人。E-mail:jianglp@nju.edu.cn

    猜你喜歡
    葡萄糖氧化酶理工大學納米材料
    武器中的納米材料
    學與玩(2022年8期)2022-10-31 02:41:56
    昆明理工大學
    二維納米材料在腐蝕防護中的應用研究進展
    昆明理工大學
    昆明理工大學
    浙江理工大學
    葡萄糖氧化酶的研究進展及其在豬生產中的應用分析
    飼料博覽(2019年7期)2019-02-12 22:28:15
    齒輪狀SBA-15的制備及其對葡萄糖氧化酶的吸附行為研究
    陶瓷學報(2019年5期)2019-01-12 09:17:42
    葡萄糖氧化酶在斷奶仔豬日糧上的應用研究進展
    MoS2納米材料的制備及其催化性能
    国产又色又爽无遮挡免| 中文字幕精品免费在线观看视频 | 成人无遮挡网站| 韩国av在线不卡| 一级爰片在线观看| 寂寞人妻少妇视频99o| 午夜av观看不卡| 精品午夜福利在线看| av卡一久久| 国产69精品久久久久777片| 久久这里有精品视频免费| 狠狠婷婷综合久久久久久88av| 日本午夜av视频| 在线观看国产h片| 亚洲四区av| 亚洲av在线观看美女高潮| 国产在线视频一区二区| 欧美日韩视频精品一区| 啦啦啦中文免费视频观看日本| 99热6这里只有精品| 国产淫语在线视频| 两个人的视频大全免费| 97在线视频观看| 欧美日韩国产mv在线观看视频| 国产欧美日韩一区二区三区在线 | videossex国产| 国产69精品久久久久777片| 国产片特级美女逼逼视频| 国产男女超爽视频在线观看| 免费看光身美女| 日韩视频在线欧美| 亚洲精品国产av蜜桃| av线在线观看网站| 日韩精品免费视频一区二区三区 | 亚洲情色 制服丝袜| 女人精品久久久久毛片| 777米奇影视久久| 欧美性感艳星| 美女内射精品一级片tv| 水蜜桃什么品种好| 久久久久久久大尺度免费视频| 久久久久久久亚洲中文字幕| 人人妻人人爽人人添夜夜欢视频| 大陆偷拍与自拍| 亚洲精品日韩在线中文字幕| 精品一区二区免费观看| 9色porny在线观看| 精品一区二区三区视频在线| 熟妇人妻不卡中文字幕| 国产精品不卡视频一区二区| 99精国产麻豆久久婷婷| 天天操日日干夜夜撸| 国产精品成人在线| 最新中文字幕久久久久| 亚洲av福利一区| 亚洲精品久久午夜乱码| 亚洲四区av| 91精品国产九色| 欧美精品高潮呻吟av久久| 亚洲国产精品999| 国产精品一区二区在线观看99| 国产免费福利视频在线观看| 91国产中文字幕| 日本色播在线视频| 大片免费播放器 马上看| 乱人伦中国视频| 久久久久久久久久久免费av| 一本色道久久久久久精品综合| 一级毛片我不卡| 如何舔出高潮| 韩国高清视频一区二区三区| 精品一区二区三区视频在线| 韩国高清视频一区二区三区| 久久精品国产亚洲av涩爱| 日本av免费视频播放| 18禁在线播放成人免费| 免费看av在线观看网站| 日韩熟女老妇一区二区性免费视频| 美女主播在线视频| 国产精品久久久久成人av| tube8黄色片| 久久女婷五月综合色啪小说| 99视频精品全部免费 在线| 亚洲色图综合在线观看| av电影中文网址| 九色亚洲精品在线播放| 亚洲精品乱码久久久v下载方式| 日韩精品免费视频一区二区三区 | 少妇 在线观看| 97在线人人人人妻| 色5月婷婷丁香| 亚洲成色77777| 2022亚洲国产成人精品| 99热网站在线观看| 久久午夜综合久久蜜桃| 欧美日韩av久久| 久久久久久久大尺度免费视频| 久热久热在线精品观看| 久久精品国产自在天天线| 欧美日韩成人在线一区二区| 国产一区二区在线观看日韩| 国产一区亚洲一区在线观看| 精品99又大又爽又粗少妇毛片| 日本欧美视频一区| 人人妻人人澡人人爽人人夜夜| av网站免费在线观看视频| 天天躁夜夜躁狠狠久久av| 欧美另类一区| 特大巨黑吊av在线直播| 亚洲成色77777| 桃花免费在线播放| 国产在视频线精品| 午夜视频国产福利| 亚洲精品,欧美精品| 日本爱情动作片www.