• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variability of European beech wood density as influenced by interactions between treering growth and aspect

    2016-11-24 05:35:53DanielaDiaconuMarcWassenbergandHeinrichSpiecker
    Forest Ecosystems 2016年3期

    Daniela Diaconu,Marc Wassenberg and Heinrich Spiecker

    Variability of European beech wood density as influenced by interactions between treering growth and aspect

    Daniela Diaconu*,Marc Wassenberg and Heinrich Spiecker

    Background:Wood density is considered to be the most important predictor of wood quality but despite its importance,diffuse-porous tree species have been the subject of only a limited number of studies.The importance of European beech forests for Central Europe calls for profound research to examine the potential impact of a warmer climate on the quality of beech timber.

    Methods:In this study we analysed the influence of tree-ring width and tree-ring age on the wood density of beech, and whether the wood density response to these two parameters is modified by aspect.A linear mixed-effects model for wood density was constructed for mean density data measured with high frequency densitometry on stem discs from 72 beech trees sampled from two different aspects(northeast-NE and southwest-SW)of a valley in southwestern Germany.

    Results:Part of the variability of mean annual wood density was explained by cambial age:an increase in cambial age resulted in an increase in mean wood density.Tree-ring width and aspect had only a small influence on wood density. Wood density on the SW aspect was lower than on the NE with a difference of approximately 0.006 g/cm3.The between-tree variability was very high.

    Conclusions:The significant interaction between cambial age and aspect reflects the importance of site conditions at older tree ages:with increasing cambial age the difference between aspects becomes stronger.Our results give a better understanding of the importance of site conditions on the wood quality of beech.

    Fagus sylvatica,HF densitometry,Wood quality,Wood density,Aspect

    Background

    The structure and characteristics of tree-rings contain extremely valuable information concerning wood quality. Tree-ring research is essential in developing management guidelines to improve wood quality and productivity(Spiecker 2002).The variation of different tree-ring parameters with changes in climate can be analysed at different scales by the analysis of tree-ring width,cell structure parameters or wood density.

    One of the most important parameters of wood quality is wood density,due to its correlation with the calorific value and also with mechanical properties such as hardness,stiffness and strength(Hacke et al.2001;Niklas and Spatz 2010;Shmulsky and Jones 2011).Analysis of wood density has developed into a valuable dendroecological tool for studying the relationship between environment,tree growth and wood quality.In the context of predictions of a warmer and dryer climate in the future, wood quality becomes a crucial issue.With increased nitrogen deposition and more CO2in the atmosphere an increase in the radial growth of trees is expected(Becker et al.1995;Spiecker et al.1996;Kahle et al.2008).However,wider tree-rings do not necessarily imply a higher or lower density.

    The relationship between tree-ring width and tree-ring density has been intensively studied and it varies according to tree species(Bontemps et al.2013).For instance for spruce an increase in tree-ring width was found to decrease wood density(M?kinen et al.2007;Piispanenet al.2014;Franceschini et al.2010),while for oak Guilley et al.(2004)found that an increase in tree-ring width results in an increase in wood density.

    Knowledge of interactions between the effects of radial growth on wood density under different environments becomes very important for the selection process of appropriate silvicultural treatments under projected global warming scenarios.Studies which link wood density to tree-ring width,cambial age,different environmental factors or silvicultural practices were mostly carried out for conifer species(Cregg et al.1988;Jozsa and Brix 1989;Bouriaud et al.2005;Filipescu et al.2014).For broadleaves,due to the vessel distribution within the tree-rings,these studies are limited to ring porous tree species(Bergès et al.2008;Guilley et al.1999);wood density variation of diffuse-porous tree species has rarely been analysed(Zhang 1995;Bouriaud et al.2004;Skomarkova et al.2006;Bontemps et al.2013).

    European beech(Fagus sylvatica L.)is the most abundant broad-leaved forest tree species in Central Europe (Ellenberg 1996),and due to its high ecological and economic importance it is one of the most relevant hardwood tree species for forest management in this region. Therefore,profound research to examine the effects of a warmer and dryer climate on wood quality of beech is needed.

    Our work complements the study done by Bouriaud (2004)and brings new arguments to the discussion on wood density variation of beech due to changing environmental conditions.We measured the mean annual density of European beech sampled from two opposing slopes with high frequency(HF)densitometry,a method which utilises the dielectric properties of wood(Torgovnikov 1993).This technique is based on the high frequency(HF)propagation of electromagnetic waves by a microelectrode system through the wood sample(Schinker et al.2003;Boden et al.2012).The signal received by the dielectric measuring device is directly influenced by the dielectric properties of the wood sample along the radius,and the variation of the dielectric permittivity is correlated with the density variations(Schinker et al. 2003).HF densitometry has been shown to perform reliable measurements of wood density(Wassenberg et al. 2014;Wassenberg et al.2015b)and results compare well to X-ray densitometry(Schinker et al.2003).When compared to X-ray measurements this method provides the advantage that it is extremely fast,non-destructive and relatively inexpensive;this method was used in several dendroclimatological studies in recent years(Fan et al.2009;Bender et al.2012;Montwé et al.2014;Shchupakivskyy et al.2014;Wassenberg et al.2015a;Hackenberg et al.2015).

    The objectives of our study were 1)to analyse the effect of tree-ring width and tree-ring age on mean annual density of European beech and 2)to test whether the wood density response to ring width and cambial ring age is modified by aspect.

    Methods

    Study site and experimental design

    The study area is located in southwestern Germany in a beech-dominated forest in the Swabian Alb,about 100 km south-southwest from Stuttgart.Experimental sites are situated on two opposite-exposed slopes:northeast(NE)and south-west(SW)aspects of a narrow valley close to the city of Tuttlingen.Elevation is~800 m and~760 m a.s.l.for the NE and SW aspect respectively, both with an inclination of 23–30°.The climate in the areaissemi-continental,withameanannualair temperature of ca 7.0°C,and annual precipitation of 900 mm.Rainfall does not vary significantly across the valley(Ge?ler 2001).The stands have an average age of 80–100 years(Hauser 2003).

    The first difference between the aspects is regarding the soil profiles.On the SW aspect the soil profile is particularly rocky,with soils containing 20–45 vol%rocks and stones in the upper 20 cm and up to 80%below 0.50 m compared with the NE aspect where the soils contain only 15 vol%rocks in the upper soil layer and 30 vol%rocks below 0.50 m(Hildebrand et al.1998; Ge?ler et al.2005).The second important difference between aspects is that due to the higher radiation interception at the canopy layer on the SW site,the temperature is higher,the evapotranspiration is increased,and therefore,the water availability is permanently lower than on the NE aspect(Mayer et al.2002). Differences between aspects are noticeable also regarding the site index,the mean height of the dominant trees (h100)at base age 100 years being 29.2 m on the NE and 23.4 m on the SW aspect(Spiecker et al.2001).

