• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Microscale Model for Air Pollutant Dispersion Simulation in Urban Areas: Presentation of the Model and Performance over a Single Building

    2016-11-25 02:02:21NingZHANGYunsongDUandShiguangMIAO
    Advances in Atmospheric Sciences 2016年2期

    Ning ZHANG,Yunsong DU,and Shiguang MIAO

    1Institute for Climate and Global Change Research and School of Atmospheric Sciences,Nanjing University,Nanjing 210093

    2Sichuan Environmental Monitoring Center,Chengdu 610091

    3Institute of Urban Meteorology,China Meteorological Administration,Beijing 100089

    A Microscale Model for Air Pollutant Dispersion Simulation in Urban Areas: Presentation of the Model and Performance over a Single Building

    Ning ZHANG?1,Yunsong DU1,2,and Shiguang MIAO3

    1Institute for Climate and Global Change Research and School of Atmospheric Sciences,Nanjing University,Nanjing 210093

    2Sichuan Environmental Monitoring Center,Chengdu 610091

    3Institute of Urban Meteorology,China Meteorological Administration,Beijing 100089

    A microscale air pollutant dispersion model system is developed for emergency response purposes.The model includes a diagnostic wind field model to simulate the wind field and a random-walk air pollutant dispersion model to simulate the pollutant concentration through consideration of the influence of urban buildings.Numerical experiments are designed to evaluate the model's performance,using CEDVAL(Compilation of Experimental Data for Validation of Microscale Dispersion Models)wind tunnel experiment data,including wind fields and air pollutant dispersion around a single building.The results show that the wind model can reproduce the vortexes triggered by urban buildings and the dispersion model simulates the pollutant concentration around buildings well.Typically,the simulation errors come from the determination of the key zones around a building or building cluster.This model has the potential for multiple applications;for example,the prediction of air pollutant dispersion and the evaluation of environmental impacts in emergency situations;urban planning scenarios; and the assessment of microscale air quality in urban areas.

    numerical model,urban air pollution,air pollutant dispersion,emergency response model

    1.Introduction

    Urbanization is a worldwide process through which human beings change the natural world.The natural/vegetated land surface is converted to an urban land surface composed of buildings.Large amounts of material and energy are consumed in urban areas and pollutants and waste heat are released as a result.With urbanization taking place all around the world,many related environmental problems occur over urban areas from the regional to the building scale(e.g.Britter and Hanna,2003;Britter et al.,2003;Ren et al.,2011). Air pollutant dispersion at the microscale is very important because it is closely related to the comfort and health of residents in populated urban areas.However,the characteristics of pollutant dispersion in urban areas at the local scale and microscale is complicated because of the complex wind field disturbed by buildings of various shapes(Walton et al.,2002; Hanna et al.,2003;Shi et al.,2008;Xie et al.,2008;Boppana et al.,2010;Fujiwara et al.,2011;Gu et al.,2011;Zhang et al.,2011;Chung and Liu,2013;Perret and Savory,2013). The SIRANE model(Soulhac et al.,2011,2012)improvedthe conventional Gaussian model by integrating a box model for street canyons and considering the fluxes at street intersections.

    Numerical simulation is an important method widely used for the urban atmospheric environment and many models have been developed for microscale pollutant dispersion. The“urbanized”Gaussian model is a conventional method that tries to consider the impact of buildings by modifying the horizontal and vertical diffusion parameters(McElroy,1969; Hanna,1971).This method works well when the building density is quite low(Hanna et al.,2003;Luhar et al.,2006; Venkatram and Princevac,2008),but fails in areas with highrise buildings.

    The abilities of computational fluid dynamics(CFD) methods(e.g.,large-eddy simulation,direct numerical simulation)are similar in terms of their representation of the wind flow characteristics around buildings and urban canyons(Cai, 2000;WaltonandCheng,2002;Waltonetal.,2002;Caietal., 2004;Meroney,2006,2008;Shi et al.,2008;Gousseau et al., 2011;Zhang et al.,2011;Aumond et al.,2012;Hertwig et al., 2012;Inagaki et al.,2012;Saneinejad et al.,2012;Michioka et al.,2013).However,such methods are usually quite expensive computationally,and less effective in an emergency response setting.

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    Regarding emergency responses at the urban neighborhood scale(e.g.,toxic gas leakages,airborne aerosol emissions),information on air pollutant dispersion and evaluations of the likely harm should be supported over a very short timeframe(about 10-30 minutes)for a decision to made(van de Walle and Turoff,2008).A fast method is needed to simulate the wind flow/air dispersion around building clusters with relatively high accuracy and less computational cost. A few models have been developed for this purpose,e.g., QUIC(The Quick Urban and Industrial Complex dispersion model system)developed by the Los Alamos National Laboratory(www.lanl.gov/projects/quic/index.shtml)(Singh et al.,2008).Inthispaper,anurbanmicroscaleairpollutiondispersion simulation model(hereafter,UMAPS)is established and evaluated with wind tunnel experiments.

    2.The model

    The model(UMAPS)is a building-resolved air pollutant dispersion model system,which includes a diagnosis model for wind fields around urban buildings(Wind Information Field Fast Analysis Model,WIFFA)and a random-walk air pollutant dispersion model(Nanjing University Random-Walk Dispersion Model,NJU-RWM)to simulate the pollutant transport in urban canopies or canyons.

    2.1.WIFFA

    WIFFA is responsible for calculating the wind fields for the dispersion model.WIFFA includes two modules,a firstguess wind field interpolation model and a mass conservation wind model.The first-guess wind field interpolation model supplies the initial conditions for the mass conservation wind model,based on building morphology information and background wind speed/direction.The mass conservation model calculates a more realistic wind field based on the mass continuity equation.

    Theimpactofthebuildingisconsideredviathemethodof the QUICmodel(http://www.lanl.gov/projects/quic/quicurb. shtml),in which the wind field around a building is characterized by several key zones,including the upwind displacement zone,the upwind cavity,the leeside cavity,the wake zone,and the rooftop recirculation zone due to the prevailing wind direction,and the reference wind speed is used for the interpolation in different zones.Both the wind fields in the leeside cavity and wake zone are determined by the method of R¨ockle(1990).Wind fields in the upwind displacement zone and upwind cavity are estimated by the method of Bagal et al.(2004a,b),and the interpolation method of Pol et al.(2006)is used for the rooftop recirculation zone.

    The interaction among buildings causes the wind flow in a street canyon to be more complicated than around a single building.Oke(1988)classified the wind flow in a street canyon into three types:isolated roughness flow,wake interference flow,and skimming flow.For the isolated roughness flow,the interpolation method for a single building is used in our model.For the skimming flow and the wake interference flow,the method of Kaplan and Dinar(1996)is used.