在线观看| 久久久久久久大尺度免费视频| 久久女婷五月综合色啪小说| 欧美少妇被猛烈插入视频| 久久久精品区二区三区| 色94色欧美一区二区| 成人国产av品久久久| 成年女人在线观看亚洲视频| 欧美精品一区二区免费开放| 午夜福利影视在线免费观看| 日韩成人伦理影院| 成人黄色视频免费在线看| 日日爽夜夜爽网站| 夜夜爽夜夜爽视频| 久久免费观看电影| 91在线精品国自产拍蜜月| 自线自在国产av| 国产有黄有色有爽视频| 亚洲国产精品一区三区| 亚洲av在线观看美女高潮| 寂寞人妻少妇视频99o| 国产亚洲欧美精品永久| 毛片一级片免费看久久久久| 永久网站在线| 免费av不卡在线播放| 一级,二级,三级黄色视频| 亚洲av成人精品一二三区| 免费大片18禁| 亚洲av综合色区一区| 欧美变态另类bdsm刘玥| 黑丝袜美女国产一区| 午夜日本视频在线| 免费不卡的大黄色大毛片视频在线观看| 久久午夜综合久久蜜桃| 国产成人免费无遮挡视频| 丰满饥渴人妻一区二区三| 午夜视频国产福利| 两个人的视频大全免费| 日韩大片免费观看网站| 久久99热这里只频精品6学生| 午夜激情福利司机影院| 欧美97在线视频| 人体艺术视频欧美日本| 欧美bdsm另类| 亚洲av电影在线观看一区二区三区| 中文乱码字字幕精品一区二区三区| 十八禁高潮呻吟视频| 免费av不卡在线播放| 国产精品秋霞免费鲁丝片| 亚洲,一卡二卡三卡| 18禁观看日本| a级毛片在线看网站| 天堂8中文在线网| 在线亚洲精品国产二区图片欧美 | 18禁在线无遮挡免费观看视频| 亚洲av成人精品一区久久| 一级,二级,三级黄色视频| 久久97久久精品| 国产一区有黄有色的免费视频| 男女啪啪激烈高潮av片| 成人无遮挡网站| 少妇被粗大的猛进出69影院 | 一本色道久久久久久精品综合| 亚洲人与动物交配视频| 精品国产一区二区三区久久久樱花| 国产国拍精品亚洲av在线观看| 国产乱来视频区| 女性生殖器流出的白浆| 男女边吃奶边做爰视频| 乱人伦中国视频| 国产永久视频网站| 国产免费一区二区三区四区乱码| 国产精品不卡视频一区二区| 777米奇影视久久| 超碰97精品在线观看| 国产高清不卡午夜福利| 日韩成人av中文字幕在线观看| 十八禁高潮呻吟视频| 亚洲精品视频女| 日日爽夜夜爽网站| 另类亚洲欧美激情| 久久久久久伊人网av| 国产精品99久久99久久久不卡 | 免费日韩欧美在线观看| 欧美激情极品国产一区二区三区 | 欧美日韩av久久| 久久久久国产网址| 激情五月婷婷亚洲| 亚洲精品中文字幕在线视频| av黄色大香蕉| 国产综合精华液| 好男人视频免费观看在线| 欧美日韩av久久| 在线观看免费视频网站a站| 国产女主播在线喷水免费视频网站| 精品久久蜜臀av无| 免费观看的影片在线观看| 国产亚洲av片在线观看秒播厂| 国产男女超爽视频在线观看| www.