    The rocky soil profile merged with the lower water availability on the SW aspect makes the study area resemble a model ecosystem where the climate projections for the next 50 to 100 years are represented by the relatively warm and dry SW aspect,and the current climate typical for the majority of beech forests in central Europe is represented by the relatively cold and wet NE facing slope(Rennenberg 1998).

    In winter of 1998–1999,within the framework of a larger interdisciplinary study(SFB 433:Beech dominated deciduous forests under the influence of climate and management:ecological,silvicultural and social analyses”),a thinning experiment was established in the study area.The objective of the study was to develop operational stand management concepts for enhancing the resilience and adaptive capacity of beech forests to changing climatic conditions,especially to summer drought, taking into account ecological and economic aspects.The experimental design included different thinning treatments in a randomised block design established on each aspect and replicated three times on the NE and two times on the SW aspect.

    Sampling and measurements

    All trees inside experimental plots were numbered and marked at 1.3 m stem height for repeated diameter measurements.The diameter measurements were assessed for all trees with a calliper,in 1999 before thinning.

    The material of this study study is represented by the trees which were removed during the thinning operation.On each aspect a total of 36 random trees from different blocks(treatment replication)were selected (NNE=36,NSW=36,Ntotal=72).The selected trees are equally distributed in different social classes,according to the Kraft class.From each tree a stem disc at a height of 1.3 m from the ground was removed and analysed in the laboratory.The surface of all cross sections was prepared with a diamond fly cutter(Spiecker et al.2000) and four radii per sample were measured for tree-ring width and wood density.

    Radial growth was measured using a semi-automatic image analysis software developed at the Chair of Forest Growth and Dendroecology.The individual tree growth series were cross-dated with a reference chronology with the software PAST4(Personal Analysis System for Tree-Ring Research,SCIEM,version 4.3.1014).

    Wood density was determined using HF densitometry (Schinker et al.2003).We used the same HF probe for all samples(type D,approximately 80 μm integration width,see Fig.1–Wassenberg et al.2015b).The mean density was calculated per year,tree and aspect as an arithmetic mean between the four radii that were measured.In order to convert the voltage units to real density values we used the calibration method developed by Wassenberg et al.(2014).

    Data analysis

    All data exploration,analysis and graphics were carried out using the R programming environment 3.1.3(R Core Team 2014).The R packages used for the analysis were: reshape2(Wickham 2007),ggplot2(Wickham 2009)and plyr(Wickham 2011).For computing the mixed-effects models we used the package lme4(Bates et al.2015)and lmerTest(Kuznetsova et al.,2014).The hierarchical partitioning of the independent variables was computed with the package hier.part(Walsh and Mac Nally 2013).

    We analysed the effect of tree-ring width,tree-ring age,site and their interactions on wood density.For this purpose,we computed a mixed-effects model for mean annual wood density with tree-ring width,aspect,cambial age and their interactions as fixed effects and tree and year as random effects(Eq.1).

    with yibeing mean annual density of individual trees on the ithaspect,TRW-tree-ring width and CA-cambial age(tree-ring age counted from the pith).αnare coefficients to be estimated.

    The mixed effects modelling approach provides a flexible tool for the analysis of grouped data,giving the possibility to incorporate fixed as well as random effects within one model.Fixed effects parameters are common to all subjects,whereas random effects parameters are specific to each subject(Pinheiro and Bates 2000).Fixed effects have an influence on the mean of the dependent variable,while random effects influence the variance of the dependent variable(Crawley 2007).The effect of tree (from different blocks of treatment replication)and year were treated as random effects to properly account for their random variability.

    A significant interaction between two main effects means that the effect of a variable depends on the level of the other(Dormann 2013).The interaction term TRW:Aspect allows the magnitude of the tree-ring width on mean annual wood density to vary across the valley. The second interaction term CA:Aspect permits the effect of tree-ring age on mean annual wood density to vary with aspect.

    Results

    The hierarchical contributions of each independent variable included in the model on mean annual wood density are illustrated in Fig.1.From the three independent variables,most of wood density variability was explained by cambial age,followed by site effects and tree-ring width.

    The difference between the two aspects was larger for ring width than for wood density(Fig.2).Results of ttest comparisons showed that both parameters were significantly different between expositions,but the trees on the NE aspect display significantly wider tree-rings and only slightly higher wood density than the ones on the opposite slope.Specifically,the mean tree-ring width of the trees on the NE aspect was 4.2351 mm/y(±1.9423) and 3.0794 mm/y(±1.3147)on the SW aspect.Mean annual wood density on the NE exposed slope was on average 0.5968(±0.0312)g/cm3and slightly lower on the SW with 0.5908(±0.0299)g/cm3.

    The results of the developed mixed-effects model showed that as main effect,aspect was not statistically significant(p>0.05),but the interaction between aspect and tree-ring width as well as between cambial age and aspect were significant.All coefficients with statistically significant influence on wood density indicated plausible relationships with respect to biological interpretation. The parameter estimates,standard errors,and p-values of the parameters for the model presented in Equation 1 are listed in Table 1.The plot of the obtained residuals against the predicted values did not indicate any systematic deviation.

    Wood density was slightly positively influenced by an increase in tree-ring width and cambial age(Figs.3 and 4).For both parameters the annual density variability among trees was rather high.The significant interactions between tree-ring width and aspect,and cambial age and aspect are illustrated in Figs.5 and 6.With an increase in tree-ring width,wood density increases much faster for the trees on the SW aspect compared with trees on the opposite slope(Fig.5).Nevertheless,with increasing cambial age,wood density is significantly higher for the trees on the NE aspect than on the SW (Fig.6).

    Table 1 Parameter estimates and error statistics for the mean annual wood density model

    Discussion

    In this case study we evaluated differences in mean annual wood density of European beech as influenced by tree-ring width and tree-ring age under differing climatic site conditions.We showed that wood density of European beech in southwestern Germany is influenced by tree-ring age,and slightly by tree-ring width and environment,but there is a very high variability between individual trees.

    Cambial age effect

    Cambial age or the age of the tree-rings starting from the pith was found to have a significant role in wood density variation for different tree species.In our study the mean annual wood density was correlated with the tree-ring age from the pith-an increase in tree-ring age resulting in an increase in tree-ring wood density.Our results are in contradiction with the results of Bouriaud (2004)who found a negative relationship between ring density and ring age.This might be explained by the different age of the samples(45–70 years in Bouriaud vs 80–90 years in our case),by the different sample size(30 vs.72 trees)or by environmental influence.A similar tree-ring age effect has been shown by De Bell et al. (2002)who studied wood density variation in young poplars and found an increase in wood density in the first three years,a decrease in the 4th and 5th year followed again by an increase until the 9th year.However,the weak influence of cambial age on mean annual wood density,reflects also that part of the total variation of annual wood density might be explained by other factors such as weather and climate.

