• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Obstacle avoidance for multi-missile network via distributed coordination algorithm

    2016-11-23 08:05:34ZhaoJiangZhouRui
    CHINESE JOURNAL OF AERONAUTICS 2016年2期

    Zhao Jiang,Zhou Rui

    School of Automation Science and Electrical Engineering,Beihang University,Beijing 100083,China

    Obstacle avoidance for multi-missile network via distributed coordination algorithm

    Zhao Jiang*,Zhou Rui

    School of Automation Science and Electrical Engineering,Beihang University,Beijing 100083,China

    Cooperative guidance;Distributed algorithms;Impact time;Missile guidance;Multiple missiles;Obstacle avoidance;Proportional navigation

    A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance.To achieve a cooperative interception,the guidance law is developed in a simple form that consists of three individual components for target capture,time coordination and obstacle avoidance.The distributed coordination algorithm enables a group of interceptor missiles to reach the target simultaneously,even if some member in the multi-missile network can only collect the information from nearest neighbors.The simulation results show that the guidance strategy provides a feasible tool to implement obstacle avoidance for the multi-missile network with satisfactory accuracy of target capture.The effects of the gain parameters are also discussed to evaluate the proposed approach.

    1.Introduction

    As the need for highly adaptive guidance and control approaches is increasing,obstacle avoidance techniques have been proposed for the unmanned aerial vehicles,1–3ground vehicles,4,5unmanned surface vehicles,6,7autonomous underwater vehicles,8,9and mobile robots.10,11Considering that the group of interceptor missiles is guided in the complex environment,the threat avoidance and geopolitical restrictions are also indispensable to the development of guidance and control systems.For this reason,some studies have recently focused on the design of the reference routes12and guidance laws13for obstacle avoidance.However,only the single interceptor missile was considered in the above work.To improve the performance in detecting the targets and penetrating the defense systems,the implement of cooperative engagement for multimissile network is required.14–17The difficult problem is an achievement of obstacle avoidance for multi-missile network with satisfactory accuracy of target capture as well as effective coordination of impact time between each member.18–20

    In the current literature,many advanced cooperative guidance laws have been proposed for the multi-missile networks.The first class of approaches investigates the design of the impact-time constraints to achieve a simultaneous interception against the given target.In Ref.21,the closed form of impact time control guidance law is developed on the basis of the linear formulation,which can guide a group of missiles to the target at a desirable time.Then,the time-varying navigation gain is used to coordinate the impact time of the multi-missile net-work.22The extensions of the time-constrained guidance law are also presented to control both the impact time and impact angle.23,24The above guidance strategies typically require that the global information of time-to-go is available to each interceptor missile.For this reason,the distributed control architecture of the impact-time constraint is proposed to enhance the cooperative engagement of multiple missiles.25,26The discrete topology model is also used to feature the desired impact time using the consensus theory.27

    Another class of approaches employs the leader–follower model to formulate the cooperative guidance problem for the multi-missile network.In Refs.28,29,a nonlinear state tracking controller and a state regulator are developed to solve the time-constrained guidance,respectively.Then,the consensus protocols are applied to the design of leader–follower strategy which guarantees that the impact time of each follower can converge to the leader in finite time.30To facilitate the heterogeneous multi-missile engagement,a distributed leader–follower model is proposed on the basis of proportional navigation(PN)guidance law.31Furthermore,the virtual leader scheme is also employed to achieve the impact time control by transforming the constrained guidance problem to the nonlinear tracking problem.32

    Although the aforementioned design of the impact-time constraints21–27and leader–follower strategies28–32have promoted the development of the coordination algorithms for the multi-missile networks,the obstacle avoidance is not taken into account in these cooperative guidance approaches.Therefore,this paper presents an extension of the PN-based distributed guidance algorithm to enhance the engagement of the multi-missile network in consideration of obstacle avoidance.The contribution of the manuscript is summarized as follows:(1)the PN-based guidance law is developed in a simple form that consists of three individual components for target capture,time coordination and obstacle avoidance;(2)each member in the multi-missile network only requires the information of time-to-go from neighbors to perform a cooperative engagement;(3)the obstacle avoidance is achieved with satisfactory accuracy of target capture as well as effective coordination of impact time.