色视频.com| 王馨瑶露胸无遮挡在线观看| 中文字幕亚洲精品专区| 不卡视频在线观看欧美| 欧美精品一区二区免费开放| 观看美女的网站| 久久久久久久大尺度免费视频| 精品国产露脸久久av麻豆| 又粗又硬又长又爽又黄的视频| 人妻少妇偷人精品九色| 蜜桃国产av成人99| 国产成人精品婷婷| av又黄又爽大尺度在线免费看| 大话2 男鬼变身卡| 男人添女人高潮全过程视频| 九九在线视频观看精品| 亚洲国产精品专区欧美| 好男人视频免费观看在线| 十八禁高潮呻吟视频| 精品国产一区二区三区久久久樱花| 日韩不卡一区二区三区视频在线| 美女福利国产在线| 18禁观看日本| 日韩,欧美,国产一区二区三区| 日韩伦理黄色片| 啦啦啦中文免费视频观看日本| 内地一区二区视频在线| 亚洲精品视频女| 午夜福利影视在线免费观看| 成人免费观看视频高清| 日本av手机在线免费观看| 久久精品熟女亚洲av麻豆精品| 日韩精品有码人妻一区| 国产精品久久久久久精品古装| 永久免费av网站大全| 少妇猛男粗大的猛烈进出视频| 久久久欧美国产精品| 久久久久久久久大av| 丰满饥渴人妻一区二区三| 在线看a的网站| 一二三四中文在线观看免费高清| 伦精品一区二区三区| 高清av免费在线| 免费黄网站久久成人精品| 国产极品天堂在线| 简卡轻食公司| 亚洲国产精品一区二区三区在线| 日韩欧美精品免费久久| 伦理电影大哥的女人| 男女国产视频网站| 精品视频人人做人人爽| 亚洲精品色激情综合| 亚洲国产成人一精品久久久| 欧美日韩在线观看h| 亚洲精品日本国产第一区| 精品酒店卫生间| 久久影院123| 少妇精品久久久久久久| 亚洲国产av新网站| 99热这里只有精品一区| 最黄视频免费看| 一边摸一边做爽爽视频免费| 男女边摸边吃奶| 国产亚洲精品久久久com| 看十八女毛片水多多多| 免费观看无遮挡的男女| 熟女av电影| 亚洲综合色网址| 高清毛片免费看| 一区二区三区精品91| 成年人午夜在线观看视频| 国产免费现黄频在线看| av国产精品久久久久影院| 另类亚洲欧美激情| 一级毛片电影观看| 两个人免费观看高清视频| 黑人高潮一二区| 亚洲精品乱码久久久v下载方式| 中文欧美无线码| 人妻少妇偷人精品九色| 91久久精品电影网| 国内精品宾馆在线| 插逼视频在线观看| 99九九在线精品视频| 亚洲在久久综合| 亚洲av福利一区| 新久久久久国产一级毛片| 欧美bdsm另类| 国产爽快片一区二区三区| 欧美精品一区二区免费开放| 欧美3d第一页| 制服诱惑二区| 国产精品国产三级国产专区5o| 人成视频在线观看免费观看| 亚洲精品国产av成人精品| 久久久国产精品麻豆| 天堂8中文在线网| 另类亚洲欧美激情| 国产男女内射视频| 精品一品国产午夜福利视频| 一边亲一边摸免费视频| 一级毛片aaaaaa免费看小| 我的女老师完整版在线观看| 久久精品国产鲁丝片午夜精品| 男人操女人黄网站| 国产精品蜜桃在线观看| 精品国产乱码久久久久久小说| 青春草国产在线视频| 色网站视频免费| 视频区图区小说| 蜜臀久久99精品久久宅男| 国产精品国产三级国产av玫瑰| 丰满乱子伦码专区| 下体分泌物呈黄色| 午夜免费男女啪啪视频观看| 亚洲熟女精品中文字幕| 高清欧美精品videossex| 国产成人午夜福利电影在线观看| 日韩精品有码人妻一区| 高清欧美精品videossex| 色5月婷婷丁香| 亚洲综合色惰| 少妇人妻精品综合一区二区| 国产成人精品福利久久| 十分钟在线观看高清视频www| 99热6这里只有精品| 免费高清在线观看日韩| 国产男女内射视频| 女的被弄到高潮叫床怎么办| 亚洲第一区二区三区不卡| 亚洲av电影在线观看一区二区三区| 国产在线一区二区三区精| 18在线观看网站| 18禁在线无遮挡免费观看视频| 欧美激情极品国产一区二区三区 | 日本欧美国产在线视频| 纵有疾风起免费观看全集完整版| 美女国产高潮福利片在线看| 边亲边吃奶的免费视频| 亚洲人与动物交配视频| 日韩av不卡免费在线播放| 亚洲国产精品成人久久小说| 天天操日日干夜夜撸| 最近手机中文字幕大全| 亚洲无线观看免费| 亚洲第一区二区三区不卡| 美女脱内裤让男人舔精品视频| www.