    Site effect

    Environmental influence in our study was represented by the aspect effect,the water stress for trees on the SW exposed slope being higher,and the soil profile being particularly rocky.Bouriaud(2004)did not find any influence of soil water deficit on ring density.In our study the difference in mean annual wood density between expositions was very small:0.006 g/cm3less for trees on the SW aspect.Our results highlight higher sensitivity of tree-ring width to dry conditions compared with wood density-the difference in radial growth between expositions was more significant than for wood density.Particularly,the mean tree-ring width of trees on the NE aspect was approximately 40%higher than on the SW, while the mean annual density was only 1%higher than on the SW exposed slope(Fig.2).The significant interaction between aspect and tree-ring age showed that with an increasing tree age the annual wood density of trees on the SW aspect is significantly lower than on the NE.This provides evidence that in older trees such a difference in wood density between moist and dry conditions might become larger.

    Z’Graggen(1992)showed that maximum wood density in beech towards the end of the growing season is mostly explained by climate.Likewise,work by Sass and Eckstein(1995)also found that vessel formation at the end of the vegetation period is strongly influenced by the amount of rainfall in July.Moreover,van der Maaten (2012)found that water stress has a main impact on wood formation in beech.Hence,the local environmental factors play a significant role on the variation of wood density.

    In a more extreme climate,with more frequent summer droughts,site conditions similar to the ones presented in this study(SW aspect)might have a stronger impact on beech wood anatomy,and therefore,on wood density.Wood density depends on the number of vessels per unit area and also their size(Preston et al.2006). The variation of these two parameters as well as the way vessels are grouped within the xylem,directly influences wood density.For instance,von Arx et al.(2013)found that on dry sites vessels are grouped in more and larger clusters than on moist sites.These findings imply that wood density on dry sites might be lower than on moist sites due to the higher vessel area within any single treering.However,our results showed that the difference in mean annual wood density between aspects is very small.Moreover,only with two aspects,and due to the very high variability between individual trees it is hard to draw decisive conclusions regarding the environmental influence on wood density.This is why we encourage future studies also to investigate the intra-annual density profile linked to the architecture of the water conducting system of European beech or other diffuse-porous tree species under contrasting site conditions.

    Tree-ring width effect

    Due to the arrangement of vessels along the tree-ring (Sass and Eckstein 1995),wood density of diffuse-porous tree species might be only slightly influenced by a change in tree-ring width.In our study,the relationship between these two parameters was positive,significant but relatively weak-an increase in tree-ring width results in slightly higher tree-ring wood density.Our results are confirmed by Zhang(1995)who observed only a little influence of growth rate on specific gravity and mechanical proprieties of other diffuse-porous tree species(birch and poplar).Likewise,Bontemps et al.(2013)found a positive but weak relationship between these two parameters for common beech in Northeastern France.Bouriaud(2004)reported no significant influence of tree-ring width on wood density.Both studies stated very large between-tree variability,which was considered to weaken the correlation.

    When considering also the aspect,an increase in treering width on the SW aspect increased wood density more than on the NE.This implies,that the wider treerings of trees on the SW aspect have less total vessel area within xylem than on the NE.It is well known that different silvicultural treatments such as thinning increase radial growth.This has been shown also for European beech(Boncina et al.2007;Le Goff and Ottorini 1993,1999;van der Maaten 2012;Diaconu et al.2015). In this context our results reveal that thinning might not only give higher radial growth rates but also higher wood density.Eilmann et al.(2014)found a significant positive relationship between tree-ring width and total vessel area of beech,showing that if trees have higher growth rates,this is due to the formation of large vessels.At the same time,they found a strong negative relationship between vessel density and tree-ring width meaning that with wider tree-rings vessel density is decreasing.With low conduit density,wood density might also increase.This is confirmed by another analysis within the study area concerning the xylem plasticity in the hydraulic architecture of European beech in response to thinning,here,where the mean vessel area, the vessel density and the number of vessel groups within xylem significantly decreased in thinned trees compared to the unthinned trees(unpublished observation).These correlations show as well the investment in different types of tissues with increasing tree-ring width, and prove that with higher growth rates trees invest more in carbon sequestration than in their hydraulic system.In our study,considering the significant interaction effect between tree-ring width and aspect on wood density,thinning might represent a potential adaptation measure to a warmer climate by making the water conducting system more robust against hydraulic failure especially of the trees growing under more drought-prone climate.

    Conclusion

    In this study we have described the wood density variation of European beech trees as influenced by interactions between tree-ring growth and aspect.We showed that wood density of beech is influenced by tree-ring age,followed by site effects and tree-ring width.The influence of site effects on wood density was less sensitive than for tree-ring width.The significant interaction between aspect and tree-ring age showed that the present difference of 6 kg/m3between NE and SW aspect might increase at older ages.At the same time,the interaction between aspect and tree-ring width reflects that silvicultural treatments such as thinning applied to increase radial growth could have different effects on wood density according to the local climate.

    The high sample size coupled with the long time series,offers an indication of the effect of tree-ring age, tree-ring width and local climate on wood density of European beech,and highlights as well the high variability between individual trees.Our findings bring new arguments into the present discussion of wood quality in a warmer climate and represent an important aspect for the forest management sector.Nevertheless,as our study is not replicated at other sites,the presented results are valid only for the climatic conditions in our study region and in order to generalise our findings a broader analysis needs to be carried out.Likewise,further analysis on the same or similar material but focused on wood anatomy(fibre,conduit and ray characteristics), together with climate or dendrometer data might offer a more precise indication of the influencing factors on wood density and might explain more of the interannual wood density variability of European beech trees.

    Competing interests

    The authors declare that they have no competing interest.

    Authors’contributions

    HS conceived the study and contributed to its design and coordination.All TRW and HF-density measurements were carried out by MW.Data analysis was performed by DD.The manuscript was written by DD with advice from MW and HS.All authors contributed to the interpretation and discussion of the results.All authors read and approved the final manuscript.

    Acknowledgments

    This study used material from the collaborative research project SFB 433 (“Buchendominierte Laubw?lder unter dem Einflu? von Klima und Bewirtschaftung:?kologische,waldbauliche und sozialwissenschaftliche Analysen”-Beech dominated deciduous forests under the influence of climate and forest management).DD is funded by the project BuKlim within Waldklimafods program of BMEL/BMUB(“Gef?rdert durch Bundesministerium für Ern?hrung und Landwirtschaft und das Bundesministerium für Umwelt, Naturschutz,Bau und Reaktorsicherheit aufgrund eines Beschlusses des Deutschen Bundestages”).The authors would like to thank Jonathan Sheppard for English language revisions to the manuscript.

