趙明明 羅鵬 趙永博 尹豐 費舟* (海軍總醫(yī)院神經外科, 北京 00048; 第四軍醫(yī)大學西京醫(yī)院神經外科,陜西 西安 700; 解放軍第醫(yī)院神經外科,陜西 西安 70054)
·神經損傷研究·
自噬抑制劑3-MA對機械性神經元損傷后神經元凋亡的影響
趙明明1羅鵬2趙永博3尹豐1費舟2*
(1海軍總醫(yī)院神經外科, 北京 100048;2第四軍醫(yī)大學西京醫(yī)院神經外科,陜西 西安 710032;3解放軍第323醫(yī)院神經外科,陜西 西安 710054)
目的研究自噬抑制劑6-氨基-3-甲基嘌呤(3-MA)對機械性損傷后神經元凋亡的影響。方法小鼠皮層神經元原代培養(yǎng)2 w后,采用機械性神經元損傷模型,通過蛋白印跡法(Western blot)定量分析損傷后不同時間點自噬相關分子微管相關蛋白輕鏈3(LC3)Ⅰ/Ⅱ的表達情況;通過免疫熒光染色分析機械性損傷后24 h神經元自噬相關分子LC3的表達情況;小鼠皮層神經元原代培養(yǎng)2 w后,用自噬抑制劑3-MA預處理1 h,采用機械性神經元損傷模型,通過乳酸脫氫酶(LDH)活性測定及碘化丙啶(PI)/Hoechst 33342雙染測定神經元損傷程度以及3-MA的保護作用,并通過Western blot研究凋亡相關指標caspase-3和自噬相關指標微管相關蛋白輕鏈3 (LC3)和Beclin-1的表達變化。結果Western blot方法和免疫熒光組化同時證明機械性神經元損傷后24 h LC3Ⅱ表達明顯增加;LDH活性測定表明3-MA能抑制機械性損傷造成的LDH活性的增高;PI/Hoechst 33342雙染表明3-MA可以明顯減少機械性損傷后神經元的凋亡;通過Western blot法證明3-MA抑制LC3Ⅱ,并導致cleaved caspase-3表達明顯降低。結論自噬抑制劑3-MA可能通過抑制自噬而減少機械性神經元損傷后神經元凋亡,進而對機械性損傷后神經元起保護性作用。
機械性神經元損傷; 凋亡; 自噬
創(chuàng)傷性腦損傷(traumatic brain injury, TBI)是臨床上常見的高致殘、致死性疾病,分為原發(fā)性腦損傷和繼發(fā)性腦損傷,根據GCS評分又分為輕度、中度和重度[1,2]。對TBI后繼發(fā)性腦損傷的合理治療與其預后密切相關,雖然國內外科學家針對TBI繼發(fā)性損傷的機制做了大量研究,但仍不夠明確,能付諸臨床應用的更是少之又少,仍需探索研究,而機械性損傷模型在一定程度上模擬了TBI對神經細胞的損害,為離體條件下研究TBI創(chuàng)造了條件[3]。
自噬是生物進化保守的一種能量合理應用機制,在生物的生理和病理狀態(tài)下都發(fā)揮著重要作用,微管相關蛋白輕鏈3(microtubule-associated protein light chain 3, LC3)Ⅰ/Ⅱ和Beclin-1是兩個重要的自噬相關分子,被廣泛地用來研究自噬的發(fā)生和發(fā)展。在正常生理狀況下,哺乳動物通過自噬來清除細胞內錯誤折疊的蛋白、老化的細胞器并且轉化為能量,以維持細胞內環(huán)境穩(wěn)態(tài)[4],而在病理狀況下(如感染、創(chuàng)傷、神經退行性疾病等)中同樣發(fā)揮著重要的作用[5],但在不同病理過程中所發(fā)揮作用的大小不同,甚至相反。已有文獻研究表明,在體創(chuàng)傷性腦損傷、缺血再灌注腦損傷和離體神經細胞化學性損傷、氧糖剝奪損傷中均有明顯自噬發(fā)生[6~8],然而自噬在TBI后的作用和功能尚不明確,本次實驗的目的在于闡明自噬抑制劑3-MA對機械性損傷后神經元凋亡的影響。
一、材料
