• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulated seasonal variations in nitrogen wet deposition over East Asia

    2016-11-23 01:55:50YUJinHaiZHANGMeiGenandLIJiaLin
    關(guān)鍵詞:東亞地區(qū)監(jiān)測(cè)網(wǎng)酸雨

    YU Jin-Hai, ZHANG Mei-Gen and LI Jia-Lin

    State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100083,China

    Simulated seasonal variations in nitrogen wet deposition over East Asia

    YU Jin-Hai, ZHANG Mei-Gen and LI Jia-Lin

    State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100083,China

    ARTICLE HISTORY

    Accepted 11 September 2015

    precipitation; aerosol concentration

    近20年來(lái)我國(guó)的酸雨和酸沉降分布發(fā)生了較大變化,其中一個(gè)重要變化是硝酸根離子明顯增加,這主要是氮氧化物排放增加所導(dǎo)致的。為了評(píng)估氮氧化物排放對(duì)酸雨和酸沉降的影響,本文利用區(qū)域大氣化學(xué)模式RAMS-CMAQ模擬分析了東亞地區(qū)氮氧化物排放、輸送和化學(xué)轉(zhuǎn)化過(guò)程以及降水時(shí)空變化對(duì)氮氧化物和氮沉降量時(shí)空分布的影響,并借助于中國(guó)氣象臺(tái)站和東亞酸沉降監(jiān)測(cè)網(wǎng)的觀測(cè)數(shù)據(jù)評(píng)估了模式結(jié)果的合理性。模擬結(jié)果顯示,東亞地區(qū)氮濕沉降的季節(jié)變化十分顯著,氮濕沉降通量在1~18 kg N ha-1yr-1之間;春夏兩季濕沉降占全年的71%,其中夏季占42.7%。

    1. Introduction

    Nitrogen wet deposition is an issue of increasing importance in China. Although nitrogen deposition can supply nutrition for plants, excessive nitrogen may induce a series of problems, including soil acidification (Bowman et al. 2008), eutrophication, loss of biodiversity, air pollution,and climate change. A major source of nitrate) in rain are the nitrogen oxides (NOx) (nitric oxide + nitrogen dioxide) emitted from fossil fuel combustion, and a major source of ammonium) is ammonia (NH3) volatilized from fertilizer and the excrement of humans and animals. Economic development and population expansion have increased the demand for chemical fertilizer and fossil fuel consumption, resulting in considerable increases in nitrogen deposition.

    Since its inception in 1978, the National Atmospheric Deposition Program has monitored precipitation chemistry across the United States, and the European Monitoring and Evaluation Program was developed to measure air and precipitation quality over Europe. Systematic measures have contributed to the understanding, and in some cases reduction, of nitrogen deposition in the aforementioned regions. Numerous nitrogen deposition measurement programs have been launched in China since the 1980s (Huang et al. 2010; Pan et al. 2012; Zhao et al. 2009). However, the fluxes in nitrogen wet deposition were calculated only by using a few sites. A systematic nationwidemonitoring network to obtain nitrogen deposition distribution data is absent in China, leading to insufficient information on regional-scale nitrogen deposition.

    Figure 1.Locations of 839 rain gauge stations and 24 EANET stations in the model domain. Notes: Eight triangles represent stations in China, four squares represent those in Korea and Russia, and 12 circles represent those in Japan.

    For quantifying spatiotemporal distributions of atmospheric nitrogen deposition, modeling tools are very useful(Simpson et al. 2014; Zhang, et al. 2012). However, no such simulations have thus far been conducted with respect to the seasonal variation in nitrogen wet deposition over China. Nitrogen deposition pattern determination and the role of anthropogenic sources in China have not been clarified. Accordingly, in the present study, the seasonal variation in nitrogen wet deposition distributions over East Asia were estimated using the Regional Atmospheric Modeling System—Community Multiscale Air Quality (RAMS—CMAQ)air quality modeling system. In the remainder of the paper,the modeling system and its input data are introduced in Section 2. In Section 3, the simulated results are evaluated based on the precipitation and concentrations of major species, and the spatial and seasonal distribution patterns of nitrogen wet deposition over East Asia are discussed. Results from analyzing the role of precipitation and aerosol concentrations, and the quantification of the relative contributions to nitrogen wet deposition fromand, are also presented. Conclusions are given in Section 4.

    2. Model description

    RAMS—CMAQ can concurrently simulate the atmospheric and land processes affecting the transport, transformation,and deposition of air pollutants and their precursors on both regional and urban scales. It has been used successfully to simulateand sulfate aerosol (Han et al. 2010; Zhang et al. 2007, 2012b; Zhang, Han, and Zhu 2007;Zhang, Shen, et al. 2012), in addition to wet acidic depositions (Ge et al. 2011), over East Asia. The cloud module in the modeling system includes parameterizations for several types of clouds, including sub-grid convective (precipitating and non-precipitating) and grid-scale resolved. This module can redistribute pollutants in sub-grid clouds,calculate in-cloud and precipitation scavenging, treat aqueous chemistry, and calculate wet deposition amounts.

    The model domain (Figure 1) was 6,656 km × 5,440 km with a 64 km grid cell on a rotated polar stereographic map projection centered at (35°N, 110°E), which included most of East Asia. The model height of RAMS is consistent with that of CMAQ, and the lowest seven layers in the two different models are identical. In RAMS, 25 vertical layers in the σzcoordinate system are unevenly distributed from ground level to approximately 23 km, with nearly nine layers in the lowest 2 km used to simulate the planetary boundary layer. CMAQ uses 15 levels, with the lowest at approximately 100 m.