色视频.com| 女性被躁到高潮视频| 一个人看视频在线观看www免费| 日韩大片免费观看网站| 国产69精品久久久久777片| 久久人妻熟女aⅴ| 久久久久人妻精品一区果冻| 丁香六月天网| 大香蕉久久成人网| 一本大道久久a久久精品| 99re6热这里在线精品视频| 桃花免费在线播放| 久久久精品区二区三区| 制服丝袜香蕉在线| 日本爱情动作片www.在线观看| 夜夜爽夜夜爽视频| 99热国产这里只有精品6| av不卡在线播放| 欧美日韩一区二区视频在线观看视频在线| 久久97久久精品| 午夜视频国产福利| 最近最新中文字幕免费大全7| 九色成人免费人妻av| 一本—道久久a久久精品蜜桃钙片| 亚洲综合精品二区| av专区在线播放| 婷婷色综合大香蕉| 一级毛片 在线播放| 亚洲精品第二区| 在线天堂最新版资源| 国产黄片视频在线免费观看| 一级毛片aaaaaa免费看小| 一区二区av电影网| 欧美日韩av久久| 久久国产精品大桥未久av| 综合色丁香网| 午夜免费观看性视频| 国产成人91sexporn| 另类精品久久| 亚洲欧美一区二区三区黑人 | 成人午夜精彩视频在线观看| 久久精品国产自在天天线| 亚洲精品第二区| 午夜福利网站1000一区二区三区| 2021少妇久久久久久久久久久| 我的老师免费观看完整版| 国产精品久久久久久精品电影小说| 久久久久久久久久久久大奶| 人妻系列 视频| 制服诱惑二区| 乱人伦中国视频| 亚洲一级一片aⅴ在线观看| 成人综合一区亚洲| av天堂久久9| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 91午夜精品亚洲一区二区三区| 亚洲精品成人av观看孕妇| av播播在线观看一区| 国产精品久久久久久精品古装| av福利片在线| av在线app专区| 国产欧美另类精品又又久久亚洲欧美| 久久久精品免费免费高清| 国产片内射在线| 亚洲性久久影院| 一区二区三区四区激情视频| 插逼视频在线观看| 精品人妻熟女av久视频| 日本av免费视频播放| 亚洲精品国产av蜜桃| 少妇人妻久久综合中文| 夜夜爽夜夜爽视频| 成人18禁高潮啪啪吃奶动态图 | 亚洲欧洲精品一区二区精品久久久 | 夜夜看夜夜爽夜夜摸| 在现免费观看毛片| 蜜臀久久99精品久久宅男| 如何舔出高潮| 成人国产av品久久久| 九色成人免费人妻av| 国产不卡av网站在线观看| 国产精品女同一区二区软件| 波野结衣二区三区在线| 女性被躁到高潮视频| 这个男人来自地球电影免费观看 | 日韩中文字幕视频在线看片| 热99久久久久精品小说推荐| 日本爱情动作片www.在线观看| 久久久久精品性色| 中文天堂在线官网| 成人二区视频| 日日撸夜夜添| 久热这里只有精品99| 久久久久视频综合| videos熟女内射| 777米奇影视久久| 99久久精品一区二区三区| 亚洲一级一片aⅴ在线观看| 高清毛片免费看| 国产欧美另类精品又又久久亚洲欧美| 国产不卡av网站在线观看| 91在线精品国自产拍蜜月| 色网站视频免费| av女优亚洲男人天堂| 国产黄色免费在线视频| 99热这里只有精品一区| 国产男人的电影天堂91| 亚洲性久久影院| 嫩草影院入口| 久久久久久久久久久久大奶| 嘟嘟电影网在线观看| 国产一区二区在线观看av| 一级爰片在线观看| 欧美性感艳星| 99精国产麻豆久久婷婷| 久久久久国产精品人妻一区二区| 五月伊人婷婷丁香| 亚洲av成人精品一区久久| 亚洲精品国产色婷婷电影| 国产欧美亚洲国产| 老司机亚洲免费影院| 欧美日韩成人在线一区二区| 乱人伦中国视频| 免费久久久久久久精品成人欧美视频 | 亚洲av成人精品一区久久| 亚洲欧洲精品一区二区精品久久久 | 国产熟女午夜一区二区三区 | 久久久久人妻精品一区果冻| 久久精品人人爽人人爽视色| 亚洲欧美中文字幕日韩二区| 一区在线观看完整版| 97在线人人人人妻| 伦理电影免费视频| 亚洲成色77777| 亚洲欧美中文字幕日韩二区| 美女主播在线视频| 黄色欧美视频在线观看| 午夜免费鲁丝| 国产男女超爽视频在线观看| 久久久久国产精品人妻一区二区| 又大又黄又爽视频免费| 精品一区二区三卡| xxxhd国产人妻xxx| 男女免费视频国产| 久热久热在线精品观看| 五月玫瑰六月丁香| 麻豆成人av视频| 国语对白做爰xxxⅹ性视频网站| 一级,二级,三级黄色视频| 纯流量卡能插随身wifi吗| 一本色道久久久久久精品综合| 97超碰精品成人国产| 99久久综合免费| a级毛片在线看网站| 午夜精品国产一区二区电影| 亚洲内射少妇av| 亚洲久久久国产精品| 精品久久久精品久久久| 视频在线观看一区二区三区| 亚洲图色成人| 国产欧美另类精品又又久久亚洲欧美| 一级爰片在线观看| 大片电影免费在线观看免费| 搡老乐熟女国产| 80岁老熟妇乱子伦牲交| 精品久久久久久久久av| 精品一品国产午夜福利视频| 亚洲av福利一区| 成年女人在线观看亚洲视频| 高清av免费在线| 久久精品熟女亚洲av麻豆精品| 亚洲av福利一区| 一级毛片aaaaaa免费看小| 少妇的逼好多水| 久久国产精品男人的天堂亚洲 | 欧美人与性动交α欧美精品济南到 | 精品亚洲成国产av| av免费在线看不卡| 亚洲精品一区蜜桃| 亚洲伊人久久精品综合| 伊人久久国产一区二区| 菩萨蛮人人尽说江南好唐韦庄| 三上悠亚av全集在线观看| 精品久久久久久久久亚洲| 欧美 日韩 精品 国产| 搡女人真爽免费视频火全软件| 免费黄频网站在线观看国产| 成人18禁高潮啪啪吃奶动态图 | 免费观看无遮挡的男女| 欧美精品人与动牲交sv欧美| 高清毛片免费看| 亚洲欧洲精品一区二区精品久久久 | 亚洲婷婷狠狠爱综合网| 亚洲av中文av极速乱| 极品少妇高潮喷水抽搐| 欧美性感艳星| 国产免费福利视频在线观看| 18禁动态无遮挡网站| 色哟哟·www| .国产精品久久| 麻豆精品久久久久久蜜桃| 中国三级夫妇交换| 99re6热这里在线精品视频| 日韩亚洲欧美综合| 少妇丰满av| 国产午夜精品一二区理论片| 成人无遮挡网站| 日本与韩国留学比较| 天天影视国产精品| 啦啦啦中文免费视频观看日本| 伊人亚洲综合成人网| av线在线观看网站| 18禁在线播放成人免费| 欧美三级亚洲精品| 亚洲国产成人一精品久久久| 欧美少妇被猛烈插入视频| 大陆偷拍与自拍| 超碰97精品在线观看| 一级片'在线观看视频| 久久久久久久久久久免费av| 人妻系列 视频| 国产一区亚洲一区在线观看| 欧美激情极品国产一区二区三区 | 国产成人午夜福利电影在线观看| 亚洲综合精品二区| 婷婷色综合大香蕉| 少妇的逼水好多| 夜夜骑夜夜射夜夜干| 观看av在线不卡| 赤兔流量卡办理| 春色校园在线视频观看| 一区在线观看完整版| 80岁老熟妇乱子伦牲交| 国产在视频线精品| 精品久久久久久久久亚洲| 另类亚洲欧美激情| 国产亚洲精品久久久com| 精品国产乱码久久久久久小说| 午夜免费男女啪啪视频观看| 免费观看的影片在线观看| 99热国产这里只有精品6| 久久久欧美国产精品| 国产亚洲精品久久久com| 国产欧美日韩综合在线一区二区| kizo精华| 亚洲精品日本国产第一区| 日本wwww免费看| 国产伦理片在线播放av一区| 美女国产高潮福利片在线看| 亚洲国产精品专区欧美| 精品人妻熟女毛片av久久网站| 九色亚洲精品在线播放| 成人国产av品久久久| 啦啦啦视频在线资源免费观看| 亚洲av国产av综合av卡|