    References

    Bates D,Maechler M,Bolker B,Walker S(2015)Fitting linear mixed-effects models using lme4.J Stat Softw 67(1):1-48.doi:10.18637/jss.v067.i01

    Becker M,Bert GD,Bouchon J,Dupouey JL,Picard JF,Ulrich E(1995)Long term changes in forest productivity:the dendrochronological approach.In: Landmann G,Bonneau M(eds)Forest decline and atmospheric deposition effects in the French mountains.Springer,Berlin,Heidelberg

    Bender BJ,Mann M,Backofen R,Spiecker H(2012)Microstructure alignment of wood density profiles:an approach to equalize radial differences in growth rate.Trees 26(4):1267-1274.doi:10.1007/s00468-012-0702-y

    Bergès L,Nepveu G,Franc A(2008)Effects of ecological factors on radial growth and wood density components of sessile oak(Quercus petraea Liebl.)in Northern France.For Ecol Manage 255(3-4):567-579.doi:10.1016/j.foreco. 2007.09.027

    Boden S,Schinker MG,Duncker P,Spiecker H(2012)Resolution abilities and measuring depth of high-frequency densitometry on wood samples. Measurement 45(7):1913-1921.doi:10.1016/j.measurement.2012.03.013

    Boncina A,Kadunc A,Robic D(2007)Effects of selective thinning on growth and development of beech(Fagus sylvatica L.)forest stands in southeastern Slovenia.Ann For Sci 64(1):47-57.doi:10.1051/forest:2006087

    Bontemps J,Gelhaye P,Nepveu G,Hervé J(2013)When tree rings behave like foam:moderate historical decrease in the mean ring density of common beech paralleling a strong historical growth increase.Ann For Sci 70(4):329-343.doi:10.1007/s13595-013-0263-2

    Bouriaud O,Bréda N,Le Moguédec G,Nepveu G(2004)Modelling variability of wood density in beech as affected by ring age,radial growth and climate. Trees 18(3):264-276.doi:10.1007/s00468-003-0303-x

    Bouriaud O,Leban J,Bert D,Deleuze C(2005)Intra-annual variations in climate influence growth and wood density of Norway spruce.Tree Physiol 25:651-660

    Crawley MJ(2007)The R book.Wiley,England

    Cregg BM,Dougherty PM,Hennessey TC(1988)Growth and wood quality of young loblolly pine trees in relation to stand density and climatic factors.f. Can J For Res 18(7):851-858.doi:10.1139/x88-131

    DeBell DS,Singleton R,Harrington CA,Gartner BL(2002)Wood density and fiber length in young Populus stems:relation to clone,age,growth rate,and pruning.Wood Fiber Sci 34:529-539

    Diaconu D,Kahle H,Spiecker H(2015)Tree-and stand-level thinning effects on growth of european beech(Fagus sylvatica L.)on a Northeast-and a Southwest-facing slope in Southwest Germany.Forests 6(9):3256-3277.doi: 10.3390/f6093256

    Dormann CF(2013)Parametrische Statistik:Verteilungen,Maximum Likelihood und GLM in R.Springer,Berlin

    Eilmann B,Sterck F,Wegner L,de Vries SMG,von Arx G,Mohren GMJ,den Ouden J,Sass-Klaassen U(2014)Wood structural differences between northern and southern beech provenances growing at a moderate site. Tree Physiol 34(8):882-893.doi:10.1093/treephys/tpu069

    Ellenberg H(1996)Vegetation Mitteleuropas mit den Alpen in ?kologischer, dynamischer und historischer Sicht:170 Tabellen,5.,stark ver?nd.und verb. Aufl.UTB,vol 8104.Ulmer,Stuttgart

    Fan Z,Br?uning A,Yang B,Cao K(2009)Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China.Glob Planet Chang 65(1-2):1-11.doi:10.1016/j.gloplacha.2008.10.001

    Filipescu CN,Lowell EC,Koppenaal R,Mitchell AK(2014)Modeling regional and climatic variation of wood density and ring width in intensively managed Douglas-fir.Can J For Res 44(3):220-229.doi:10.1139/cjfr-2013-0275

    Franceschini T,Bontemps J,Gelhaye P,Rittie D,Herve J,Gegout J,Leban J(2010) Decreasing trend and fluctuations in the mean ring density of Norway spruce through the twentieth century.Ann For Sci 67(8):816.doi:10.1051/ forest/2010055

    Ge?ler A,Schrempp S,Matzarakis A,Mayer H,Rennenberg H,Adams MA(2001) Radiation modifies the effect of water availability on the carbon isotope composition of beech(Fagus sylvatica).New Phytol 150:653-664

    Ge?ler A,Jung K,Gasche R,Papen H,Heidenfelder A,B?rner E,Metzler B,Augustin S, Hildebrand E,Rennenberg H(2005)Climate and forest management influence nitrogen balance of European beech forests:microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots.Eur J Forest Res 124(2):95-111.doi:10.1007/s10342-005-0055-9

    Guilley E,Herve J,Huber F,Nepveu G(1999)Modelling variability of within-ring density components in Quercus petraea Liebl.with mixed-effect models and simulating the influence of contrasting silvicultures on wood density.Ann For Sci 56:449-458

    Guilley E,Hervé J,Nepveu G(2004)The influence of site quality, silviculture and region on wood density mixed model in Quercus petraea Liebl.For Ecol Manage 189(1-3):111-121.doi:10.1016/j.foreco. 2003.07.033

    Hacke UG,Sperry JS,Pockman WT,Davis SD,McCulloh KA(2001)Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure.Oecologia 126(4):457-461.doi:10.1007/ s004420100628

    Hackenberg J,Wassenberg M,Spiecker H,Sun D(2015)Non destructive method for biomass prediction combining TLS derived tree volume and wood density.Forests 6(4):1274-1300.doi:10.3390/f6041274

    Hauser S(2003).Dynamik hochaufgel?ster radialer Schaftver?nderungen und des Dickenwachstums bei Buchen(FAgus sylvatica L.)der Schw?bischen Alb unter dem Einfluss von Witterung und Bewirtschaftung.Dissertation,Albert-Ludwigs Universit?t Freiburg

    Hildebrand E,Augustin S,Schack-Kirchner H(1998)Bodenkundliche Charakterisierung der Kernfl?chen.In:Rennenberg H(ed)Buchendominierte Laubw?lder unter dem Einflu? von Klima und Bewirtschaftung:?kologische, waldbauliche und sozialwissenschaftliche Analysen-Vorcharakterisierung der Untersuchungsfl?chen.Eigenverlag der Universit?t Freiburg,Freiburg,pp 7-12

    Jozsa LA,Brix H(1989)The effects of fertilization and thinning on wood quality of a 24-year-old Douglas-fir stand.Can J For Res 19(9):1137-1145.doi:10.1139/x89-172

    Kahle HP,Karjalainen T,Schuck A,? GI,Kellom?ki S,Mellert K,Prietzel J,Rehfuess KE,Spiecker H(2008)Causes and consequences of forest growth trends in Europe:Results of the Recognition project.In:European Forest Institute Research Report,vol 21.Brill,Leiden

    Kuznetsova A,Brunn Brockhoff P,Haubo Bojesen Christensen R(2014).lmerTest: Tests in Linear Mixed Effects Models.r package version 2.0-29.https://cran.rproject.org/web/packages/lmerTest/index.html.Accessed 22 May 2015

    Le Goff N,Ottorini J(1993)Thinning and climate effects on growth of beech (Fagus sylvatica L.)in experimental stands.For Ecol Manage 62:1-14