    The shapes of buildings in an urban area in the real world are far more complicated than a cube or rectangle.In UMAPS,all buildings are simplified to be a rectangle characterized by the maximum building length,width and height,to take advantage of the idealized interpolation schemes introduced above.Also,all the above interpolation methods work under the assumption that the inlet wind flow is perpendicular to the building wall.When the inlet wind flow is not perpendicular to the building wall,an adjustment is made using the method of Kaplan and Dinar(1996).

    Two schemes are used for wind profile interpolation in WIFFA.The power profile method(R¨ockle,1990)is used as the QUICK-URB model when the building coverage is low (buildingscoveringafractionlessthanorequalto35%,inthe current experiments)and the buildings distribution is sparse. The interpolation equation is as follows:

    where u0(zref)is the reference wind speed,zrefis the reference height,p is the power index,z is the vertical height, and u0(z)is the interpolated wind speed at the height of z. When the building intensity is high(coverage greater than 35%),the urban canopy profile method(Macdonald,2000) is used,because the power method usually overestimates the wind speed below the height of buildings.The equation of the urban canopy profile is as follows:

    where Hcanis the height of the canopy(in this paper,its value is set to the average building height of the whole simulation domain),ucanisthewindspeedatthetopoftheurbancanopy, d isthedisplacementheight(inthispaper,itissetas0.7Hcan), z0istheroughnesslength(about0.1-0.2Hcan),andα(z)isthe decay exponent,which is a function of z and the building intensityofthehorizontalsectionattheheightofz(Macdonald, 2000).

    After the first-guess interpolation,an initial wind field is created and the wind speed at the grids that are inside the buildings are set to zero,but the interaction of the wind fields between“building-impact”grids and background grids are not considered.The mass conservation equation is taken into account to obtain a more realistic wind field from the first-guess result.Mass-conservation wind models have been widely used to simulate the wind field over complex terrain for air pollutant dispersion(Goodin et al.,1980;Ross et al., 1988;Jiang et al.,2001).The model used in UMAPS was originally developed by Jiang et al.(2001),and the building influence is considered as a very sharp topography.

    2.2.NJU-RWM

    The random-walk method is widely used in air pollutant dispersion simulations,which tracks tracer particles through advection by the mean wind field and diffusion by atmospheric turbulence.The turbulence movement is estimated by calculating the probability distribution of particle movement, which is simulated by a random number.A large number of particles are used to statistically simulate the distribution of pollutant mass,and concentrations are calculated by the distribution of tracer particles.This method is also widely used in urban dispersion simulations(e.g.,Delay and Bodin,2001; Wang and Mu,2011).NJU-RWM is a random-walk model developed by Jiang et al.(1999).The model has been modified to consider the influence of buildings and verified by Zhang and Jiang(2006).

    3.Wind tunnel experiment database and numerical case design

    3.1.Wind tunnel experiment database and numerical experiment settings

    The CEDVAL(Compilation of Experimental Data for Validation of Microscale Dispersion Models,http://www. mi.uni-hamburg.de/CEDVAL ValidationData.427.0.html) database is selected for the model evaluation in this paper. The CEDVAL experiments were carried out at Hamburg University,and include mean wind field,turbulence,and air pollutant concentration measurements for single buildings and building clusters.This database is widely used for the development and evaluation of microscale numerical models (Di Sabatino et al.,2008;Castelli and Reisin,2011;Parente et al.,2011;Vardoulakis et al.,2011).

    The A1-1 and A1-5 wind tunnel experiments in CEDVAL are used to evaluate the performance of the wind field simulation by UMAPS around a single building;the numerical experiments are named SA1-1 and SA1-5,respectively.The model uses Cartesian coordinates and a regular cubic grid is deployed.The horizontal simulation domain is 450 m in the inlet wind velocity direction(x direction),200 m in the crosswind direction(y direction),and 100 m in the vertical direction(z direction).The grid resolution is 1 m.The inlet wind profile for the numerical experiments is set as the same power-exponent profiles as in the wind tunnel setting, as follows:

    where Hrefis the reference height,which is 100 m in A1-1/SA1-1 and 125 m in A1-5/SA1-5;Urefis the inlet wind speed at the height of Href,which is 6.0 m s-1in A1-1/SA1-1 and 5.85 m s-1in A1-5;and p is the power exponent parameter,which is 0.21 in all experiments.

    In the A1-5 wind tunnel experiment,four sources are placed on the ground near the leeside wall of the building.The pollutant concentration observations are represented by dimensionless concentration,defined as K=cm×Uref× H2/Qs,where cmis the pollutant concentration,Urefis the reference wind speed,as in Eq.(3),and Qsis the total mass of pollutant release.H is the building height.In the numerical experiments,the wind field is simulated by WIFFA,and then NJU-RWM is deployed to simulate the air pollutant dispersion.A total of 400 000 particles are released to simulate the pollutant dispersion in NJU-RWM.

    3.2.Performance evaluation

    To evaluate the performance of the model system,the following statistical parameters are employed:

    Here,Xois the observed variable(wind speed,wind components,or pollutant concentration)and Xpis the respective modeled one.MN is the mean value;E is the mean error between simulations and observations,RE is the relative simulation error;RMSE is the root-mean-square error;R is the correlation coefficient;FAC2 is the factor of two of observations;N(0.5≤Xp/Xo≤2.0)is the data number under the condition(0.5≤Xp/Xo≤2.0);N is the total data number; HR is the hit rate;and A is the threshold value of relative error.

    4.Results

    Thesimulatedresultsarefirstinterpolatedtothemeasurement points of the wind tunnel experiments for the evaluation.The CEDVAL A1-1 and A1-5 experiments relate to the wind fields and pollution dispersion around a single building; the building size is 20 m in the x direction,30 m in the y direction,and the height is 35 m.The simulation results show that UMAPS captures the wind field structures well compared to the wind tunnel experiments.In both the numerical simulations and wind tunnel observations,the displacement point occurs at about x/H=-1.0 to 1.3,and the stagnation point occurs at z/H=0.7.The reattachment point is at the location of x/H=2.2,and the wind speed in the windward vortex is less than 2.0 m s-1(Fig.1).These results are consistent with the simulations reported in Singh et al.(2008). The vertical leeside cavity vortex and the horizontal doubleeyed vortex are represented well in the simulations(Fig.2).A clockwise vortex appears and the vortex eye occurs at the location of(x/H=0.9 and z/H=0.9)in the vertical section. In the horizontal section,the eyes of the symmetric vortexes occur at(x/H=0.7,y/H=±0.6),compared to(x/H=0.7, y/H=±0.4)inthewindtunnelexperiments.Thewindspeed in the leeside cavity is less than 1.5 m s-1,and the wind speed increases to 3.0 m s-1at heights greater than the leeside cavity.