    The rest of paper is organized as follows.Section 2 presents the basic assumptions and the engagement geometry.Section 3 describes the formulation of cooperative strategy in detail.In Section 4,the feasibility of the proposed guidance law is demonstrated by numerical simulation.Section 5 presents the performance evaluation by discussing the effect of gain parameters.Finally,concluding remarks are presented in Section 6.

    2.Preliminaries

    2.1.Basic assumptions

    To simplify the nonlinear dynamics of the missile-target engagement,the pursuit situation in planar plane is considered in this paper.We assume some common conditions in the following part to facilitate the formulation of distributed coordination algorithm for the multi-missile network.

    (1)Both the interceptor missile and the target are considered as the geometric points in the planar plane.

    (2)The seeker and autopilot dynamics of each interceptor missile are much faster in comparison with the guidance loop.

    (3)The velocity of each interceptor missile is constant and the acceleration input only changes its direction.

    2.2.Engagement geometry

    Suppose thatnmissiles participate in the multi-missile network to intercept a stationary target simultaneously.Under the prescribed assumptions,the two-dimensional geometry on manyto-one engagement is depicted in Fig.1.Let Midenote each interceptor missile and T denote the target,and then,the pursuit situation can be described by the following equations of motion33,34

    where the subscript(i=1,2,...,n)represents each member in the multi-missile network;riis the missile-to-target range;Viis the total velocity of each missile;λiis the line-of-sight angle;the terms γiand θirepresent the heading angles in the inertial reference frame and line-of-sight frame,respectively;the acceleration command is defined asAi.

    The problem studied herein is to find the coordination algorithm that can guide the group of missiles to the given target at the same time without obstacle collision,even if the initial conditions of each member are different.

    3.Distributed coordination algorithm

    Based on the traditional PN guidance law,this section focuses on the design of the coordination algorithm for the multimissile network in the distributed formulation.The proposed cooperative guidance law consists of three individual components as

    where the termsApi,AξiandAaiare used for the target capture,time coordination and obstacle avoidance,respectively.

    Fig.1 Geometry on many-to-one engagement.

    The PN componentApiis derived from the traditional PN guidance law in the form of33

    whereNiis the navigation constant.

    In order to coordinate the impact time of each member in the multi-missile network,the componentAξiis included into the proposed coordination algorithm Eq.(2)which has a simple form as follows26:

    whereKξis the gain parameter.The term ξi(t)represents the relative error of the time-to-go between each missile:

    where the estimation of the time-to-go for each membertgo,i(t)in the multi-missile network is given in the form of

    Note that,the termAξi→ 0 m/s2asri(t)→ 0 km if ξi(t)→0 s asri(t)→0 km,i.e.,the effect of the coordination componentAξiwill be weakened when the relative error of the timeto-go gradually decreases as the group of missiles approach the given target.To guide the interceptor missiles to the target at a same time,the design of the coordination variabletgo,i(t)will be discussed in the following part.

    The centralized coordination algorithms usually consider the case that each missile communicates with all the other members in the multi-missile network.However,the guidance laws would be out of work when some interceptor missile is only able to obtain the effective information from its nearest neighbors.Therefore,it is necessary to select the coordination variabletgo,i(t)in the distributed formulation for an agreement on the impact time.Fig.2 illustrates an example of the communication limit in the multi-missile network.

    As shown in Fig.2,the effective communication region of each missile is marked withSi,in which Mican obtain the information of the time-to-go from its neighbors.Thus,there are totallyncommunication regions with the group of missiles.Considering the limit of these communication regions,the coordination variabletgo,i(t)in the componentAξiis defined in distributed form as

    wheresiis the total number of the missiles in the regionSi.It also means that Mican obtain the information of the time-togo from itssi–1 neighbors in the distributed communication regions.Thus,the componentAξiwill try to adjust the timeto-go of each member in the multi-missile network for a simultaneous arrival.However,the distributed design does not reduce the relative time-to-go error of the whole multimissile network,but reduces the error of each small group.Note that,the limit of the communication region is actually determined by the performance of the communication systems.In the current literature,the distance between interceptor missiles is typically used to represent the communication limit.Therefore,the neighboring missiles are also determined by the relative distance between each missile in this paper.