    RAMS was executed in a four-dimensional data assimilation mode by using analysis nudging with re-initialization every four days, in which the first 24 h was the initialization period. The background meteorological fields for RAMS were obtained from the final analysis datasets of the National Centers for Environmental Prediction, with 1° × 1° resolution every 6 h. The boundary conditions for the RAMS calculations used weekly mean sea surface temperatures and observed monthly snow cover information.

    The anthropogenic emissions (0.25° × 0.25°) of precursors and primary aerosols including carbon monoxide, carbon dioxide, NOx, sulfur dioxide, volatile organiccompounds, black carbon, organic carbon, and fine and coarse particulate matter (PM2.5, and PM10), were based on the estimates by Zhang et al. (2009) and Li et al. (2014),which included the following categories: power, industry,residential, and transport. Agricultural NH3emissions were based on the estimates by Huang et al. (2012). In addition,the boundary conditions for CMAQ were obtained from the outputs of Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4).

    Table 1.Quantitative performance statistics for the monthly precipitation amount (mm) simulated by RAMS—CMAQ at 839 stations in China.

    3. Results and discussion

    3.1. Comparison of observed and simulated results

    RAMS—CMAQ was executed from 26 December 2009 to 31 December 2010. The observed monthly precipitation amounts at 839 rain gauge stations in China were used in the evaluation of precipitation. The locations of these stations are shown in Figure 1. The measured concentrations of non-sea-salt sulfateat 24 EANET (Acid Deposition Monitoring Network in East Asia)stations were used to assess CMAQ. The locations of the EANET sites are also provided in Figure 1.

    Table 1 shows the statistics for observed and modeled monthly precipitation amounts at 839 stations in 2010. Generally, the model simulated the observed precipitation pattern reasonably well, and the modeled annual mean precipitation, 63.00 mm, was nearly the same as that of the observation, 77.56 mm, with an annual normalized mean bias (NMB) of -18.77% and an annual mean correlation coefficient (R) of 0.79. Table 1 also shows that the model system overestimated in July, with an NMB of 16.79%, but underestimated in March (-44.39%). These discrepancies were caused mainly by uncertainties in related cumulus convection parameterizations (Huang, Zhang, and Zhu 2009).

    Generally, observed rainfall gradually decreased from southeast to northwest, which was well simulated by RAMS—CMAQ (Figure 2). Seasonal precipitation variations were sharp in East Asia, with the highest amount,120 mm, occurring in summer in South China, and the lowest amount, 20 mm, occurring in winter in most of China. These temporal and spatial distribution characteristics were reasonably reproduced by the model.

    In winter, modeled rainfall levels in most of China were less than 20 mm. However, substantial precipitation occurred in South China and in the coastal areas of the Japan Sea. In spring, a remarkable rise in modeled rainfall occurred across Southeast and Northeast China. During summer, high modeled rainfall mainly occurred in Northeast China, several regions between the middle reaches of the Yellow and Yangtze rivers and Southeast China, with maximum precipitation levels of more than 220 mm. Autumn is the period of transition from summer to winter monsoon. A downward precipitation trend compared with summer was revealed, although substantial precipitation still existed in the coastal regions of South China.

    Figure 3 shows the fit between simulated and observed monthly mean concentrations o, andfor precipitation at the 24 EANET stations. The simulated results in Japan and Korea were in good agreement with these observations. However, obvious discrepancies between the model and observation were found in inland cities of China. Some Chinese sites are close to large cities, such as Chongqing and Xi'an, where emissions are intensive, but the regional model grid size is too large to resolve expansive emissions and terrain gradients (Li and Han 2012). The model overestimated the concentration of

    Figure 2.Observed seasonal mean precipitation amounts for (a) winter (December—February), (b) spring (March—May), (c) summer(June—August), and (d) autumn (September—November) of 2010 and simulated seasonal mean precipitation amounts for (e) winter, (f)spring, (g) summer, and (h) autumn.

    Figure 3.Comparison of observed and modeled monthly mean concentrations of, andin precipitation at 24 EANET stations. The dashed lines are 1:2 plot, 1:1 plot, and 2:1 plot.

    in Tokyo. Volcanic eruptions could have produced a large amount of

    , although the regional model grid size is too large for distinguishing between Tokyo values and nearby volcanic activity. In addition

    simulation is relatively poor in chemical transport models. The mechanism of

    formation, which is significantly more complex than that of sulfate, is not accurately described in current models. For example, obvious differences occur at coastal sites in Japan and Korea, partly because of heterogeneous reactions between nitric acid and sea salt, which may affect

    formation, are not clearly understood (Li and Han 2012).

    3.2. Temporal and spatial distribution ofand nitrate concentrations in precipitation

    Although the distributions ofandconcentrations in precipitation were similar, the concentration of the former was higher than that of the latter. A comparison of the concentration levels in the four seasons revealed that the value in dry seasons (winter and autumn) was larger than that in rainy seasons (summer and spring). This negative relationship between rainfall and nitrogen concentrations is consistent with the results of previous studies (Huang et al. 2010). However, values in Northeast and Northwest China, where lower emissions were found, were higher in summer than those in other seasons. This result implies that long-range transport, particularly the prevalent southerly or southeasterly wind in summer, may cause elevated concentrations in remote areas downwind of polluted regions under low-precipitation conditions (An et al. 2002).

    Figure 4.Modeled nitrogen) wet deposition in (a) winter (December—February), (b) spring (March—May), (c) summer (June—August), (d) autumn (September—November), and (e) throughout 2010.