孕14~16 d 昆明小鼠(第四軍醫(yī)大學實驗動物中心),激活caspase-3(Cleaved caspase-3)、Beclin-1抗體和β-actin抗體購于美國CST公司,微管相關蛋白輕鏈3(microtubule-associated protein light chain 3, LC3)抗體、6-氨基-3-甲基嘌呤(3-methyladenine, 3-MA)、多聚賴氨酸(polylysine, PLL)和二甲基亞砜(dimethyl sulfoxide, DMSO)購于美國sigma公司,神經元基質培養(yǎng)基(neurobasal, NB)、B27、10%胎牛血清(fetal bovine Serum, FBS)和改良Eagle培養(yǎng)基(Dulbecco's modified Eagle medium, DMEM)購于美國Gibco公司,山羊抗兔二抗(北京鼎國)。
二、方法
1.小鼠腦皮層神經元原代培養(yǎng)及分組
神經元培養(yǎng):孕14~15 d昆明小鼠,頸椎脫臼,腹部皮膚常規(guī)消毒,分層剪開皮膚和腹肌,暴露腹腔,無菌狀態(tài)下快速取出小鼠胚胎,放入盛有D-Hanks并置于冰盒上的培養(yǎng)皿。解剖顯微鏡下剝離小鼠胚胎大腦皮層,置于預冷至4℃的、新鮮的D-Hanks液中,仔細剝去腦膜及血管組織,將分離之大腦皮層用D-Hanks液漂洗1次。剪碎腦皮層,加入1.25 g/L胰蛋白酶消化液,置于37℃、5% CO2孵箱中消化組織塊20 min。吸去消化液,將消化后的腦皮質組織塊轉移至離心管中,加入含10%胎牛血清的DMEM,室溫下終止消化10 min。棄去終止液,將皮層腦組織塊用DMEM培養(yǎng)液再漂洗1次,用移液管在含10%胎牛血清的DMEM培養(yǎng)液中將消化后的組織塊吹打成細胞懸液。室溫靜置5 min,取少許細胞懸液滴于血球計數板上,顯微鏡下計數。以2.5×105個細胞/cm2將細胞接種于35 mm培養(yǎng)皿或者共聚焦小皿(培養(yǎng)皿預先用多聚賴氨酸包被24 h,三蒸水漂洗后晾干備用),培養(yǎng)液中加入青鏈霉素使其終濃度為100 000 u/lL,谷氨酰胺終濃度為0.5 mmol/l。將細胞置于37℃、5% CO2孵箱中培養(yǎng)24 h后,棄去培養(yǎng)液,用37℃的DMEM小心漂洗細胞,更換含20 ml/L B27添加劑的NB培養(yǎng)液,每天觀察細胞生長狀況,以后每隔3 d半量更換含20 ml/L B27添加劑的NB培養(yǎng)液。神經元體外培養(yǎng)2 w,備用。
分組情況:對照組(contorl group, 即神經元體外培養(yǎng)2 w未作任何處理);損傷組(trauma group, 即神經元體外培養(yǎng)2 w后,分別在提取蛋白前1 h、3 h、6 h、12 h、24 h給予機械性損傷);T24 h+雙蒸水(double distilled H2O, ddH2O)組(由于抑制劑3-MA由 ddH2O溶解配置,設該組為與3-MA組對照,即神經元體外培養(yǎng)2 w,在損傷前1 h加入1 μl/ml的ddH2O 37℃孵育,損傷后24 h提蛋白);抑制劑組(3-MA組,即神經元體外培養(yǎng)2 w,在損傷前1 h加入用ddH2O配置的濃度為5 mmol/l的3-MA ,37℃孵育,損傷后24 h提蛋白),以上實驗均重復3次以上。
2.神經元總蛋白提?。簵壢ヅ囵B(yǎng)皿中NB培養(yǎng)基,用磷酸鹽緩沖液(phosphate buffered solution, PBS)輕柔洗滌去除雜質,按每皿50 μl加入含2%苯甲基磺酰氟(phenylmethanesulfonyl fluoride, PMSF)的蛋白裂解液,冰上裂解5 min,收集裂解產物超聲破碎10 min后4 ℃12 000 rpm離心30 min。收集上清蛋白液,采用二喹啉甲酸(bicinchoninic acid, BCA)法對蛋白含量定量后備用。
3.體外培養(yǎng)神經元機械性損傷:參考Faden的方法[3],以10 μl的微量移液器塑料槍頭于35 mm培養(yǎng)皿內劃割,造成神經元機械性損傷,劃傷道寬度為1 mm,兩相鄰劃傷道間隔4 mm。依據預先在培養(yǎng)皿底面畫好的標記線(9×9)劃割培養(yǎng)好的神經元,標記線均勻分布在培養(yǎng)皿底面,保證同一組內的神經元損傷程度和范圍一致。這種方法制作的損傷模型穩(wěn)定,能夠在體外模擬機械性腦損傷的病理生理過程[9]。