    Le Goff N,Ottorini J(1999)Effects of thinning on beech growth.Interaction with climatic factors.Rev For Fr 51:355-364

    M?kinen H,Jaakkola T,Piispanen R,Saranp?? P(2007)Predicting wood and tracheid properties of Norway spruce.For Ecol Manage 241(1-3):175-188. doi:10.1016/j.foreco.2007.01.017

    Mayer H,Holst T,Schindler D(2002)Microclimate within beech stands-part I: photosynthetically active radiation.Forstwiss Cent 121(6):301-321.doi:10. 1046/j.1439-0337.2002.02038.x

    Montwé D,Spiecker H,Hamann A(2014)An experimentally controlled extreme drought in a Norway spruce forest reveals fast hydraulic response and subsequent recovery of growth rates.Trees 28(3):891-900.doi:10.1007/ s00468-014-1002-5

    Niklas KJ,Spatz H(2010)Worldwide correlations of mechanical properties and green wood density.Am J Bot 97(10):1587-1594.doi:10.3732/ajb.1000150

    Piispanen R,Heinonen J,Valkonen S,M?kinen H,Lundqvist S,Saranp?? P(2014) Wood density of Norway spruce in uneven-aged stands 1.Can J For Res 44(2):136-144.doi:10.1139/cjfr-2013-0201

    Pinheiro JC,Bates DM(2000)Mixed-Effects Models in S and S-PLUS.Statistics and computing,Springer,New York

    Preston KA,Cornwell WK,Denoyer JL(2006)Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms.New Phytol 170(4):807-818.doi:10.1111/j.1469-8137.2006.01712.x

    R Core Team(2014)R:A Language and Environment for Statistical Computing.R Foundation for Statistical Computing,Vienna,Available online at http://www. R-project.org/

    Rennenberg H(1998)Buchendominierte Laubw?lder unter dem Einflu? von Klima und Bewirtschaftung:?kologische,waldbauliche und sozialwissenschaftliche Analysen-Vorcharakterisierung der Untersuchungsfl?chen.Eigenverlag der Universit?t Freiburg,Freiburg

    Sass U,Eckstein D(1995)The variability of vessel size in beech(Fagus sylvatica L.) and its ecophysiological interpretation.Trees 9:247-252

    Schinker MG,Hansen N,Spiecker H(2003)High-frequency densitometry-a new method for the rapid evaluation of wood density variations.IAWA J 24(3):231-239

    Shchupakivskyy R,Clauder L,Linke N,Pfriem A(2014)Application of high-frequency densitometry to detect changes in early-and latewood density of oak(Quercus robur L.)due to thermal modification.Eur J Wood Wood Prod 72(1):5-10.doi: 10.1007/s00107-013-0744-x

    Shmulsky R,Jones PD(2011)Hardwood Structure.In:Forest Products and Wood Science An Introduction,Sixthth edn.Wiley-Blackwell,Oxford.doi:10.1002/ 9780470960035.ch5

    Skomarkova MV,Vaganov EA,Mund M,Knohl A,Linke P,Boerner A,Schulze E (2006)Inter-annual and seasonal variability of radial growth,wood density and carbon isotope ratios in tree rings of beech(Fagus sylvatica)growing in Germany and Italy.Trees 20(5):571-586.doi:10.1007/s00468-006-0072-4

    Spiecker H(2002)Tree rings and forest management in Europe. Dendrochronologia 20(1-2):191-202.doi:10.1078/1125-7865-00016

    Spiecker H,Mielik?inen K,K?hl M,Skovsgaard JP(1996)Growth Trends in European Forests:Studies from 12 Countries.Springer,Berlin,Heidelberg

    Spiecker H,Ebding T,Park Y,Hansen J,Schinker MG,D?ll W(2000)Cell structure in tree rings:novel methods for preparation and image analysis of large cross sections.IAWA J 21(3):361-373.doi:10.1163/22941932-90000253

    Spiecker H,Kahle H,Hauser S(2001)Klima und Witterung als Einflu?faktoren für das Baumwachstum in Laubw?ldern:retrospektiven Analysen undMonitoring.In:Rennenberg,H.(ed)Buchendominierte Laubw?lder unter dem Einflu? von Klima und Bewirtschaftung:?kologische,waldbauliche und sozialwissenschaftliche Analysen-Vorcharakterisierung der Untersuchungsfl?chen;Abschlu?bericht des SFB 443.Eigenverlag der Universit?t Freiburg,Freiburg,pp 307-333.

    Torgovnikov GI(1993)Dielectric Properties of Wood and Wood-Based Materials. Springer,Berlin,Heidelberg

    van der Maaten E(2012)Intra-and interannual growth responses of European beech(Fagus sylvativa L.)to climate,aspect and thinning in the Swabian Alb -southwestern Germany.Dissertation,Albert-Ludwigs-Universit?t Freiburg

    von Arx G,Kueffer C,Fonti P(2013)Quantifying plasticity in vessel groupingadded value from the image analysis tool ROXAS.IAWA J 34(4):433-445.doi: 10.1163/22941932-00000035

    Walsh C,Mac Nally R(2013)hier.part:Hierarchical Partitioning:Variance partition of a multivariate data set.https://cran.r-project.org/web/packages/hier.part/ hier.part.pdf.Accessed 21 May 2015

    Wassenberg M,Montwé D,Kahle H,Spiecker H(2014)Exploring high frequency densitometry calibration functions for different tree species. Dendrochronologia 32(3):273-281.doi:10.1016/j.dendro.2014.07.001

    Wassenberg M,Chiu H,Guo W,Spiecker H(2015a)Analysis of wood density profiles of tree stems:incorporating vertical variations to optimize wood sampling strategies for density and biomass estimations.Trees 29(2):551-561. doi:10.1007/s00468-014-1134-7

    Wassenberg M,Schinker M,Spiecker H(2015b)Technical aspects of applying high frequency densitometry:Probe-sample contact,sample surface preparation and integration width of different dielectric probes. Dendrochronologia 34:10-18.doi:10.1016/j.dendro.2015.03.001

    Wickham H(2007)Reshaping data with the reshape package.J Stat Softw 21:1-20

    Wickham H(2009)Ggplot2:Elegant graphics for data analysis.In:Gentleman R, Hornik K,Parmigiani G(eds)Use R!Springer,New York.doi:10.1007/978-0-387-98141-3

    Wickham H(2011)The split-apply-combine sttrategy for data analysis.J Stat Softw 40:1-29

    Z'Graggen S(1992)Dendrohistometrisch-klimatologische Untersuchung an Buchen(Fagus silvatica L.).Dissertation,University of Basel

    Zhang SY(1995)Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categories. Wood Sci Technol 29:451-465

    *Correspondence:Daniela.Diaconu@iww.uni-freiburg.de

    Chair of Forest Growth and Dendroecology,Albert-Ludwigs-University, Tennenbacher Str.4,79106 Freiburg,Germany

    ?2016 Diaconu et al.Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

    International License(http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use,distribution,and

    reproduction in any medium,provided you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    20 December 2015 Accepted:24 February 2016