    3.3. Temporal and spatial distribution of nitrogen wet deposition over East Asia

    The simulated wet deposition of nitrogen for winter,spring, summer, and autumn, 2010, in addition to that for the entire year, is given in Figure 4. During all seasons,higher wet deposition of nitrogen was noted in the area surrounding Sichuan Province, owing to high emissions and its particular terrain. In winter, the maximum amounts of wet deposition, the highest of which was larger than 3 kg N ha-1, were detected in the Hunan Province area and in the coastal areas of the Japan Sea. In spring, elevated amounts of wet deposition were detected along the transport path from South China through the Yellow Sea to Japan. Levels larger than 5 kg N ha-1occurred in Sichuan Province and in the southern region of the Yangtze River. In the southern foothills of the Tibetan Plateau the values were larger than 10 kg N ha-1. Because the rain belt moved northward and emissions of NH3increased in summer, the maximum, >10 kg N ha-1, was detected in the North China Plain, Shanxi Province, and Bohai Bay. Decreased amounts of nitrogen wet deposition were detected over the southern region of the Yangtze River, whereas elevated levels occurred in some regions between the Yellow and Yangtze rivers. In autumn, high nitrogen wet deposition levels greater than 3 kg N ha-1occurred near the Beijing—Tianjin—Hebei region and in Sichuan Province. The maximum magnitudes occurred mainly in the southern region of the Yangtze River during winter and spring, whereas higher levels occurred in the northern Yangtze River region during summer and autumn. This phenomenon may have been caused by differences in prevailing wind direction during the four seasons, which affects both precipitation and aerosol concentration.

    In winter, high concentrations ofandin air existed in areas north of the Yangtze River, whereas substantial precipitation occurred in South China. This conflict resulted in a significantly low amount of wet deposition over China. With an increase in precipitation amount, wet deposition increased significantly in South China during spring, although the concentrations ofanddecreased slightly. In summer, a remarkable increase in rainfall occurred in the high-concentration area of North China, which caused maximum amounts of wet deposition during the four seasons. Rainfall was concentrated mainly in the south during autumn, although substantial deposition occurred in the northern region of the Yellow River. This was mainly because high concentrations ofandoccurred in that area. Precipitation and aerosol concentrations are two important factors controlling wet deposition. This analysis showed that precipitation plays a larger dominant role in seasonal variation of wet deposition.

    For the year, the model results were 1—18 kg N ha-1yr-1,which is slightly greater than those reported in the U.S. High wet depositions greater than 12 kg N ha-1occurred in Bohai Bay, the North China Plain, Shanxi and Sichuan provinces, the southern region of the Yangtze River,and the southern foothills of the Tibetan Plateau. Most researchers have reported critical loads of terrestrial ecosystems at approximately 10—20 kg N ha-1yr-1(Duan et al. 2001; Grigal 2012; Lu and Tian 2007). Considering only wet deposition in this study, we conclude that nitrogen deposition exceeds the critical loads in many areas of China. Liu et al. (2011) reported that critical loads in Northeast and Northwest China are commonly very low, at less than 15 kg N ha-1yr-1. In contrast, the critical loads of nitrogen in the southeast region are relatively high (Duan et al. 2000). The highest wet depositions in Northeast China were larger than 16 kg N ha-1yr-1, which indicates that the potential risk of nitrogen saturation is higher in Northeast China than that in other regions of the country.

    4. Conclusion

    The RAMS—CMAQ modeling system was employed to simulate seasonal variations in nitrogen wet deposition in East Asia recorded in 2010. Comparison of the simulated and observed precipitation for the various seasons showed that RAMS can reproduce major precipitation zones and dry areas. Comparison of modeled and observed major ionic species showed that the simulation generally reproduced the major features observed for wet deposition,with most of the scatter falling within the reference lines within a factor of 2.

    The annual nitrogen wet deposition fluxes over China ranged from 1 to 18 kg N ha-1yr-1in 2010. It was also found that the annual total wet deposition of nitrogen in mainland China was 3.9 Tg N yr-1. The main nitrogen in wet deposition wasaccounting for 65.76% of the total amount,indicating a relative larger effect of agriculture activities. Nitrogen wet deposition in the summer accounted for 42.7% of the annual total. The present analysis shows that precipitation and aerosol concentrations are major factors controlling the seasonal variation in wet deposition.

    Funding

    This study was supported by the National Basic Research Program of China [grant number 2014CB953802]; the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences [grant numbers XDB05030105, XDB05030102, and XDB05030103].

    References

    An, J. L., H. Ueda, Z. F. Wang, K. Matsuda, M. Kajino, and X. J. Cheng. 2002. “Simulations of Monthly Mean Nitrate Concentrations in Precipitation over East Asia.” Atmospheric Environment 36: 4159—4171. doi:10.1016/S1352-2310(02)00412-0.

    Bowman, W. D., C. C. Cleveland, ?ubo? Halada, J. Hre?ko, and J. S. Baron. 2008. “Negative Impact of Nitrogen Deposition on Soil Buffering Capacity.” Nature Geoscience 1: 767—770. doi:10.1038/Ngeo339.

    Duan, L., S. D. Xie, Z. P. Zhou, and J. M. Hao. 2000. “Critical Loads of Acid Deposition on Soil in China.” Water, Air, and Soil Pollution 118: 35—51. doi:10.1023/A:1005197414074.

    Duan, L., S. D. Xie, Z. P. Zhou, X. M. Ye, and J. M. Hao. 2001.“Calculation and Mapping of Critical Loads for S, N and Acidity in China.” Water, Air, and Soil Pollution 130: 1199—1204. doi:10.1023/A:1013908629150.