    Fig.1.The wind velocities at the crossing section y/H=0: (a)CEDVAL observations;(b)numerical simulations.A:wind cavity;B:roof-top circulation;C:leeside cavity and wake zone.

    Fig.2.The wind velocities at the crossing section of z/H= 0.28:(a)CEDVAL observations;(b)numerical simulations.A: wind cavity;B:lateral wall zone;C:leeside cavity and wake zone.

    To analyze the model performance in a more detailed way,the evaluation parameters are calculated not only for the whole y/H=0 section,but also for the key zones,including the windward zone,the leeside zone,and the rooftop zone, as shown in Fig.1.The model simulation for this section is good,with a mean RE of 6.4%and R=0.96.Table 1 lists the statistical parameters of wind speed in different zones, and shows that the model performs better in the windward zone and rooftop zone,as compared to the leeside zone.The RE of the leeside zone is 21.3%,compared to a 5.4%in the windward zone and 3.7%in the rooftop zone.Figure 3 illustrates the vertical profile of u and w at different locations in the y/H=0 section.The simulation represents the blocking of wind by the building,the upward motion before the building,and the downward motion behind the building.For the y/H=0 section,the model overestimates the total wind speed and u component slightly,with a maximum E of 0.34 m s-1.The larger simulation errors of u occur in the leeside profiles at the level between z/H=0.8 and 1.2.This area is the transition area from the leeside cavity and wake zone to the background flow,and the model describes a sharper transition compared to the tunnel experiment.

    For the wind tunnel observations and numerical simulations of wind fields in the z/H=0.28 section(Fig.2),the RE of the whole section is 1.4%and R=0.91.Three key zones are again selected for a more detailed evaluation(the windward zone,leeside zone and lateral-wall zone),as shown in Fig.2,and the related evaluation parameters are listed in Table 2.The largest simulation error happens in the windward area,where the average wind speed of the wind tunnel experiment is 2.55 m s-1,while that of the simulation is 1.88 m s-1.The RE is 25.1%,compared to 5.2%in the leeside zone, 4.9%in the lateral-wall zone,and 1.4%for the whole section.Figure 4 illustrates the horizontal profile of u and v at different locations at x/H=-1.6,-1,-0.5,0,0.5,1,2,and 3.The modeled horizontal wind components are consistent with the simulations.The largest error of u is of 0.25 m s-1, which occurs at x/H=3.0;and the largest RMSEs of u are about 0.63 m s-1and 0.61 m s-1,occurring at x/H=-1.0 and x/H=3.0,where the frontal eddy and leeside vortex occur,respectively.The largest MD of v is only 0.01 m s-1, but with a large RMSE of about 1.17 m s-1,which happens at x/H=-0.5.The errors of the windward zone come fromthe overestimation of the area of the frontal eddy,based on R¨ockle(1990).

    Table 1.Comparison of measurements and simulations in section y/H=0 in experiment SA1-1.

    Fig.3.The vertical profiles of wind components(u and w)at the plane of y/H=0 in A1-1 and SA1-1.

    Table 2.Comparison of measurements and simulations in section z/H=0.28 in experiment A1-1 and SA1-H1.

    Figures 5 and 6 illustrate the horizontal distribution of the dimensionless concentration K in the horizontal sections of z/H=0.08,z/H=0.28 and y/H=0 in A1-5 and SA1-5.High concentration occurs in the leeside cavity circulation and lateral-wall-side circulation,and the maximum concentration appears in these area instead of the middle axis of the circulations.This is because the vortex structure in the leeside cavity may cause the pollutant to be concentrated and a flow reversal in the background wind direction would bring the pollutant windward into the lateral-wall-side circulations. Behind the leeside cavity,the concentration decreases with distance dramatically,and the decreasing trend in numerical simulations is higher than that in the wind tunnel experiments.

    In the wind tunnel experiments and numerical simulation results,the pollutant concentration in the z/H=0.08 section is higher than that in the z/H=0.28 section because the pollutant source is on the ground.The maximum of the dimensionless concentration K is 70.4 for z/H=0.08 and 21.5 for z/H=0.28 in the wind tunnel experiment,but 92.7 and 32.1 in the numerical simulations.This demonstrates the model overestimates the peak value of the pollutant concentration but underestimates the dispersion area.The maximum appears just at the corner of the leeside wall and lateral side wall in the wind tunnel experiment,but it appears at the location just behind the leeside wall in the simulation.This is due to the overestimation of the lateral-wall-side circulations in WIFFA.

    Fig.4.The horizontal profiles of wind components(u and v)at the plane of z/H=0.28 in A1-1 and SA1-1.

    For the results of the vertical section,both the wind tunnel experiment and the numerical simulations show that high concentration occurs near the leeside wall area in the leeside cavity.Under the combined influence of the leeside cavity vortex and rooftop vortex,high concentration also occurs over the building roof.The largest simulation error appears in the transition zone from the leeside cavity vortex to the background wind flow.In this area,the model underestimates the pollutant concentration due to the overestimation of wind speed.

    In the y/H=0 section,both the wind tunnel experiment and numerical simulation show the highest concentration appearing in the ground corner of the leeside wall,with the maximum being 66.7 in the wind tunnel experiment and 62.5 in the numerical simulation.On the roof top level,both in the wind tunnel experiment and the numerical simulation,there is a high concentration at the leeside corner,with a maximum K of 1.66 in the experiments and 0.82 in the numerical simulation results.The numerical simulation shows a low pollutant concentration at the lowest model layer(at the height of 1 m).This is because,in the RWM,the tracer particle will bounce back when it encounters the surface or building walls. Such an influence can increase when the vertical resolution is coarse and add several buffer levels between the ground and the lowest layer.

    Table 3 shows the evaluation parameters for the dimensionless pollutant concentration.The model slightly underestimates the concentration for all three sections.The RE is 10.8%for the vertical section and 35.1%for the horizontal section.However,the model represents the horizontal concentration distribution better;the R values of section z/H=0.08 and 0.28 are 0.77 and 0.70,respectively,which are greater than the value of 0.60 for section y/H=0.For all sections,the FAC2s and HRs are greater than 50%and60%,which have been used as threshold values for model evaluations in previous research(e.g.,Vardoulakis et al., 2011;Parente et al.,2011).This means that the model is reliable for pollutant dispersion simulation.

    Table 3.Comparison of dimensionless concentration in A1-5 and SA1-5.

    Fig.5.The dimensionless pollutant concentration in the horizontal section:(a)wind tunnel experiment result in A1-5 at z/H=0.08(the circles indicate the locations of sources);(b) numerical simulation result in SA1-5 at z/H=0.08;(c)wind tunnel experiment result in A1-5 at z/H=0.28;(d)numerical simulation result in SA1-5 at z/H=0.28.