    人妻久久中文字幕网| 18美女黄网站色大片免费观看| 国产欧美日韩精品一区二区| 国产真实乱freesex| 97超视频在线观看视频| 欧美高清成人免费视频www| 一级黄片播放器| 亚洲av第一区精品v没综合| 国产成年人精品一区二区| 欧美三级亚洲精品| 99热这里只有是精品50| 国产成人aa在线观看| 久久久久久大精品| 精品人妻视频免费看| 黄色日韩在线| 亚洲三级黄色毛片| 国产精品久久视频播放| 床上黄色一级片| 国产午夜精品久久久久久一区二区三区 | 亚洲成人久久性| 99热精品在线国产| 男人狂女人下面高潮的视频| 亚洲精华国产精华精| 国产国拍精品亚洲av在线观看| 国产高潮美女av| 小蜜桃在线观看免费完整版高清| 一卡2卡三卡四卡精品乱码亚洲| 91久久精品国产一区二区成人| 亚洲精品日韩av片在线观看| 三级男女做爰猛烈吃奶摸视频| 国产av麻豆久久久久久久| av黄色大香蕉| 一区二区三区免费毛片| 亚洲av美国av| 人人妻,人人澡人人爽秒播| 亚洲欧美日韩东京热| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久末码| 97超视频在线观看视频| 九九在线视频观看精品| 国产精品电影一区二区三区| 又爽又黄无遮挡网站| 日韩高清综合在线| 免费看a级黄色片| 欧美不卡视频在线免费观看| 最新在线观看一区二区三区| 亚洲狠狠婷婷综合久久图片| 亚洲真实伦在线观看| 欧美精品啪啪一区二区三区| 亚洲第一电影网av| 99精品久久久久人妻精品| 欧美黑人欧美精品刺激| 国产高清视频在线播放一区| 国模一区二区三区四区视频| 3wmmmm亚洲av在线观看| 免费看光身美女| 男女那种视频在线观看| 亚洲欧美清纯卡通| 日本精品一区二区三区蜜桃| 老熟妇仑乱视频hdxx| 国产精品乱码一区二三区的特点| 黄色丝袜av网址大全| 国产日本99.免费观看| 色播亚洲综合网| 床上黄色一级片| 成人三级黄色视频| 免费无遮挡裸体视频| 久久国产精品人妻蜜桃| 一进一出抽搐动态| 欧美在线一区亚洲| 久久国产乱子免费精品| 亚洲最大成人中文| 久久久久精品国产欧美久久久| 国产成人aa在线观看| 丝袜美腿在线中文| 精品乱码久久久久久99久播| 日韩欧美国产一区二区入口| 内射极品少妇av片p| 可以在线观看毛片的网站| 国产69精品久久久久777片| 最近最新免费中文字幕在线| 高清日韩中文字幕在线| 午夜福利在线观看免费完整高清在 | 免费观看人在逋| 欧美日韩中文字幕国产精品一区二区三区| 成人特级黄色片久久久久久久| 小蜜桃在线观看免费完整版高清| 国产成人啪精品午夜网站| 国产人妻一区二区三区在| 日日干狠狠操夜夜爽| 免费电影在线观看免费观看| 99久久久亚洲精品蜜臀av| 天天一区二区日本电影三级| 久久人妻av系列| 国产美女午夜福利| 一区二区三区免费毛片| 亚洲无线在线观看| av国产免费在线观看| 亚洲 欧美 日韩 在线 免费| 男女那种视频在线观看| 国产精品嫩草影院av在线观看 | 国产亚洲精品综合一区在线观看| 国产日本99.免费观看| 18禁在线播放成人免费| 精品国产三级普通话版| 亚洲av成人不卡在线观看播放网| 小说图片视频综合网站| 国产在线男女| 国产高清三级在线| 免费看日本二区| 国产中年淑女户外野战色| 久久6这里有精品| 亚洲国产欧美人成| 免费av毛片视频| 久久人人精品亚洲av| 永久网站在线| 三级男女做爰猛烈吃奶摸视频| 99久久99久久久精品蜜桃| 伊人久久精品亚洲午夜| 此物有八面人人有两片| 亚洲av美国av| 亚洲五月天丁香| 久久人人爽人人爽人人片va | 他把我摸到了高潮在线观看| 欧美又色又爽又黄视频| 成人av一区二区三区在线看| 亚洲专区国产一区二区| 国内精品一区二区在线观看| 中文字幕人妻熟人妻熟丝袜美| 夜夜夜夜夜久久久久| 国产成人影院久久av| 天美传媒精品一区二区| www.999成人在线观看| 深夜a级毛片| 亚洲 国产 在线| 又紧又爽又黄一区二区| 国产精品亚洲美女久久久| 18+在线观看网站| 国产毛片a区久久久久| 免费观看精品视频网站| 最近最新中文字幕大全电影3| 亚洲av电影不卡..在线观看| 99在线视频只有这里精品首页| 亚洲五月天丁香| 欧美在线一区亚洲| 免费大片18禁| 乱人视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av免费在线观看| 国产免费av片在线观看野外av| 少妇人妻一区二区三区视频| 日韩免费av在线播放| 久久国产精品影院| 国产探花极品一区二区| 日日夜夜操网爽| 国产高清三级在线| 亚洲欧美日韩高清在线视频| 国产成人啪精品午夜网站| 久久草成人影院| 如何舔出高潮| 夜夜夜夜夜久久久久| 日韩 亚洲 欧美在线| 天天躁日日操中文字幕| 欧美日韩乱码在线| 欧美性猛交╳xxx乱大交人| 国产三级黄色录像| 欧美精品国产亚洲| 欧美午夜高清在线| 一a级毛片在线观看| 国产野战对白在线观看| 国产精品久久久久久亚洲av鲁大| 一进一出抽搐gif免费好疼| 丁香欧美五月| 精品乱码久久久久久99久播| 在线观看一区二区三区| 成人国产一区最新在线观看| 在线观看av片永久免费下载| 国产精品综合久久久久久久免费| 色哟哟哟哟哟哟| 中文字幕av成人在线电影| 欧美日韩黄片免| 亚洲第一区二区三区不卡| 一级黄色大片毛片| 国产精品一区二区三区四区免费观看 | 特大巨黑吊av在线直播| avwww免费| 亚洲成av人片免费观看| а√天堂www在线а√下载| 日日干狠狠操夜夜爽| 久久精品国产自在天天线| 婷婷精品国产亚洲av在线| 一级a爱片免费观看的视频| 国产欧美日韩一区二区三| 久久中文看片网| 九色成人免费人妻av| 国产精品女同一区二区软件 | 欧美黄色片欧美黄色片| 国产一区二区亚洲精品在线观看| 国产精品日韩av在线免费观看| 超碰av人人做人人爽久久| 亚洲七黄色美女视频| 最近最新免费中文字幕在线| 最后的刺客免费高清国语| 久久午夜亚洲精品久久| 