    Ge, C., M. G. Zhang, L. Y. Zhu, X. Han, and J. Wang. 2011. “Simulated Seasonal Variations in Wet Acid Depositions over East Asia.”Journal of the Air and Waste Management Association 61: 1246—1261. doi:10.1080/10473289.2011.596741.

    Grigal, D. F. 2012. “Atmospheric Deposition and Inorganic Nitrogen Flux.” Water, Air, and Soil Pollution 223: 3565—3575. doi:10.1007/s11270-012-1128-2.

    Han, X., M. G. Zhang, Z. W. Han, J. Y. Xin, L. L. Wang, J. H. Qiu,and Y. J. Liu. 2010. “Model Analysis of Aerosol Optical Depth Distributions over East Asia.” Science China Earth Sciences 53: 1079—1090. doi:10.1007/s11430-010-3079-z.

    Huang, X., Y. Song, M. M. Li, J. F. Li, Q. Huo, X. H. Cai, T. Zhu, M. Hu,and H. S. Zhang. 2012. “A High-Resolution Ammonia Emission Inventory in China.” Global Biogeochemical Cycles 26: GB1030. doi:10.1029/2011gb004161.

    Huang, D. Y., Y. G. Xu, B. Zhou, H. H. Zhang, and J. B. Lan. 2010.“Wet Deposition of Nitrogen and Sulfur in Guangzhou, a Subtropical Area in South China.” Environmental Monitoring and Assessment 171: 429—439. doi:10.1007/s10661-009-1289-7.

    Huang, A. N., Y. C. Zhang, and J. Zhu. 2009. “Effects of the Physical Process Ensemble Technique on Simulation of Summer Precipitation over China.” Acta Meteorologica Sinica 23: 713—724.

    Li, J. W., and Z. W. Han. 2012. “A Modeling Study of Seasonal Variation of Atmospheric Aerosols over East Asia.” Advances in Atmospheric Sciences 29: 101—117. doi:10.1007/s00376-011-0234-1.

    Li, K. H., X. J. Liu, W. Song, Y. H. Chang, Y. K. Hu, and C. Y. Tian. 2013. “Atmospheric Nitrogen Deposition at Two Sites in an Arid Environment of Central Asia.” Plos One 8: e67018. doi:10.1371/journal.pone.0067018.

    Li, M., Q. Zhang, D. G. Streets, K. B. He, Y. F. Cheng, L. K. Emmons,and H. Huo. 2014. “Mapping Asian Anthropogenic Emissions of Non-Methane Volatile Organic Compounds to Multiple Chemical Mechanisms.” Atmospheric Chemistry and Physics 14: 5617—5638. doi:10.5194/acp-14-5617-2014.

    Liu, X. J., L. Duan, J. M. Mo, E. Z. Du, J. L. Shen, X. K. Lu, and Y. Zhang. 2011. “Nitrogen Deposition and Its Ecological Impact in China: An Overview.” Environmental Pollution 159: 2251—2264. doi:10.1016/j.envpol.2010.08.002.

    Lu, C. Q., and H. Q. Tian. 2007. “Spatial and Temporal Patterns of Nitrogen Deposition in China: Synthesis of Observational Data.” Journal Geophysical Research: Atmosphere 112: D22S05. doi:10.1029/2006jd007990.

    Pan, Y. P., Y. S. Wang, G. Q. Tang, and D. Wu. 2012. “Wet and Dry Deposition of Atmospheric Nitrogen at Ten Sites in Northern China.” Atmospheric Chemistry and Physics 12: 6515—6535. doi:10.5194/acp-12-6515-2012.

    Simpson, D., C. Andersson, J. H. Christensen, M. Engardt, C. Geels, A. Nyiri, and M. Posch. 2014. “Impacts of Climate and Emission Changes on Nitrogen Deposition in Europe: A Multi-Model Study.” Atmospheric Chemistry and Physics 14: 6995—7017. doi:10.5194/acp-14-6995-2014.

    Zhang, M. G., L. J. Gao, C. Ge, and Y. P. Xu. 2007. “Simulation of Nitrate Aerosol Concentrations over East Asia with the Model System RAMS-CMAQ.” Tellus B 59: 372—380. doi:10.1111/ j.1600-0889.2007.00255.x.

    Zhang, M. G., Z. W. Han, and L. Y. Zhu. 2007. “Simulation of Atmospheric Aerosols in East Asia Using Modeling System RAMS-CMAQ: Model Evaluation.” China Particuology 5: 321—327. doi:10.1016/j.cpart.2007.07.002.

    Zhang, L., D. J. Jacob, E. M. Knipping, N. Kumar, J. W. Munger,C. C. Carouge, and A. van Donkelaar. 2012. “Nitrogen Deposition to the United States: Distribution, Sources, and Processes.” Atmospheric Chemistry and Physics 12: 4539—4554. doi:10.5194/acp-12-4539-2012.

    Zhang, H., Z. Shen, X. Wei, M. Zhang, and Z. Li. 2012. “Comparison of Optical Properties of Nitrate and Sulfate Aerosol and the Direct Radiative Forcing due to Nitrate in China.” Atmospheric Research 113: 113—125. doi:10.1016/j.atmosres.2012.04.020.

    Zhang, Q., D. G. Streets, G. R. Carmichael, K. B. He, H. Huo, A. Kannari, and Z. Klimont. 2009. “Asian Emissions in 2006 for the NASA INTEX-B Mission.” Atmospheric Chemistry and Physics 9: 5131—5153.

    Zhao, X., X. Y. Yan, Z. Q. Xiong, Y. X. Xie, G. X. Xing, S. L. Shi, Z. L. Zhu. 2009. “Spatial and Temporal Variation of Inorganic Nitrogen Wet Deposition to the Yangtze River Delta Region,China.” Water, Air, and Soil Pollution 203: 277—289. doi:10.1007/ s11270-009-0011-2.