    Fig.6.The dimensionless pollutant concentrationy in the vertical section y/H=0:(a)wind tunnel experiment resHult in A1-5;(b) numerical simulation result in SA1-5.

    5.Summary

    UMAPSisamicroscaleairpollutantmodelsystemdeveloped for air pollutant dispersion simulation under emergency release conditions.It includes a diagnostic wind field model (WIFFA)and a random-walk air pollutant dispersion model (NJU-RWM)to simulate the wind fields and pollutant concentration in detail,through consideration of the influence of urban buildings.The wind field model is composed of two parts:an interpolation model,to obtain the first-guess fields of different zones around a building or street canyon;and a mass conservation wind model,to obtain a detailed wind field in the whole simulation domain.NJU-RWM reproduces the air pollutant dispersion by releasing tracer particles.

    The CEDVAL database is used to evaluate the model's performance.The wind field and pollutant dispersion experiments around a single building are used to evaluate the simulation results.The simulation error,relative error,correlation coefficient,and root-square simulation error are used to evaluate the model's performance.The comparisons show that the model can reproduce the wind fields and pollutant dispersion around a typical rectangular building.Generally,the model overestimates the wind speed and underestimates the pollutant concentration.The largest uncertainty relates to the determination of the size of the key zones and the simplification of the complex building shape.This indicates that the definition parameters of the key zones around the building are important for model performance.Evaluations of the model's performance over more complex and realistic conditions will be carried out in the next stage of model development.

    UMAPS is a simple and fast model,which does not demand much computational resource and can work on a personal computer.It also works well with operational meteorological observations or numerical weather predictions.This model has the potential for multiple applications;for example,to predict air pollutant dispersion and evaluate environmental impacts in emergency response situations,in urban planning scenarios,and for assessing microscale air quality in urban areas.

    Acknowledgements.This work was supported by the National Natural Science Foundation of China(Grant No.41375014),the National Basic Research Program of China(Grant No.2011CB 952002)and Jiangsu Collaborative Innovation Center for Climate Change,China.

    REFERENCES

    Aumond,P.,V.Masson,C.Lac,B.Gauvreau,S.Dupont,and M.Berengier,2012:Including the drag effects of canopies: Real case large-eddy simulation studies.Bound.-Layer Me-teor.,146,65-80.

    Bagal,N.L.,E.R.Pardyjak,and M.J.Brown,2004a:Improved upwind cavity parameterizations for a fast response urban wind model.Proc.84th Annual Meeting Symp.Planning, Nowcasting and Forecasting Urban Zone,Seattle,WA,USA, American Meteorological Society,5 pp.

    Bagal,N.L.,B.Singh,E.R.Pardyjak,and M.J.Brown,2004b: Implementation of rooftop recirculation parameterization into the QUIC fast response urban wind model.Proc.5th AMS Urban Environ.Symp.Conf.,Vancouver,B.C.,American Meteorological Society.27 pp.

    Boppana,V.B.L.,Z.T.Xie,and I.P.Castro,2010:Large-eddy simulation of dispersion from surface sources in arrays of obstacles.Bound.-Layer Meteor.,135,433-454.

    Britter,R.E.,and S.R.Hanna,2003:Flow and dispersion in urban areas.Annual Review of Fluid Mechanics,35,469-496.

    Britter,R.E.,S.R.Hanna,G.A.Briggs,and A.Robins,2003: Short-range vertical dispersion from a ground level source in a turbulent boundary layer.Atmos.Environ.,37,3885-3894.

    Cai,X.M.,2000:Dispersion of a passive plume in an idealised urban convective boundary layer:A large-eddy simulation. Atmos.Environ.,34,61-72.

    Cai,X.M.,M.Nasrullah,and Y.Huang,2004:Fumigation of pollutants into a growing convective boundary layer over an inhomogeneous surface:A large eddy simulation.Atmos.Environ.,38,3605-3616.

    Castelli,S.T.,and T.G.Reisin,2011:Application of a modified version of RAMS model to simulate the flow and turbulence in the presence of buildings:The MUST COST732 exercise. International Journal of Environment and Pollution,44,394-402.

    Chung,T.N.H.,andC.H.Liu,2013:Onthemechanismofairpollutantremovalintwo-dimensionalidealizedstreetcanyons:A large-eddy simulation approach.Bound.-Layer Meteor.,148, 241-253.

    Delay,F.,and J.Bodin,2001:Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks.Geophys.Res.Lett.,28,4051-4054.

    Di Sabatino,S.,E.Solazzo,P.Paradisi,and R.Britter,2008:A simple model for spatially-averaged wind profiles within and above an urban canopy.Bound.-Layer Meteor.,127,131-151. Fujiwara,C.,K.Yamashita,M.Nakanishi,and Y.Fujiyoshi,2011: Dust devil-like vortices in an urban area detected by a 3D scanning Doppler lidar.Journal of Applied Meteorology and Climatology,50,534-547.

    Goodin,W.R.,G.J.McRae,and J.H.Seinfeld,1980:An objective analysis technique for constructing three-dimensional urban-scale wind fields.J.Appl.Meteor.,19,98-108.

    Gousseau,P.,B.Blocken,and G.J.F.van Heijst,2011:CFD simulation of pollutant dispersion around isolated buildings:On the role of convective and turbulent mass fluxes in the prediction accuracy.Journal of Hazardous Materials,194,422-434.

    Gu,Z.L.,Y.W.Zhang,Y.Cheng,and S.C.Lee,2011:Effect of uneven building layout on air flow and pollutant dispersion in non-uniform street canyons.Building and Environment,46: 2657-2665.

    Hanna,S.R.,1971:A simple method of calculating dispersion from urban area sources.Journal of the Air Pollution Control Association,21,774-777.

    Hanna,S.R.,R.Britter,and P.Franzese,2003:A baseline urban dispersion model evaluated with Salt Lake City and Los Angeles tracer data.Atmos.Environ.,37,5069-5082.

    Hertwig,D.,G.C.Efthimiou,J.G.Bartzis,and B.Leitl,2012: CFD-RANS model validation of turbulent flow in a semiidealized urban canopy.Journal of Wind Engineering and Industrial Aerodynamics,111,61-72.

    Inagaki,A.,M.C.L.Castillo,Y.Yamashita,M.Kanda,and H.Takimoto,2012:Large-eddy simulation of coherent flow structures within a cubical canopy.Bound.-Layer Meteor., 142,207-222.

    Jiang,D.H.,H.N.Liu,and W.G.Wang,2001:Test a modified surface wind interpolation scheme for complex terrain in a stable atmosphere.Atmos.Environ.,35,4877-4885.

    Jiang,W.M,H.B.Yu,and X.Li,1999:Random walk modeling of wake dispersion for the exhaust tower of an underground tunnel in urban area.Journal of Environmental Sciences,11, 474-479.