4.乳酸脫氫酶(lactate dehydrogenase, LDH)活性測定:每培養(yǎng)皿收集100 μl培養(yǎng)基用于LDH活性測定,方法按照試劑盒說明書操作,反應結束后在440 nm測定樣品吸光度計算LDH活性。標準以每克乳酸脫氫酶蛋白37℃與基質作用15 min,反應體系中產生1 μmol丙酮酸記為1 U LDH活性。
5.碘化丙啶(PI)/Hoechst 33342雙染:含PI(終濃度為10 μg/ml)/Hoechst 33342(終濃度為μg/L)的染色液室溫下染色15 min,棄去染色液后PBS洗滌3次,每次5 min。4%多聚甲醛固定后封片,熒光顯微鏡下觀察。正常神經元呈胞漿淡紅、胞核均質藍色,損傷神經元呈全細胞亮紅、胞漿均質藍色,其中凋亡神經元呈全細胞亮紅、胞核亮藍色,核固縮明顯。
6.免疫熒光組化:將原代皮層神經元種植于共聚焦小皿內,2 w后給予機械性損傷,損傷后24 h用多聚甲醛固定,置入LC3抗體(羊血清和LC3抗體1:30比例配成)于4℃環(huán)境中達24 h,然后棄掉抗體PBS洗三遍,加入熒光二抗常溫下避光放置4 h,棄掉熒光二抗,PBS洗三遍后加入Hoechst 33342染液,常溫避光放置10 min,然后在共聚焦顯微鏡下隨機選取視野觀察拍照。此過程對照組和損傷組個各重復三遍,斑點樣LC3聚集體少于等于5個的算作正常細胞,大于5個的算作自噬激活細胞,分別統(tǒng)計分析對照組和損傷組中自噬激活細胞所占比例[10]。
7. Western blot檢測蛋白表達量變化:定量過的樣品按每泳道30 μg蛋白含量進行聚丙烯酰胺凝膠電泳,結束后用濕轉法將蛋白轉至硝酸纖維素膜上,5%脫脂奶粉室溫下封閉1 h,加入一抗(兔抗小鼠LC3,1 ∶1 500;β-actin,1 ∶1 000;兔抗小鼠Beclin-1,1 ∶1 000;兔抗小鼠Cleaved caspase-3,1 ∶500),4 ℃過夜。山羊抗兔二抗(1 ∶20 000)室溫下1 h,化學法發(fā)光,壓片后分析結果。最后用SPSS 13.0圖像分析系統(tǒng)測定各條帶灰度值,以此反映各分子表達量變化。
8.統(tǒng)計學分析:采用SPSS 13.0統(tǒng)計軟件進行數據分析,各組數據以均數±標準差表示,進行方差分析和t檢驗,以P<0.05認為在統(tǒng)計學上有顯著性差異。
一、機械性神經元損傷后有顯著的自噬發(fā)生
1.Western blot結果表明: 對照組(contorl group)LC3Ⅱ表達較低,損傷后3 h LC3Ⅱ表達開始增加,且隨時間變化逐漸增高,其中損傷后3 h、6 h、12 h、24 h LC3Ⅱ較對照組有顯著性差異(P<0.05, 圖1)。
2.免疫熒光組化結果表明:對照組神經元胞質中LC3呈均勻的低水平表達,而機械性損傷后24 h的神經元胞質中LC3表達明顯增加,并且呈斑點樣聚集。對照組中自噬激動神經元所占比例為10%±2.098%,而機械性損傷后24 h的自噬激動神經元所占比例為61%±3.728%,與對照組有顯著差異(P<0.05, 圖2)。
二、乳酸脫氫酶(lactate dehydrogenase, LDH)活性測定
T24 h組為(613.2±14.6)μ/L,與T24 h+ddH2O組(620.3±11.2)μ/L神經元LDH活性無明顯差異,而兩者的LDH活性顯著高于與對照組(203.5±13.7)μ/L。加入3-MA可以顯著抑制機械性損傷造成的LDH活性的增高,與T24 h組和T24 h+ddH2O組相比有顯著性差異(P<0.05, 圖3)。
圖1 Western blot檢測機械性神經元損傷后不同時間點LC3Ⅰ/Ⅱ的表達
Fig 1 Detection of LC3Ⅰ/Ⅱ expression at different time points after mechanical neuronal injury by Western blot
aP<0.05,vscontrol group.