    7 August 2015

    CONTACT ZHANG Mei-Gen mgzhang@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Taylor & Francis.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    東亞地區(qū)監(jiān)測(cè)網(wǎng)酸雨
    如何看待我國(guó)的高投資率
    會(huì)“珰”洞鑒以昭然——古代東亞地區(qū)冠飾“珰”之探究
    近10年漢臺(tái)區(qū)酸雨變化特征及氣象條件分析
    陜西氣象(2017年4期)2017-08-02 01:41:14
    酸雨的形成、危害及防治
    鼎盛與危機(jī):明清東亞宗藩體系嬗變
    全國(guó)短波監(jiān)測(cè)網(wǎng)發(fā)展思路淺析
    利用監(jiān)測(cè)網(wǎng)中斷分析導(dǎo)航系統(tǒng)完好性監(jiān)測(cè)
    酸雨?duì)顩r:酸雨城市占全部城市數(shù)69.6%
    模擬酸雨大氣環(huán)境中Cl-濃度對(duì)鍍鋅鋼腐蝕行為的影響
    淺議東亞地區(qū)人民幣國(guó)際化的優(yōu)勢(shì)
    757午夜福利合集在线观看| 亚洲欧美日韩高清在线视频| 日本vs欧美在线观看视频| 欧美日韩一级在线毛片| 国产亚洲av嫩草精品影院| 宅男免费午夜| 黄片小视频在线播放| 欧美在线一区亚洲| 在线观看免费午夜福利视频| 九色国产91popny在线| 9热在线视频观看99| 老司机深夜福利视频在线观看| 18禁观看日本| 99国产综合亚洲精品| 精品一区二区三区四区五区乱码| 好看av亚洲va欧美ⅴa在| 嫩草影视91久久| 久久精品国产清高在天天线| а√天堂www在线а√下载| e午夜精品久久久久久久| 成人精品一区二区免费| 此物有八面人人有两片| 色综合站精品国产| 国产成人av教育| 可以在线观看毛片的网站| 一区二区三区激情视频| 久久精品影院6| 精品欧美国产一区二区三| xxx96com| 好男人电影高清在线观看| 亚洲精品粉嫩美女一区| 99香蕉大伊视频| 亚洲欧美日韩高清在线视频| 亚洲国产欧美日韩在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 91成年电影在线观看| 男人操女人黄网站| 看黄色毛片网站| 欧美+亚洲+日韩+国产| 美女高潮到喷水免费观看| 精品熟女少妇八av免费久了| 韩国av一区二区三区四区| 97碰自拍视频| 丝袜美腿诱惑在线| 国产精品久久电影中文字幕| 人妻丰满熟妇av一区二区三区| 成人精品一区二区免费| 欧美午夜高清在线| 视频区欧美日本亚洲| 久久久久九九精品影院| 人人妻人人澡人人看| 正在播放国产对白刺激| 搞女人的毛片| 国产高清视频在线播放一区| 国产真人三级小视频在线观看| 亚洲av美国av| 亚洲中文av在线| 精品免费久久久久久久清纯| 欧美色欧美亚洲另类二区 | 亚洲精品美女久久久久99蜜臀| a级毛片在线看网站| √禁漫天堂资源中文www| 九色亚洲精品在线播放| 中文字幕人妻丝袜一区二区| 亚洲无线在线观看| 麻豆av在线久日| 久久久国产成人精品二区| 好看av亚洲va欧美ⅴa在| 午夜影院日韩av| 中文字幕另类日韩欧美亚洲嫩草| 欧美中文日本在线观看视频| 欧美精品啪啪一区二区三区| 国产av一区二区精品久久| 1024视频免费在线观看| 精品国内亚洲2022精品成人| 亚洲 国产 在线| 成人免费观看视频高清| 亚洲av电影不卡..在线观看| 国产精品免费视频内射| 久久久水蜜桃国产精品网| 女警被强在线播放| 亚洲国产精品合色在线| 两个人免费观看高清视频| 日本 欧美在线| 日本在线视频免费播放| 女人被躁到高潮嗷嗷叫费观| 欧美日韩乱码在线| 91大片在线观看| 国产99白浆流出| 啦啦啦 在线观看视频| 女警被强在线播放| 国产精品电影一区二区三区| 国产视频一区二区在线看| 精品乱码久久久久久99久播| 一级作爱视频免费观看| 级片在线观看| 9热在线视频观看99| 日本欧美视频一区| 亚洲精品久久国产高清桃花| 成人精品一区二区免费| 国产av在哪里看| 男女之事视频高清在线观看| 欧美中文综合在线视频| 黄网站色视频无遮挡免费观看| 一进一出好大好爽视频| 操出白浆在线播放| av电影中文网址| 久久狼人影院| 别揉我奶头~嗯~啊~动态视频| 日日爽夜夜爽网站| 亚洲国产看品久久| 国产熟女午夜一区二区三区| 搞女人的毛片| 岛国视频午夜一区免费看| 亚洲五月婷婷丁香| 人妻久久中文字幕网| 国产伦一二天堂av在线观看| 欧美午夜高清在线| 老司机午夜十八禁免费视频| 天天一区二区日本电影三级 | 