    Kaplan,H.,and N.Dinar,1996:A Lagrangian dispersion model for calculating concentration distribution within a built-up domain.Atmos.Environ.,30,4197-4207.

    Luhar,A.K.,A.Venkatram,and S.M.Lee,2006:On relationships between urban and rural near-surface meteorology for diffusion applications.Atmos.Environ.,40,6541-6553.

    Macdonald,R.W.,2000.Modelling the mean velocity profile in the urban canopy layer.Bound.-Layer Meteor.,97,25-45.

    McElroy,J.L.,1969:A comparative study of urban and rural dispersion.J.Appl.Meteor.,8,19-31.

    Meroney,R.N.,2006:CFDprediction ofcoolingtowerdrift.Journal of Wind Engineering and Industrial Aerodynamics,94, 463-490.

    Meroney,R.N.,2008:Protocol for CFD prediction of coolingtower drift in an urban environment.Journal of Wind Engineering and Industrial Aerodynamics,96,1789-1804.

    Michioka,T.,A.Sato,and K.Sada,2013:Large-eddy simulation coupled to mesoscale meteorological model for gas dispersion in an urban district.Atmos.Environ.,75,153-162.

    Oke,T.R.,1988:Street design and urban canopy layer climate. Energy and Buildings,11,103-113.

    Parente,A.,C.Gorl′e,J.van Beeck,and C.Benocci,2011:Improved k-εmodel and wall function formulation for the RANS simulation of ABL flows.Journal of Wind Engineering and Industrial Aerodynamics,99,267-278.

    Perret,L.,and E.Savory,2013:Large-scale structures over a single street canyon immersed in an urban-type boundary layer. Bound.-Layer Meteor.,148,111-131.

    Pol,S.U.,N.L.Bagal,B.Singh,M.J.Brown and E.Pardyjak, 2006:Implementation of a new rooftop recirculation parameterization into the QUIC fast response urban wind model. Proc.6th AMS Symposium Urban Environment,Atlanta,G. A.JP1.2,American Meteorological Society,227 pp.

    Ren,C.,E.Y.Y.Ng,and L.Katzschner,2011:Urban climatic map studies:A review.Int.J.Climatol.,31,2213-2233.

    R¨ockle,R.,1990:Determination of flow relationships in the field of complex building structures.PhD dissertation,Fachberich Mechanik,der Technischen Hochschule Darmstadt, Germany.

    Ross,D.G.,I.N.Smith,P.C.Manins,and D.G.Fox,1988:Diagnostic wind field modeling for complex terrain:model development and testing.J.Appl.Meteor.,27,785-796.

    Saneinejad,S.,P.Moonen,T.Defraeye,D.Derome,and J. Carmeliet,2012:Coupled CFD,radiation and porous media transport model for evaluating evaporative cooling in an ur-ban environment.Journal of Wind Engineering and Industrial Aerodynamics,104-106,455-463.

    Shi,R.F.,G.X.Cui,Z.S.Wang,C.X.Xu,and Z.S.Zhang,2008: Large eddy simulation of wind field and plume dispersion in building array.Atmos.Environ.,42,1083-1097.

    Singh,B.,B.S.Hansen,M.J.Brown,and E.R.Pardyjak,2008: EvaluationoftheQUIC-URBfastresponseurbanwindmodel for a cubical building array and wide building street canyon. Environmental Fluid Mechanics,8,281-312.

    Soulhac,L.,P.Salizzoni,F.-X.Cierco,and R.Perkins,2011:The model SIRANE for atmospheric urban pollutant dispersion; Part I,presentation of the model.Atmos.Environ.,45,7379-7395.

    Soulhac,L.,P.Salizzoni,P.Mejean,D.Didier,and I.Rios,2012: The model SIRANE for atmospheric urban pollutant dispersion;Part II,validation of the model on a real case study. Atmos.Environ.,49,320-337.

    Vardoulakis,S.,and Coauthors,2011:Numerical model intercomparison for wind flow and turbulence around single-block buildings.Environmental Modeling&Assessment,16,169-181.

    Venkatram,A.,and M.Princevac,2008:Using measurements in urban areas to estimate turbulent velocities for modeling dispersion.Atmos.Environ.,42,3833-3841.

    van de Walle,B.,and M.Turoff,2008:Decision support for emergency situations.Information Systems and e-Business Management,6,295-316.

    Walton,A.,and A.Y.S.Cheng,2002:Large-eddy simulation of pollution dispersion in an urban street canyon-Part II:Idealised canyon simulation.Atmos.Environ.,36,3615-3627.

    Walton,A.,A.Y.S.Cheng,and W.C.Yeung,2002:Large-eddy simulation of pollution dispersion in an urban street canyon-PartI:Comparisonwithfielddata.Atmos.Environ.,36,3601-3613.

    Wang,P.,and H.L.Mu,2011:Random-walk model simulation of air pollutant dispersion in atmospheric boundary layer in China.Environmental Monitoring and Assessment,172,507-515.

    Xie,Z.T.,O.Coceal,and I.P.Castro,2008:Large-eddy simulation of flows over random urban-like obstacles.Bound.-Layer Meteor.,129,1-23.

    Zhang,N.,and W.M.Jiang,2006:A large eddy simulation on the effect of building on atmospheric pollutant dispersion.Chinese J.Atmos.Sci.,30,361-371(in Chinese).

    Zhang,Y.W.,Z.L.Gu,Y.Cheng,and S.C.Lee,2011:Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon-large eddy simulations.Atmos.Environ.,45,3352-3359.

    Zhang,N.,Y.S.Du,and S.G.Miao,2016:A microscale model for air pollutant dispersion simulation in urban areas:Presentation of the model and performance over a single building.Adv.Atmos.Sci.,33(2),184-192,

    10.1007/s00376-015-5152-1.