Fig 2 激光共聚焦顯微鏡觀察自噬特異性蛋白LC3的表達(×600)
圖2 Observation of autophagy protein LC3 expression by laser scanning confocal microscope (×600)
A:Hoechst 33342 staining of control group;B:LC3 staining of control group;C:Merge of A and B;D:Hoechst 33342 staining of trauma group;E:LC3 staining of trauma group;F:Merge of D and E.
aP<0.05,vscontrol group
圖3 LDH活性檢測
Fig 3 LDH activity in each group
aP<0.05,vsT24 h+ddH2O group;bP<0.05,vscontrol group.
圖4 PI/Hoechst 33342雙染(×400)
Fig 4 Immunofluorescence double staining of PI and Hoechst 33342 (×400)
Propidium iodide (PI) staining of control group (A), T24 h group (D), T24 h+ddH2O group (G) and T24 h+3-MA (J);Hoechst 33342 staining of control group (B), T24h group (E), T24h+ddH2O group (H) and T24 h+3-MA(K);Double staining of propidium iodide (PI) and Hoechst 33342; C: Merge of A and B; F: Merge of D and ; I: Merge of G and H; L: Merge of J and K.
Arrowhead indicates karyopycnosis.
三、碘化丙啶(PI)/Hoechst 33342雙染
對照組可見神經元胞核均質、圓滿,對PI不著色,胞漿對PI著淡紅色,清晰可見。機械性損傷后24 h,可見大量神經元出現細胞核固縮,對PI著色,胞漿結構消失。機械性神經元損傷的同時使用自噬抑制劑3-MA可以明顯減少發(fā)生胞膜損害和胞核固縮的神經元數量,正常神經元比例明顯增加(圖4)。
四、Western blot法檢測自噬抑制劑3-MA對凋亡相關因子Cleaved caspase-3及自噬相關分子(LC3、Beclin-1)蛋白表達的影響
Western blot分析表明,與T24 h組和T24 h+ddH2O組相比,抑制劑組(T3 h+3-MA) LC3Ⅱ和Beclin-1顯著下調(P<0.05),同時Cleaved caspase-3表達明顯降低(P<0.05, 圖5)。
圖5 Western blot檢測自噬抑制劑(3-MA)預處理對自噬相關分子和Cleaved caspase-3表達變化的影響
Fig 5 Detection of Cleaved caspase-3, Beclin-1 and LC3Ⅱ-protein in each group by Western blot
A:LC3Ⅱ/LC3Ⅰratio; B:Beclin-1/β-Actin ratio;C:Cleaved caspase-3/β-Actin ratio;D:Expression of LC3Ⅰ/Ⅱ,Beclin-1 and Cleaved caspase-3 were measured by Western blot.
aP<0.05,vsT24 h+ddH2O group;bP<0.05,vscontrol group.