中文字幕人妻熟女乱码| 欧美成人免费av一区二区三区| 亚洲av成人一区二区三| 黄网站色视频无遮挡免费观看| 久久亚洲精品不卡| 久久久精品欧美日韩精品| 日本vs欧美在线观看视频| www日本在线高清视频| 一区二区日韩欧美中文字幕| 少妇熟女aⅴ在线视频| 国产精品综合久久久久久久免费 | 国产精品av久久久久免费| av超薄肉色丝袜交足视频| 欧美人与性动交α欧美精品济南到| 午夜福利成人在线免费观看| 一区二区三区国产精品乱码| 又紧又爽又黄一区二区| 国产视频一区二区在线看| 精品人妻1区二区| 日本精品一区二区三区蜜桃| 欧美在线一区亚洲| 操美女的视频在线观看| 一区二区三区国产精品乱码| 少妇熟女aⅴ在线视频| 大型黄色视频在线免费观看| 国产成年人精品一区二区| 十八禁人妻一区二区| 亚洲 欧美一区二区三区| av天堂在线播放| 国产精品久久久久久人妻精品电影| 最新美女视频免费是黄的| 男人舔女人的私密视频| 性色av乱码一区二区三区2| 精品一区二区三区四区五区乱码| 精品高清国产在线一区| 搡老岳熟女国产| 成在线人永久免费视频| 亚洲国产中文字幕在线视频| 亚洲 国产 在线| av视频在线观看入口| 欧美国产日韩亚洲一区| 亚洲精品av麻豆狂野| 亚洲熟女毛片儿| 巨乳人妻的诱惑在线观看| or卡值多少钱| 亚洲欧美精品综合一区二区三区| 国产高清视频在线播放一区| 免费在线观看完整版高清| 男女下面插进去视频免费观看| 熟女少妇亚洲综合色aaa.| 亚洲国产欧美网| 精品人妻1区二区| 免费高清在线观看日韩| 午夜精品久久久久久毛片777| 成人欧美大片| 日本五十路高清| 两个人视频免费观看高清| 欧美色欧美亚洲另类二区 | 亚洲精品一区av在线观看| 啪啪无遮挡十八禁网站| 99久久99久久久精品蜜桃| 久久亚洲精品不卡| 在线观看日韩欧美| 久久国产精品影院| 在线永久观看黄色视频| 国产精华一区二区三区| 亚洲av片天天在线观看| 在线免费观看的www视频| 精品无人区乱码1区二区| 欧美日韩精品网址| 啦啦啦 在线观看视频| 中文字幕色久视频| 国产亚洲精品av在线| 精品人妻1区二区| 国产精品久久视频播放| 一级毛片精品| 久久天堂一区二区三区四区| 中出人妻视频一区二区| 91字幕亚洲| 电影成人av| 亚洲精品av麻豆狂野| 国产不卡一卡二| 后天国语完整版免费观看| 免费在线观看视频国产中文字幕亚洲| 深夜精品福利| 美女扒开内裤让男人捅视频| 人人妻,人人澡人人爽秒播| 中国美女看黄片| 国产亚洲精品综合一区在线观看 | 大型黄色视频在线免费观看| av有码第一页| 久久热在线av| 午夜影院日韩av| 国产精品秋霞免费鲁丝片| 午夜福利影视在线免费观看| 变态另类丝袜制服| 日韩欧美国产在线观看| 日本欧美视频一区| 可以在线观看的亚洲视频| 亚洲午夜精品一区,二区,三区| 亚洲精品粉嫩美女一区| 日本三级黄在线观看| 波多野结衣高清无吗| 亚洲精品久久国产高清桃花| 欧美日韩瑟瑟在线播放| 天天添夜夜摸| 最近最新中文字幕大全电影3 | 国产主播在线观看一区二区| 91国产中文字幕| 美国免费a级毛片| 人人妻人人爽人人添夜夜欢视频| av福利片在线| 欧美日韩精品网址| 一夜夜www| 亚洲 欧美一区二区三区| 日韩精品免费视频一区二区三区| 夜夜夜夜夜久久久久| 久久久久久免费高清国产稀缺| 嫩草影院精品99| 精品久久久久久成人av| 色在线成人网| x7x7x7水蜜桃| 99久久久亚洲精品蜜臀av| 国产精品一区二区免费欧美| 亚洲 国产 在线| 又大又爽又粗| 97人妻天天添夜夜摸| 天天添夜夜摸| 91精品国产国语对白视频| 美女午夜性视频免费| 久久久久国内视频| 成人永久免费在线观看视频| 露出奶头的视频| 9色porny在线观看| 国产蜜桃级精品一区二区三区| 操美女的视频在线观看| 伊人久久大香线蕉亚洲五| 又大又爽又粗| 亚洲精品一卡2卡三卡4卡5卡| 亚洲性夜色夜夜综合| 日韩大尺度精品在线看网址 | 中文字幕久久专区| 午夜免费观看网址| 日本在线视频免费播放| av在线播放免费不卡| 精品一区二区三区四区五区乱码| 纯流量卡能插随身wifi吗| 亚洲国产欧美一区二区综合| www日本在线高清视频| 亚洲成人国产一区在线观看| 99香蕉大伊视频| 欧美绝顶高潮抽搐喷水| 久久久精品欧美日韩精品| 精品久久久久久久久久免费视频| 午夜免费观看网址| www.熟女人妻精品国产| 日本 av在线| 久久久久久亚洲精品国产蜜桃av| 亚洲伊人色综图| 成年人黄色毛片网站| 免费无遮挡裸体视频| 欧美激情高清一区二区三区| videosex国产| 久久国产精品人妻蜜桃| 午夜免费观看网址| 亚洲第一电影网av| 国产主播在线观看一区二区| 757午夜福利合集在线观看| 在线免费观看的www视频| 熟女少妇亚洲综合色aaa.