    19 June 2015;revised 30 July 2015;accepted 17 August 2015)

    ?Ning ZHANG

    Email:ningzhang@nju.edu.cn

    一区二区三区国产精品乱码| 午夜久久久久精精品| 婷婷丁香在线五月| 亚洲专区字幕在线| 又黄又粗又硬又大视频| 午夜福利18| 国产不卡一卡二| 巨乳人妻的诱惑在线观看| 在线永久观看黄色视频| 欧美av亚洲av综合av国产av| 国产黄色小视频在线观看| 国产成人av教育| 精品一区二区三区av网在线观看| 久久久久国产精品人妻aⅴ院| 成人特级黄色片久久久久久久| 国内揄拍国产精品人妻在线| 中亚洲国语对白在线视频| 精品久久蜜臀av无| 国产精品一区二区三区四区免费观看 | 国产精品 国内视频| 国产精品亚洲av一区麻豆| 在线国产一区二区在线| 国产男靠女视频免费网站| 国产三级黄色录像| 亚洲人与动物交配视频| 一本综合久久免费| 老司机深夜福利视频在线观看| 亚洲精品在线观看二区| 男女之事视频高清在线观看| 国模一区二区三区四区视频 | 国产精品国产高清国产av| 无遮挡黄片免费观看| 听说在线观看完整版免费高清| 亚洲成人久久爱视频| 免费在线观看日本一区| 日韩精品中文字幕看吧| 国产精品亚洲美女久久久| 男插女下体视频免费在线播放| 久久久久久国产a免费观看| 国产午夜精品久久久久久| 亚洲一码二码三码区别大吗| а√天堂www在线а√下载| 香蕉丝袜av| 夜夜爽天天搞| 亚洲欧美日韩高清专用| 欧美成狂野欧美在线观看| 欧美人与性动交α欧美精品济南到| 很黄的视频免费| xxxwww97欧美| 欧美另类亚洲清纯唯美| 国产av一区在线观看免费| 日韩欧美国产在线观看| 天天躁夜夜躁狠狠躁躁| 五月伊人婷婷丁香| 亚洲av电影在线进入| 美女 人体艺术 gogo| 看片在线看免费视频| 老熟妇仑乱视频hdxx| 一二三四社区在线视频社区8| 两性夫妻黄色片| 伦理电影免费视频| 每晚都被弄得嗷嗷叫到高潮| 床上黄色一级片| 一本一本综合久久| 精品久久久久久久人妻蜜臀av| 18禁观看日本| 欧美日韩亚洲综合一区二区三区_| 久久久久性生活片| 又黄又粗又硬又大视频| 国产不卡一卡二| 老鸭窝网址在线观看| 精品欧美一区二区三区在线| www日本在线高清视频| 亚洲成人中文字幕在线播放| 国产成人精品久久二区二区91| 中出人妻视频一区二区| 小说图片视频综合网站| 黄片小视频在线播放| 黄片大片在线免费观看| 夜夜躁狠狠躁天天躁| 国产一区二区三区视频了| 天堂动漫精品| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品av在线| 女人高潮潮喷娇喘18禁视频| 欧美成人性av电影在线观看| 九色国产91popny在线| 日本黄大片高清| АⅤ资源中文在线天堂| 国产视频内射| av免费在线观看网站| 国产欧美日韩一区二区三| 成人手机av| 一级毛片女人18水好多| 村上凉子中文字幕在线| 麻豆av在线久日| 精品久久久久久久久久久久久| 亚洲成人免费电影在线观看| 亚洲人成77777在线视频| 两人在一起打扑克的视频| 国产免费男女视频| 日韩欧美一区二区三区在线观看| 久久香蕉激情| 国产熟女xx| 午夜福利在线在线| 国产欧美日韩精品亚洲av| 亚洲欧美日韩高清在线视频| 成人三级做爰电影| 高潮久久久久久久久久久不卡| 99国产精品一区二区三区| 国产精品影院久久| 国产成年人精品一区二区| 我要搜黄色片| 精品熟女少妇八av免费久了| 熟女少妇亚洲综合色aaa.| 欧洲精品卡2卡3卡4卡5卡区| 国产探花在线观看一区二区| 久久人妻av系列| 黄色a级毛片大全视频| 91在线观看av| 成人国产综合亚洲| 99久久久亚洲精品蜜臀av| 一级a爱片免费观看的视频| 99热只有精品国产| 最近视频中文字幕2019在线8| cao死你这个sao货| 99在线视频只有这里精品首页| 亚洲avbb在线观看| 看免费av毛片| 黑人巨大精品欧美一区二区mp4| 亚洲国产看品久久| 久9热在线精品视频| 欧美高清成人免费视频www| 一级a爱片免费观看的视频| 午夜福利在线观看吧| 黄色a级毛片大全视频| 波多野结衣高清无吗| 国内毛片毛片毛片毛片毛片| 男女那种视频在线观看| 国产亚洲精品第一综合不卡| 青草久久国产| 国产免费男女视频| 少妇被粗大的猛进出69影院| 精品欧美国产一区二区三| 一区二区三区国产精品乱码| 丰满的人妻完整版| 免费在线观看亚洲国产| 国产精品亚洲一级av第二区| 听说在线观看完整版免费高清| 熟女少妇亚洲综合色aaa.| 国产精品久久久久久久电影 | 大型黄色视频在线免费观看| 一个人观看的视频www高清免费观看 | 欧美成人免费av一区二区三区| 国产黄片美女视频| 露出奶头的视频| 色综合欧美亚洲国产小说| 麻豆成人av在线观看| 长腿黑丝高跟| 精品久久久久久成人av| 好男人电影高清在线观看| 亚洲av第一区精品v没综合| 级片在线观看| 国产野战对白在线观看| 久久九九热精品免费| 色综合婷婷激情| 18禁黄网站禁片免费观看直播| 亚洲精品久久国产高清桃花| 国产熟女xx| 国产精品久久久人人做人人爽| 欧美色视频一区免费| 久久 成人 亚洲| 久久精品亚洲精品国产色婷小说| 久久九九热精品免费| 美女扒开内裤让男人捅视频| 久久久久免费精品人妻一区二区| 99久久99久久久精品蜜桃| 亚洲精品中文字幕在线视频| 久久中文看片网| 欧美性猛交黑人性爽| 亚洲av第一区精品v没综合| tocl精华| 亚洲人成电影免费在线| 亚洲欧美精品综合一区二区三区| 99国产综合亚洲精品| 成人亚洲精品av一区二区| 国产午夜福利久久久久久| 国产一区二区在线观看日韩 | 啦啦啦韩国在线观看视频| 亚洲专区中文字幕在线| 欧美成人一区二区免费高清观看 | 久久精品人妻少妇| 黄片大片在线免费观看| 国产精品国产高清国产av| 国产欧美日韩精品亚洲av| www国产在线视频色| 日韩中文字幕欧美一区二区| 搡老妇女老女人老熟妇| 看片在线看免费视频| 久久精品夜夜夜夜夜久久蜜豆 | 黑人巨大精品欧美一区二区mp4| 色综合站精品国产| 两个人看的免费小视频| 99re在线观看精品视频| 国内精品久久久久久久电影| 亚洲精品在线美女| 母亲3免费完整高清在线观看| 国产精品电影一区二区三区| 男女做爰动态图高潮gif福利片| 99精品久久久久人妻精品| 欧美性长视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 一本精品99久久精品77| 久久久久亚洲av毛片大全| 欧美黑人巨大hd| 欧美久久黑人一区二区| 亚洲午夜理论影院| 老司机午夜十八禁免费视频| 操出白浆在线播放| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美日韩无卡精品| 99在线人妻在线中文字幕| 欧美色视频一区免费| 亚洲精品av麻豆狂野| 亚洲真实伦在线观看| 国产伦人伦偷精品视频| 亚洲国产精品久久男人天堂| 久久国产精品影院| 国产91精品成人一区二区三区| 日韩av在线大香蕉| 中文字幕精品亚洲无线码一区| 黄色丝袜av网址大全| 婷婷亚洲欧美| 免费看a级黄色片| or卡值多少钱| av片东京热男人的天堂| 久久 成人 亚洲| 日韩欧美国产一区二区入口| 日韩三级视频一区二区三区| 99在线视频只有这里精品首页| 观看免费一级毛片| 国产午夜福利久久久久久| 亚洲av美国av| 久久久久九九精品影院| 国产精品一区二区免费欧美| 日本黄大片高清| 琪琪午夜伦伦电影理论片6080| 无人区码免费观看不卡| 99国产精品一区二区三区| 九色成人免费人妻av| √禁漫天堂资源中文www| www.自偷自拍.com| 欧美成人一区二区免费高清观看 | 久久香蕉精品热| 一个人免费在线观看电影 | 国产高清视频在线播放一区| 99久久无色码亚洲精品果冻| 看黄色毛片网站| 久久精品国产清高在天天线| 国产精品亚洲av一区麻豆| 99久久久亚洲精品蜜臀av| 国产精品 国内视频| 搡老熟女国产l中国老女人| 国产精品免费一区二区三区在线| 首页视频小说图片口味搜索| 亚洲成人久久性| 啪啪无遮挡十八禁网站| 亚洲午夜理论影院| 欧美黑人欧美精品刺激| 午夜福利成人在线免费观看| 久久欧美精品欧美久久欧美| 国产亚洲av嫩草精品影院| 激情在线观看视频在线高清| 亚洲无线在线观看| 精品第一国产精品| 日韩精品免费视频一区二区三区| x7x7x7水蜜桃| 精品国产超薄肉色丝袜足j| 日日干狠狠操夜夜爽| 色综合婷婷激情| 十八禁网站免费在线| 国产精品永久免费网站| 日韩成人在线观看一区二区三区| 成人av在线播放网站| av免费在线观看网站| 日本免费a在线| 天堂av国产一区二区熟女人妻 | 精品日产1卡2卡| 久久久久久九九精品二区国产 | 99国产极品粉嫩在线观看| 久久九九热精品免费| 国产精品99久久99久久久不卡| 叶爱在线成人免费视频播放| 日日爽夜夜爽网站| 18禁国产床啪视频网站| 性欧美人与动物交配| 男人舔女人的私密视频| a在线观看视频网站| 成人高潮视频无遮挡免费网站| 亚洲人成77777在线视频| 精品国内亚洲2022精品成人| 久久精品国产清高在天天线| 一卡2卡三卡四卡精品乱码亚洲| 久久欧美精品欧美久久欧美| 最近在线观看免费完整版| 小说图片视频综合网站| 国产成人精品无人区| 亚洲一区二区三区不卡视频| 国产三级黄色录像| 淫妇啪啪啪对白视频| 免费av毛片视频| 91麻豆av在线| 99国产极品粉嫩在线观看| 欧美日韩一级在线毛片| 精品国产亚洲在线| 1024视频免费在线观看| 午夜日韩欧美国产| 国产精品久久久久久精品电影| 麻豆国产97在线/欧美 | 久久久久久久午夜电影| 狂野欧美激情性xxxx| 欧美精品亚洲一区二区| 国产午夜精品久久久久久| 久久这里只有精品19| 老熟妇乱子伦视频在线观看| 欧美黄色片欧美黄色片| 午夜精品久久久久久毛片777| 免费在线观看视频国产中文字幕亚洲| 国产三级黄色录像| 色av中文字幕| 悠悠久久av| 在线观看美女被高潮喷水网站 | 男女做爰动态图高潮gif福利片| 精品欧美一区二区三区在线| 精品久久久久久,| 在线看三级毛片| 嫩草影视91久久| 操出白浆在线播放| 午夜视频精品福利| 国产熟女午夜一区二区三区| 日韩中文字幕欧美一区二区| 国模一区二区三区四区视频 | 欧美午夜高清在线| 国产激情久久老熟女| 成人三级黄色视频| 热99re8久久精品国产| 国产精品久久久久久久电影 | av视频在线观看入口| 亚洲一区二区三区不卡视频| 久久久精品欧美日韩精品| 精品高清国产在线一区| 久久久久久久午夜电影| 国产精品野战在线观看| 天堂√8在线中文| 啦啦啦观看免费观看视频高清| 日韩欧美三级三区| 制服人妻中文乱码| 免费av毛片视频| 高清在线国产一区| 日韩欧美一区二区三区在线观看| 国产精品永久免费网站| 国产av一区二区精品久久| 国产久久久一区二区三区| 亚洲精品久久成人aⅴ小说| 美女扒开内裤让男人捅视频| 在线观看一区二区三区| 熟女少妇亚洲综合色aaa.| 色噜噜av男人的天堂激情| 亚洲欧美精品综合久久99| 五月伊人婷婷丁香| 精品午夜福利视频在线观看一区| av国产免费在线观看| 精品欧美一区二区三区在线| 亚洲成人中文字幕在线播放| 婷婷丁香在线五月| 国产不卡一卡二| 精品久久久久久成人av| 国产高清激情床上av| 国产精品 欧美亚洲| 久久亚洲精品不卡| 99热这里只有精品一区 | 国产精品日韩av在线免费观看| 欧美最黄视频在线播放免费| 麻豆国产97在线/欧美 | 波多野结衣高清作品| 怎么达到女性高潮| 国产黄a三级三级三级人| 国产99久久九九免费精品| www.999成人在线观看| 看免费av毛片| 国产精品九九99| 麻豆一二三区av精品| 久久久久久久午夜电影| 亚洲av成人一区二区三| 黄色视频,在线免费观看| 国产伦在线观看视频一区| 免费观看人在逋| 欧美精品啪啪一区二区三区| 免费人成视频x8x8入口观看| 亚洲专区国产一区二区| 高清毛片免费观看视频网站| 国产午夜福利久久久久久| 欧美色视频一区免费| 久久久久久九九精品二区国产 | 亚洲片人在线观看| 黄色丝袜av网址大全| 免费在线观看完整版高清| 淫妇啪啪啪对白视频| 黄色视频不卡| 一级毛片高清免费大全| 国产一区二区三区在线臀色熟女| 亚洲一区二区三区不卡视频| 欧美成人性av电影在线观看| 777久久人妻少妇嫩草av网站| 免费看十八禁软件| 精品一区二区三区视频在线观看免费| 麻豆国产av国片精品| 999久久久国产精品视频| 国产日本99.