无人区码免费观看不卡| 99久久精品国产亚洲精品| 99久国产av精品| 亚洲国产精品久久男人天堂| 成人美女网站在线观看视频| 麻豆一二三区av精品| 在线十欧美十亚洲十日本专区| 国产黄片美女视频| 国产高潮美女av| 自拍偷自拍亚洲精品老妇| 亚洲片人在线观看| 国产成人福利小说| 免费大片18禁| 亚洲五月婷婷丁香| 国产精品美女特级片免费视频播放器| 欧美xxxx性猛交bbbb| 性欧美人与动物交配| 午夜久久久久精精品| 日日摸夜夜添夜夜添小说| 看黄色毛片网站| 国产成+人综合+亚洲专区| 在线十欧美十亚洲十日本专区| 久久国产精品影院| 麻豆久久精品国产亚洲av| av在线观看视频网站免费| 搡女人真爽免费视频火全软件 | 午夜亚洲福利在线播放| 97超视频在线观看视频| 波多野结衣高清作品| 日韩欧美免费精品| 午夜福利在线观看吧| 国产成人aa在线观看| 99热这里只有精品一区| 成人一区二区视频在线观看| 黄色一级大片看看| 久久久久久九九精品二区国产| 亚洲成人中文字幕在线播放| 色吧在线观看| 淫秽高清视频在线观看| 性色avwww在线观看| xxxwww97欧美| 日本三级黄在线观看| 中文字幕av在线有码专区| 亚洲av五月六月丁香网| 国产精品一区二区性色av| 少妇被粗大猛烈的视频| 精品午夜福利在线看| 久久6这里有精品| 国产欧美日韩一区二区精品| 精品日产1卡2卡| 天堂影院成人在线观看| 亚洲无线观看免费| 一区二区三区激情视频| 91av网一区二区| 欧美精品国产亚洲| 日本免费a在线| 亚洲国产色片| 精品99又大又爽又粗少妇毛片 | 中文字幕免费在线视频6| 国产探花在线观看一区二区| 婷婷精品国产亚洲av| 波多野结衣高清无吗| avwww免费| 国产精品女同一区二区软件 | 99国产精品一区二区蜜桃av| 亚洲精品456在线播放app | 久99久视频精品免费| 亚洲男人的天堂狠狠| 在线国产一区二区在线| 精品久久久久久久人妻蜜臀av| 99久久成人亚洲精品观看| 久久99热6这里只有精品| 精品一区二区三区视频在线| 女人十人毛片免费观看3o分钟| 国产三级黄色录像| 久久中文看片网| 久久久成人免费电影| 亚洲自拍偷在线| 此物有八面人人有两片| 亚洲精品亚洲一区二区| 亚洲av五月六月丁香网| 好看av亚洲va欧美ⅴa在| 九色国产91popny在线| 久久久久性生活片| 一个人免费在线观看电影| 国产三级黄色录像| 国产精品久久久久久精品电影| 国产午夜精品久久久久久一区二区三区 | 亚洲乱码一区二区免费版| 老熟妇乱子伦视频在线观看| 国产午夜福利久久久久久| 99国产极品粉嫩在线观看| 色综合亚洲欧美另类图片| 超碰av人人做人人爽久久| 99在线视频只有这里精品首页| 精品99又大又爽又粗少妇毛片 | 色视频www国产| 在线播放国产精品三级| 欧美乱色亚洲激情| 成人特级黄色片久久久久久久| 午夜福利高清视频| 国产精品av视频在线免费观看| 哪里可以看免费的av片| 成人无遮挡网站| bbb黄色大片| 久久久久精品国产欧美久久久| 两性午夜刺激爽爽歪歪视频在线观看| 日韩精品青青久久久久久| 午夜a级毛片| 亚洲狠狠婷婷综合久久图片| 亚洲精品久久国产高清桃花| aaaaa片日本免费| 国产色婷婷99| 国产精品1区2区在线观看.| ponron亚洲| 色综合亚洲欧美另类图片| 一区二区三区四区激情视频 | 国内毛片毛片毛片毛片毛片| 免费搜索国产男女视频| 久99久视频精品免费| 国产精品一区二区免费欧美| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利18| 国产精品久久视频播放| 中文字幕高清在线视频| 国产精品乱码一区二三区的特点| 久久久成人免费电影| 欧美日韩福利视频一区二区| 亚洲va日本ⅴa欧美va伊人久久| 亚州av有码| 久久精品国产99精品国产亚洲性色| 亚洲第一区二区三区不卡| 国产91精品成人一区二区三区| 国产美女午夜福利| 国产精品乱码一区二三区的特点| 国产91精品成人一区二区三区| 久久天躁狠狠躁夜夜2o2o| 最近在线观看免费完整版| 免费黄网站久久成人精品 | 婷婷色综合大香蕉| 51午夜福利影视在线观看| www.熟女人妻精品国产| 嫩草影视91久久| 免费人成视频x8x8入口观看| 狂野欧美白嫩少妇大欣赏| 国产 一区 欧美 日韩| 黄色配什么色好看| 欧美日本亚洲视频在线播放| 天堂动漫精品| 一个人观看的视频www高清免费观看| 又爽又黄无遮挡网站| 国产亚洲精品综合一区在线观看| 欧美日韩综合久久久久久 | 脱女人内裤的视频| 不卡一级毛片| 亚洲av免费在线观看| 中国美女看黄片| 人妻久久中文字幕网| 一个人看视频在线观看www免费| 免费看a级黄色片| 综合色av麻豆| 国产麻豆成人av免费视频| 中文字幕久久专区| 不卡一级毛片| 亚洲熟妇中文字幕五十中出| 午夜精品在线福利| 日韩欧美国产在线观看| 亚洲色图av天堂| 久久国产乱子免费精品| 一级毛片久久久久久久久女| 亚洲av第一区精品v没综合| 两人在一起打扑克的视频| 成人永久免费在线观看视频| 91午夜精品亚洲一区二区三区 | 国内揄拍国产精品人妻在线| 亚洲欧美日韩卡通动漫| 亚洲人成伊人成综合网2020| 国产伦一二天堂av在线观看| 国产午夜精品久久久久久一区二区三区 | 色综合亚洲欧美另类图片| 亚洲七黄色美女视频| 美女高潮的动态| 亚洲va日本ⅴa欧美va伊人久久| ponron亚洲| 亚洲国产欧美人成| aaaaa片日本免费| 91狼人影院| 美女大奶头视频| 男女视频在线观看网站免费| 精品久久久久久久久久久久久| 中文亚洲av片在线观看爽| 深夜精品福利| 一进一出抽搐动态| 在线播放无遮挡| 色噜噜av男人的天堂激情| 在线观看午夜福利视频| 一本精品99久久精品77| 国产一区二区三区视频了| 噜噜噜噜噜久久久久久91| 国产精品亚洲av一区麻豆| 少妇高潮的动态图| 美女黄网站色视频| 国产精华一区二区三区| 乱码一卡2卡4卡精品| 