| 男女午夜视频在线观看| 免费不卡黄色视频| 精品人妻1区二区| 99香蕉大伊视频| 亚洲三区欧美一区| 69av精品久久久久久| 久久久久精品国产欧美久久久| 丝袜在线中文字幕| 电影成人av| 欧美绝顶高潮抽搐喷水| 成人亚洲精品一区在线观看| 麻豆一二三区av精品| 中文字幕人妻丝袜一区二区| 黄片播放在线免费| 午夜福利,免费看| 丰满人妻熟妇乱又伦精品不卡| 一级a爱片免费观看的视频| av福利片在线| 欧美日韩精品网址| 精品免费久久久久久久清纯| 老司机深夜福利视频在线观看| 久久久久久大精品| 热re99久久国产66热| 亚洲av成人av| 精品一区二区三区av网在线观看| 1024香蕉在线观看| 亚洲中文字幕一区二区三区有码在线看 | 欧美日韩亚洲国产一区二区在线观看| 欧美av亚洲av综合av国产av| 久久精品国产99精品国产亚洲性色 | 日韩三级视频一区二区三区| 啦啦啦韩国在线观看视频| 在线免费观看的www视频| 亚洲第一电影网av| 久久天堂一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 精品国产一区二区三区四区第35| 久久久久久亚洲精品国产蜜桃av| 亚洲成人精品中文字幕电影| 免费在线观看亚洲国产| 999久久久国产精品视频| 麻豆国产av国片精品| 日本黄色视频三级网站网址| 成年人黄色毛片网站| 亚洲熟女毛片儿| 在线观看午夜福利视频| 又紧又爽又黄一区二区| 一本久久中文字幕| 极品教师在线免费播放| 精品久久久久久久人妻蜜臀av | 亚洲欧洲精品一区二区精品久久久| 亚洲精品久久成人aⅴ小说| 精品日产1卡2卡| 丁香欧美五月| 午夜福利成人在线免费观看| 一a级毛片在线观看| 亚洲欧美精品综合久久99| 色在线成人网| 欧美丝袜亚洲另类 | 国产精品美女特级片免费视频播放器 | 黄网站色视频无遮挡免费观看| 岛国在线观看网站| av中文乱码字幕在线| 免费观看人在逋| 国产aⅴ精品一区二区三区波| 波多野结衣高清无吗| 日韩av在线大香蕉| 日韩大尺度精品在线看网址 | 黄色片一级片一级黄色片| 色老头精品视频在线观看| 老汉色av国产亚洲站长工具| 成人国语在线视频| 亚洲专区国产一区二区| 午夜福利免费观看在线| 欧美国产日韩亚洲一区| 纯流量卡能插随身wifi吗| 日韩av在线大香蕉| 久久国产亚洲av麻豆专区| 国产一区在线观看成人免费| 精品欧美国产一区二区三| 老熟妇乱子伦视频在线观看| 成人免费观看视频高清| 亚洲精品国产色婷婷电影| 在线视频色国产色| 最新在线观看一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 搡老妇女老女人老熟妇| 国产在线精品亚洲第一网站| 人人妻人人澡欧美一区二区 | 亚洲中文字幕日韩| 一个人免费在线观看的高清视频| 午夜成年电影在线免费观看| 大型黄色视频在线免费观看| 久久久久久久久久久久大奶| 91精品国产国语对白视频| 欧美黑人精品巨大| 99久久国产精品久久久| 在线观看66精品国产| 亚洲性夜色夜夜综合| 50天的宝宝边吃奶边哭怎么回事| 国产精品久久久av美女十八| 免费在线观看黄色视频的| 精品少妇一区二区三区视频日本电影| 青草久久国产| 女人被躁到高潮嗷嗷叫费观| 极品人妻少妇av视频| 村上凉子中文字幕在线| 国产激情久久老熟女| 黄色女人牲交| 50天的宝宝边吃奶边哭怎么回事| 国产精品日韩av在线免费观看 | 男女下面插进去视频免费观看| 曰老女人黄片| 亚洲五月婷婷丁香| 天天躁夜夜躁狠狠躁躁| 首页视频小说图片口味搜索| 精品一品国产午夜福利视频| 国产片内射在线| 国产成人影院久久av| 色老头精品视频在线观看| 免费搜索国产男女视频| 一区二区三区激情视频| 99在线视频只有这里精品首页| 日本免费一区二区三区高清不卡 | 午夜a级毛片| www.熟女人妻精品国产| 国产精品一区二区三区四区久久 | 亚洲国产精品合色在线| 成人亚洲精品一区在线观看| 免费在线观看日本一区| videosex国产| 国产伦一二天堂av在线观看| 老鸭窝网址在线观看| 国产亚洲精品久久久久久毛片| 桃红色精品国产亚洲av| 亚洲专区中文字幕在线| 国产亚洲欧美98| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说| 老熟妇仑乱视频hdxx| 国产精品影院久久| 国产成人欧美| 两个人视频免费观看高清| 国产精品电影一区二区三区| 男女做爰动态图高潮gif福利片 | 可以在线观看的亚洲视频| 99国产精品一区二区三区| 一区福利在线观看| 大香蕉久久成人网| 手机成人av网站| 日韩欧美免费精品| 男男h啪啪无遮挡| 国产欧美日韩一区二区三| 一卡2卡三卡四卡精品乱码亚洲| 日本五十路高清| 久99久视频精品免费| 夜夜看夜夜爽夜夜摸| 色精品久久人妻99蜜桃| 欧美日韩瑟瑟在线播放| 日韩欧美免费精品| 