免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 熟女少妇亚洲综合色aaa.| 国产精品久久久久久精品电影| 男女那种视频在线观看| 变态另类丝袜制服| 亚洲成av人片在线播放无| 国产伦人伦偷精品视频| 老司机在亚洲福利影院| 久久久久九九精品影院| 我的老师免费观看完整版| 国产成人av教育| 无遮挡黄片免费观看| 精品久久久久久成人av| 国产精品,欧美在线| 50天的宝宝边吃奶边哭怎么回事| 19禁男女啪啪无遮挡网站| netflix在线观看网站| 免费观看人在逋| 精品福利观看| 91国产中文字幕| 18禁观看日本| 国产成人欧美在线观看| 久久亚洲精品不卡| 99热只有精品国产| 一级毛片精品| 精品国产乱码久久久久久男人| 亚洲欧美日韩东京热| 久久天躁狠狠躁夜夜2o2o| 妹子高潮喷水视频| 国内精品久久久久久久电影| 在线观看一区二区三区| 久久人妻av系列| 国产一区二区激情短视频| 国产成+人综合+亚洲专区| 老鸭窝网址在线观看| 亚洲国产高清在线一区二区三| 欧美日韩一级在线毛片| 成人三级黄色视频| 最新美女视频免费是黄的| 国产一区二区激情短视频| 亚洲专区字幕在线| 免费看十八禁软件| 亚洲 国产 在线| 中出人妻视频一区二区| 亚洲,欧美精品.| 波多野结衣巨乳人妻| 亚洲精品中文字幕一二三四区| 精品少妇一区二区三区视频日本电影| 可以在线观看的亚洲视频| 天天躁狠狠躁夜夜躁狠狠躁| 91大片在线观看| 黄色视频不卡| 少妇熟女aⅴ在线视频| 18禁裸乳无遮挡免费网站照片| 欧美一区二区精品小视频在线| 欧美丝袜亚洲另类 | 日韩免费av在线播放| 久久久久九九精品影院| av免费在线观看网站| 免费搜索国产男女视频| 国产精品国产高清国产av| 男插女下体视频免费在线播放| 91字幕亚洲| 国产成人欧美在线观看| 精品乱码久久久久久99久播| 国产亚洲精品综合一区在线观看 | 欧美日韩黄片免| 亚洲人成伊人成综合网2020| 亚洲精品久久成人aⅴ小说| 午夜精品一区二区三区免费看| 听说在线观看完整版免费高清| 欧美日韩精品网址| 成人av在线播放网站| 少妇人妻一区二区三区视频| 中文字幕最新亚洲高清| 中文字幕熟女人妻在线| 国产乱人伦免费视频| 真人一进一出gif抽搐免费| 最好的美女福利视频网| 亚洲第一电影网av| 90打野战视频偷拍视频| 精品福利观看| 日本一区二区免费在线视频| av欧美777| 午夜精品一区二区三区免费看| 久久中文字幕一级| 亚洲男人的天堂狠狠| 国产精品,欧美在线| 色综合婷婷激情| 亚洲国产欧美一区二区综合| 亚洲 国产 在线| 美女扒开内裤让男人捅视频| 亚洲精品粉嫩美女一区| 亚洲一区中文字幕在线| 久久久国产成人免费| 一级a爱片免费观看的视频| 日本一本二区三区精品| 在线观看美女被高潮喷水网站 | 国产精品 国内视频| 老熟妇仑乱视频hdxx| 老司机福利观看| 男女床上黄色一级片免费看| 免费在线观看视频国产中文字幕亚洲| 两性夫妻黄色片| 国产精品久久久久久亚洲av鲁大| 午夜老司机福利片| 亚洲 国产 在线| 亚洲成a人片在线一区二区| 免费看a级黄色片| 国产人伦9x9x在线观看| 欧美性猛交╳xxx乱大交人| 女同久久另类99精品国产91| 亚洲欧美激情综合另类| 91麻豆精品激情在线观看国产| 国产成人精品久久二区二区免费| 夜夜爽天天搞| 嫩草影视91久久| 亚洲第一电影网av| 成在线人永久免费视频| 亚洲国产高清在线一区二区三| 麻豆成人午夜福利视频| 少妇粗大呻吟视频| 午夜影院日韩av| av超薄肉色丝袜交足视频| 亚洲欧美精品综合一区二区三区| tocl精华| 久久欧美精品欧美久久欧美| av福利片在线| 少妇粗大呻吟视频| 亚洲成人久久爱视频| 亚洲精品中文字幕在线视频| 久9热在线精品视频| 大型黄色视频在线免费观看| 国产精品美女特级片免费视频播放器 | 性欧美人与动物交配| 国产野战对白在线观看| x7x7x7水蜜桃| 国产精品影院久久| 成熟少妇高潮喷水视频| 草草在线视频免费看| 亚洲第一电影网av| 91麻豆精品激情在线观看国产| 伦理电影免费视频| 国产91精品成人一区二区三区| √禁漫天堂资源中文www| 国产不卡一卡二| 欧美极品一区二区三区四区| 国产不卡一卡二| 日本三级黄在线观看| 国产欧美日韩一区二区三| 日本一区二区免费在线视频| 亚洲av成人不卡在线观看播放网| 国产成人一区二区三区免费视频网站| 久久久久久九九精品二区国产 | 天天躁夜夜躁狠狠躁躁| 99热6这里只有精品| 成人av一区二区三区在线看| 国产成人aa在线观看| 日韩免费av在线播放| 亚洲成人久久爱视频| 欧美+亚洲+日韩+国产| 97超级碰碰碰精品色视频在线观看| 在线视频色国产色| 欧美国产日韩亚洲一区| 中文字幕人妻丝袜一区二区| 中文字幕av在线有码专区| 免费观看人在逋| 久久国产精品影院| 麻豆成人午夜福利视频| 久久婷婷人人爽人人干人人爱| netflix在线观看网站| 久久九九热精品免费| 国产精品香港三级国产av潘金莲| 色综合婷婷激情| 毛片女人毛片| 日韩精品免费视频一区二区三区| 亚洲av成人一区二区三| 两性夫妻黄色片| 亚洲片人在线观看| 女人爽到高潮嗷嗷叫在线视频| 香蕉国产在线看| av欧美777| 韩国av一区二区三区四区| 午夜精品在线福利| 国内揄拍国产精品人妻在线| 久久精品国产综合久久久| 黄片大片在线免费观看| www日本黄色视频网| 成人欧美大片| 俺也久久电影网| 男人舔女人下体高潮全视频| 91在线观看av| 麻豆成人午夜福利视频| 91麻豆精品激情在线观看国产| 成人高潮视频无遮挡免费网站| 99热6这里只有精品|