自噬是一種生物進化保守的細胞內溶酶體降解途徑,于1963年由比利時科學家Christian de Duve首先命名提出,根據其發(fā)生過程的不同分為三類:巨自噬(macroautophagy)、微自噬(microautophagy)和伴侶-介導的自噬(chaperone-mediated autophagy)[11]。Diskin等在2005年首先報道了創(chuàng)傷性腦損傷可以誘導自噬的發(fā)生,發(fā)現創(chuàng)傷性腦損傷后自噬相關分子Beclin-1在神經元和星形膠質細胞上呈顯著高表達,并認為過表達Beclin-1進而激活自噬可能發(fā)揮保護性作用[12]。Clark等在TBI患者腦組織中發(fā)現大量的自噬相關分子LC3的表達[13]。雷帕霉素是一種通過抑制哺乳動物雷帕霉素靶點(mammalian target of rapamycin, mTOR)來上調自噬的激動劑,Erlich等在研究中發(fā)現在小鼠創(chuàng)傷性腦損傷后4 h給予雷帕霉素治療可以明顯改善小鼠的功能恢復,同時發(fā)現雷帕霉素的干預顯著上調了Beclin-1在腦組織中的表達[14]。與此同時,也有部分研究表明,降低TBI誘導的自噬有保護性作用。Yichen Lai等在研究中發(fā)現使用γ-谷氨酰半胱氨酸乙酯(γ-glutamylcysteinyl ethyl ester, GCEE)降低自噬的同時可以改善TBI后小鼠的功能缺失[15]。Luo等通過使用自噬抑制劑3-MA和巴佛洛霉素(bafliomycin A1, BFA)抑制TBI后小鼠的自噬水平,可以降低腦損傷面積和功能缺失[16]。由此可知,目前在自噬與TBI的關系方面的研究中出現較大分歧,需繼續(xù)探索和研究。
我們的前期研究證實,機械性神經元損傷后有顯著的自噬發(fā)生,并受PI3K/Akt信號通路的調節(jié)。本次實驗著重研究了自噬抑制劑3-MA對機械性損傷后神經元凋亡和細胞活性的影響[17]。通過研究發(fā)現,自噬抑制劑3-MA抑制自噬可以顯著降低神經元的LDH釋放,PI/Hoechst 33342雙染發(fā)現抑制自噬可以降低機械性神經元損傷中神經元的凋亡,同時通過Western blot法證明,抑制自噬可以降低活化的caspase-3的表達。由此可知,抑制機械性神經元損傷中的自噬可以在一定程度上減少神經元的凋亡,進而對損傷后神經元發(fā)揮保護作用。Gavin等在小鼠大腦皮層離體神經元H2O2損傷中的研究表明,抑制自噬可以減少神經元凋亡;Grishchuk等也在研究中發(fā)現,Beclin-1非依賴的自噬導致皮層神經元的凋亡,3-MA抑制自噬可以減少神經元凋亡,與我們的研究結果基本一致[18]。
迄今為止,國內外科學家已在自噬與腦損傷的關系方面做了大量研究,在取得很大進步的同時也發(fā)現了一些問題和矛盾,本研究為進一步探索TBI后自噬的作用和功能提供理論依據。
1Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event [J]. J Neurotrauma, 2010, 27(8): 1529-1540.
2DeKosky ST, Ikonomovic MD, Gandy S. Traumatic brain injury-football, warfare, and long-term effects [J]. N Engl J Med, 2010, 363(14): 1293-1296.
3Faden AI, O'Leary DM, Fan L, et al. Selective blockade of the mGluR1 receptor reduces traumatic neuronal injury in vitro and improves outcome after trauma [J]. Exp Neurol, 2001, 167(2): 435-444.
4Mariňo G, Madeo F, Kroemer G. Autophagy for tissue homeostasis and neuroprotection [J]. Curr Opin Cell Biol, 2011, 23(2): 198-206.
5Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells [J]. Int J Biochem Cell Biol, 2004, 36(12): 2445-2462.
6Smith CM, Chen Y, Sullivan ML, et al. Autophagy in acute brain injury: feast, famine, or folly ? [J]. Neurobiol Dis, 2011, 43(1): 52-59.
7Higgins GC, Devenish RJ, Beart PM, et al. Autophagic activity in cortical neurons under acute oxidative stress directly contributes to cell death [J]. Cell Mol Life Sci, 2011, 68(22): 3725-3740.
8Qin AP, Liu CF, Qin YY, et al. Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia [J]. Autophagy, 2010, 6(6): 738-753.