国产高潮美女av| 一个人免费在线观看的高清视频| 亚洲成a人片在线一区二区| 亚洲国产精品合色在线| 色综合亚洲欧美另类图片| 精品欧美国产一区二区三| 免费av观看视频| 国产不卡一卡二| 久久午夜亚洲精品久久| 中文字幕av在线有码专区| 日韩中字成人| 夜夜爽天天搞| 中文字幕久久专区| 最好的美女福利视频网| 一个人观看的视频www高清免费观看| 国产 一区 欧美 日韩| 每晚都被弄得嗷嗷叫到高潮| 美女xxoo啪啪120秒动态图 | 久久欧美精品欧美久久欧美| 岛国在线免费视频观看| 久久久精品大字幕| 免费看a级黄色片| 亚洲精华国产精华精| 窝窝影院91人妻| 自拍偷自拍亚洲精品老妇| 久久亚洲真实| 国产精品电影一区二区三区| 丁香欧美五月| 美女cb高潮喷水在线观看| 小蜜桃在线观看免费完整版高清| 欧美日本亚洲视频在线播放| 欧美zozozo另类| 又黄又爽又刺激的免费视频.| 日韩免费av在线播放| 欧美日韩乱码在线| 精品人妻一区二区三区麻豆 | 97超视频在线观看视频| 精品无人区乱码1区二区| 婷婷亚洲欧美| www.999成人在线观看| 97超级碰碰碰精品色视频在线观看| 成人高潮视频无遮挡免费网站| 亚州av有码| 夜夜夜夜夜久久久久| 国产精品98久久久久久宅男小说| 丰满人妻一区二区三区视频av| 久久久久性生活片| h日本视频在线播放| 亚洲国产欧美人成| 精品久久久久久成人av| 日韩中字成人| 久99久视频精品免费| 最近中文字幕高清免费大全6 | 一区二区三区四区激情视频 | 在线看三级毛片| 精品福利观看| 十八禁网站免费在线| 亚洲欧美激情综合另类| 白带黄色成豆腐渣| 有码 亚洲区| 亚洲avbb在线观看| 午夜福利高清视频| 啪啪无遮挡十八禁网站| 欧美最黄视频在线播放免费| 日韩欧美国产一区二区入口| 夜夜爽天天搞| 波多野结衣巨乳人妻| 国产精品av视频在线免费观看| 亚洲欧美日韩高清专用| 一个人看视频在线观看www免费| 国产精品久久久久久精品电影| 欧美色欧美亚洲另类二区| av福利片在线观看| a级毛片免费高清观看在线播放| 成人亚洲精品av一区二区| 成人毛片a级毛片在线播放| 变态另类丝袜制服| 国产成人aa在线观看| 国产乱人伦免费视频| 亚洲av成人av| 精品99又大又爽又粗少妇毛片 | 亚洲中文字幕一区二区三区有码在线看| 超碰av人人做人人爽久久| 成人美女网站在线观看视频| 亚洲国产精品sss在线观看| 精品一区二区三区视频在线| 国产乱人伦免费视频| 午夜福利免费观看在线| 国产aⅴ精品一区二区三区波| 2021天堂中文幕一二区在线观| 给我免费播放毛片高清在线观看| 成人高潮视频无遮挡免费网站| 久久人人爽人人爽人人片va | 国产免费男女视频| 一个人免费在线观看的高清视频| 精品久久久久久久人妻蜜臀av| 欧美精品国产亚洲| 老司机福利观看| 日本免费一区二区三区高清不卡| 欧美黑人巨大hd| 9191精品国产免费久久| 国产私拍福利视频在线观看| 51国产日韩欧美| 在线a可以看的网站| 深爱激情五月婷婷| 免费在线观看日本一区| eeuss影院久久| 无人区码免费观看不卡| 在线天堂最新版资源| 日本a在线网址| 日日摸夜夜添夜夜添小说| 我的女老师完整版在线观看| 亚洲精品456在线播放app | 亚洲 欧美 日韩 在线 免费| 亚洲av熟女| 日韩欧美在线乱码| 国产av不卡久久| 国产色爽女视频免费观看| 丁香欧美五月| 国产视频内射| 精品人妻偷拍中文字幕| 十八禁人妻一区二区| 成人高潮视频无遮挡免费网站| 综合色av麻豆| 免费在线观看日本一区| 久久久久久久久大av| 如何舔出高潮| 日本五十路高清| 可以在线观看的亚洲视频| 在线a可以看的网站| 91久久精品国产一区二区成人| 国产伦一二天堂av在线观看| 成年女人永久免费观看视频| 又黄又爽又刺激的免费视频.| 国产精品av视频在线免费观看| 国产精品伦人一区二区| 久久欧美精品欧美久久欧美| 国产真实乱freesex| 亚洲电影在线观看av| 精品久久久久久久末码| 99久久九九国产精品国产免费| 日韩欧美免费精品| 在线观看舔阴道视频| 变态另类丝袜制服| 免费观看精品视频网站| 在线免费观看的www视频| 久久精品国产亚洲av天美| 一区福利在线观看| 色综合欧美亚洲国产小说| 自拍偷自拍亚洲精品老妇| 三级毛片av免费| 午夜福利高清视频| 99精品久久久久人妻精品| 亚洲一区二区三区色噜噜| 亚洲最大成人手机在线| 动漫黄色视频在线观看| 最后的刺客免费高清国语| 在线a可以看的网站| 亚洲精品影视一区二区三区av| 人妻制服诱惑在线中文字幕| 国产黄色小视频在线观看| 成人精品一区二区免费| 精品久久国产蜜桃| 免费人成在线观看视频色| 亚洲熟妇中文字幕五十中出| 亚洲av成人精品一区久久| 丰满人妻一区二区三区视频av| 尤物成人国产欧美一区二区三区| 99久久精品热视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人中文字幕在线播放| xxxwww97欧美| 婷婷精品国产亚洲av在线| 18禁黄网站禁片午夜丰满| 老熟妇仑乱视频hdxx| 别揉我奶头~嗯~啊~动态视频| 色哟哟哟哟哟哟| 亚洲成av人片免费观看| 在线a可以看的网站| 97热精品久久久久久| 久久国产精品影院| www.www免费av| 国产精品久久久久久久电影| 国产成人影院久久av| 一区二区三区激情视频| 亚洲欧美清纯卡通| 亚洲中文字幕日韩| 日韩av在线大香蕉| 久久久久国产精品人妻aⅴ院| 亚洲av第一区精品v没综合| 日本熟妇午夜| 一区二区三区四区激情视频 | 亚洲,欧美,日韩| 日韩欧美免费精品| 日韩国内少妇激情av| 精品免费久久久久久久清纯| 日本熟妇午夜| 免费人成视频x8x8入口观看| 网址你懂的国产日韩在线| 18美女黄网站色大片免费观看| 黄色日韩在线| 俺也久久电影网| 亚洲中文字幕一区二区三区有码在线看| 男人和女人高潮做爰伦理| 成人毛片a级毛片在线播放| 很黄的视频免费| 91av网一区二区|