91九色精品人成在线观看| 国产精品日韩av在线免费观看 | cao死你这个sao货| 国产99白浆流出| 久久久精品国产亚洲av高清涩受| 美女午夜性视频免费| 欧美大码av| 国产精品九九99| 精品久久久久久久人妻蜜臀av | 欧美成人免费av一区二区三区| 日韩欧美一区二区三区在线观看| 窝窝影院91人妻| 91精品三级在线观看| 国产高清videossex| 88av欧美| 国产亚洲精品av在线| 日韩av在线大香蕉| 免费在线观看影片大全网站| 亚洲免费av在线视频| 精品人妻在线不人妻| 夜夜躁狠狠躁天天躁| or卡值多少钱| 国产精品一区二区精品视频观看| 国产熟女午夜一区二区三区| 国产精品久久久久久亚洲av鲁大| 午夜老司机福利片| 亚洲成人精品中文字幕电影| 午夜久久久久精精品| 国产午夜精品久久久久久| 香蕉久久夜色| 免费看十八禁软件| 97碰自拍视频| 日韩欧美在线二视频| 亚洲久久久国产精品| 国产亚洲精品综合一区在线观看 | 叶爱在线成人免费视频播放| 侵犯人妻中文字幕一二三四区| 后天国语完整版免费观看| 国产亚洲精品第一综合不卡| 国产人伦9x9x在线观看| 一个人免费在线观看的高清视频| 欧美日韩精品网址| 免费在线观看黄色视频的| 美女免费视频网站| 两个人看的免费小视频| 丝袜美腿诱惑在线| 国产亚洲精品久久久久久毛片| 99久久国产精品久久久| 一区福利在线观看| 国产精品野战在线观看| 人成视频在线观看免费观看| 少妇粗大呻吟视频| 人妻久久中文字幕网| 亚洲久久久国产精品| 成人永久免费在线观看视频| 亚洲五月婷婷丁香| 久久久国产欧美日韩av| 9色porny在线观看| 制服丝袜大香蕉在线| 在线观看免费视频日本深夜| 亚洲人成伊人成综合网2020| 少妇被粗大的猛进出69影院| 丝袜美足系列| 麻豆av在线久日| 成人国产一区最新在线观看| 国产精品久久电影中文字幕| 女生性感内裤真人,穿戴方法视频| 色婷婷久久久亚洲欧美| 国产熟女午夜一区二区三区| 国产真人三级小视频在线观看| 久久婷婷成人综合色麻豆| 一级作爱视频免费观看| 国产真人三级小视频在线观看| 午夜免费鲁丝| 级片在线观看| 亚洲精品国产精品久久久不卡| 国产精品乱码一区二三区的特点 | 婷婷精品国产亚洲av在线| 日本在线视频免费播放| 亚洲av电影在线进入| 一级a爱视频在线免费观看| 国产成人av教育| 两个人免费观看高清视频| 一级毛片高清免费大全| 午夜福利在线观看吧| 神马国产精品三级电影在线观看 | 国产成人影院久久av| 亚洲全国av大片| 多毛熟女@视频| 久久久久久大精品| 女同久久另类99精品国产91| 日本vs欧美在线观看视频| 国产91精品成人一区二区三区| 韩国av一区二区三区四区| a在线观看视频网站| 久久人人精品亚洲av| 亚洲情色 制服丝袜| 免费女性裸体啪啪无遮挡网站| 不卡一级毛片| 亚洲av电影不卡..在线观看| 女性生殖器流出的白浆| 又紧又爽又黄一区二区| 国语自产精品视频在线第100页| 亚洲五月婷婷丁香| 国产精品久久久av美女十八| 国内精品久久久久精免费| 日本a在线网址| 一进一出抽搐gif免费好疼| 亚洲男人的天堂狠狠| videosex国产| 中文亚洲av片在线观看爽| 最新在线观看一区二区三区| 99国产精品免费福利视频| 日韩精品中文字幕看吧| 国产国语露脸激情在线看| 色综合亚洲欧美另类图片| 欧美乱码精品一区二区三区| 久久九九热精品免费| 中文字幕人成人乱码亚洲影| 精品久久久久久久人妻蜜臀av | 欧美精品啪啪一区二区三区| 免费在线观看黄色视频的| 日韩欧美一区二区三区在线观看| 女人爽到高潮嗷嗷叫在线视频| 男人的好看免费观看在线视频 | 国产精品一区二区精品视频观看| 色精品久久人妻99蜜桃| 一进一出抽搐gif免费好疼| 国产成人啪精品午夜网站| 国产精品日韩av在线免费观看 | 久久人妻福利社区极品人妻图片| 一级黄色大片毛片| 欧美中文日本在线观看视频| 亚洲男人天堂网一区| 一级毛片高清免费大全| 日日干狠狠操夜夜爽| 国产成人欧美| 老司机午夜福利在线观看视频| 日韩欧美一区二区三区在线观看| 窝窝影院91人妻| 最近最新中文字幕大全免费视频| 亚洲五月色婷婷综合| 一区在线观看完整版| 两个人免费观看高清视频| 国产亚洲精品一区二区www| 99在线视频只有这里精品首页| 久久亚洲精品不卡| 女人爽到高潮嗷嗷叫在线视频| 波多野结衣一区麻豆| 久久国产乱子伦精品免费另类| 欧美国产日韩亚洲一区| 成人亚洲精品一区在线观看| 亚洲国产高清在线一区二区三 | 久久青草综合色| 亚洲五月天丁香| 日韩成人在线观看一区二区三区| 国产激情欧美一区二区| www.www免费av| 国产真人三级小视频在线观看| 热re99久久国产66热| 欧美乱妇无乱码| 亚洲片人在线观看| 午夜福利影视在线免费观看| 欧美日韩一级在线毛片| 亚洲成人国产一区在线观看|