9Huang WD, Fei Z, Zhang X. Traumatic injury induced homer-1a gene expression incultured cortical neurons of rat [J]. Neurosci Lett, 2005, 389(1): 46-50.
10Young JE, Martinez RA, La Spada AR. Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation [J]. J Biol Chem, 2009, 284(4): 2363-2373.
11McEwan DG, Dikic I. Not all autophagy membranes are created equal [J]. Cell, 2010, 141(4): 564-566.
12Diskin T, Tal-Or P, Erlich S, et al. Closed head injury induces upregulation of Beclin 1 at the cortical site of injury [J]. J Neurotrauma, 2005, 22(7): 750-762.
13Clark RS, Bayir H, Chu CT, et al. Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness [J]. Autophagy, 2008, 4(1): 88-90.
14Erlich S, Alexandrovich A, Shohami E, et al. Rapamycin is a neuroprotective treatment for traumatic brain injury [J]. Neurobiol Dis, 2007, 26(1): 86-93.
15Lai Y, Hickey RW, Chen Y, et al. Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester [J]. J Cereb Blood Flow Metab, 2008, 28(3): 540-550.
16Luo CL, Li BX, Li QQ, et al. Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice [J]. Neuroscience, 2011, 184: 54-63.
17趙明明, 趙永博,羅鵬, 等. PI3K/Akt信號通路對神經元機械性損傷誘導的自噬調節(jié)作用 [J]. 中華神經外科疾病研究雜志, 2012, 11(6): 491-494.
18Grishchuk Y, Ginet V, Truttmann AC, et al. Beclin 1-independent autophagy contributes to apoptosis in cortical neurons [J]. Autophagy, 2011, 7(10): 1115-1131.
Theeffectofautophagyinhibitor3-MAonapoptosisinducedbymechanicalneuronalinjury
ZHAOMingming1,LUOPeng2,ZHAOYongbo3,YINFeng1,FEIZhou2
1DepartmentofNeurosurgery,NavyGeneralHospitalofPLA,Beijing100048;2DepartmentofNeurosurgery,XijingHospital,FourthMilitaryMedicalUniversity,Xi'an710032;3DepartmentofNeurosurgery,The323thHospitalofPLA,Xi'an710054, China
ObjectiveThe effect of autophagy inhibitor 3-methyladenine (3-MA) on apoptosis induced by mechanical neuronal injury is investigated.MethodsMouse cortical neurons were cultured for 2 w in vitro. After establishment of mechanical neuronal injury model, the expression of microtubule-associated protein light chain 3 (LC3)Ⅰ/Ⅱ was measured by Western blot. LC3, as an autophagy related molecular, was detected by immunofluorescence staining in the neurons at 24 h after mechanical neuronal injury. Neurons were pre-treated with autophagy inhibitor 3-MA for 1 h before mechanical neuronal injury model. Then, cell viability was evaluated by lactate dehydrogenase (LDH) activity assay and immunofluorescence double staining of propidium iodide (PI) and Hoechst 33342. The expressions of caspase-3, LC3, and Beclin-1 were measured by Western blot.ResultsWestern blot and immunofluorescence staining indicated that the significant increase of LC3 expression at 24 h after mechanical neuronal injury. LDH assay showed that pre-treatment of 3-MA suppressed mechanical injury-induced elevation of LDH activity. PI/Hoechst double staining suggested that pre-treatment of 3-MA also decreased the neuronal apoptosis after mechanical injury. Furthermore, Western blot indicated that 3-MA inhibited the expression of LC3 II and then resulted in the decrease of cleaved caspase-3.ConclusionAutophagy inhibitor 3-MA might attenuate mechanical neuronal injury-induced neuronal apoptosis via inhibiting autophagy, thereby leading to the neuroprotective effects after mechanical neuronal injury.
Mechanical neuronal injury; Apoptosis; Autophagy
R 322
A
國家自然科學基金資助項目(30930093);全軍醫(yī)學科技青年培育基金資助項目(13QPN026)
趙明明,醫(yī)師,E-mail: mingming157@163.com
*通訊作者: 費舟,教授、主任醫(yī)師,博士生導師,E-mail: feizhou@fmmu.edu.cn
2015-03-16;
2015-08-10)