    The third componentAaifor obstacle avoidance is based on the simple design of the potential function in the form of

    Fig.2 Communication limit in multi-missile network.

    whereKais the gain parameter;the termRis the radius of the obstacle;Lirepresents the distance between the obstacle and each interceptor missile.As shown in Fig.3,the circleshaped obstacleOis used herein because any irregularly shaped obstaclesO1andO2can be simply replaced with it.

    Note that,the angle αi∈ [-π/2,+π/2]is defined in the lineof-sight frame with respect to the center of the obstacle.It can be found that the componentAaimainly depends on the distanceLiand heading angle αi.To be specific,the magnitude of the input componentAaigradually increases as|Li-R|→ 0 km and|αi|→ 0°,whereas some larger|Li-R|and|αi|result in a decrease in the magnitude of the acceleration.

    Thus,the complete distributed coordination algorithm for the multi-missile network can be given by Eq.(9)on the basis of the three components.The effect of target capture is determined by the PN componentApithat continues during the entire engagement.The coordination componentAξiwill dominate the guidance algorithm Eq.(9)when the time-to-go error of the multi-missile network increases.The third componentAaiis mainly used for the obstacle avoidance and it comes into effect as the interceptor missiles approach towards the obstacle.The integration of the three components leads to a trade-off in order to achieve the obstacle avoidance with satisfactory accuracy of target capture and effective coordination of impact time.

    The improved coordination algorithm is quite easy to be implemented due to the simple design in the form of Eq.(9).The performance evaluation of the proposed cooperative guidance law will be presented in the following section.

    4.Numerical simulations

    Fig.3 Geometry on interceptor missile for obstacle avoidance.

    The numerical simulation is performed in a scenario of simultaneous arrival to evaluate the proposed distributed algorithm Eq.(9).Suppose that a group of three missiles participate in the multi-missile network to intercept the given target at(0,0)km with different initial conditions as shown in Table 1.The limit of the acceleration is set to be 5.0×9.81 m/s2and the navigation constant,3.0,for each interceptor missile.The gainKais set to be 20 and the gainKξis set to be 30/(r0tgo0),wherer0is the mean value of the initial missile-to-target ranges andtgo0is the mean value of the initial time-to-go estimations.

    As shown in Fig.4,a simple communication topology is selected for the multi-missile network,in which M1and M3can only obtain the information of time-to-go from the neighbor M2.Thus,the coordination variables for the group of three missiles are expressed as

    where the total numbers of missiles in regionsSi(i=1,2,3)ares1=2,s2=3 ands3=2,respectively.

    Figs.5 and 6 show the numerical results of the distributed coordination algorithm.Case 1 demonstrates the results of the simplified guidance law without componentAai,whereas the results of the complete coordination algorithm Eq.(9)are illustrated by Case 2.In Case 1,the ground tracks and the time-togo of the multi-missile network show that the guidance law withoutAaican drive the group of three missiles to simultaneously intercept the target at 86.18 s.However,M3cannot fly round the given obstacle at(-14,5)km with a radius of 2 km.In contrast,the distributed coordination algorithm Eq.(9)succeeds in obstacle avoidance and a simultaneous arrival within a dispersion of 0.1 s.Note that the final impact time increases to 94.13 s since the group of missiles move further rounds to avoid the given obstacle.

    Table 1 Initial conditions of multi-missile network.

    Fig.4 Communication topology for multi-missile network.

    Fig.5 Ground tracks of interceptor missiles against a stationary target.

    Fig.6 Times-to-go of interceptor missiles against a stationary target.

    5.Discussion

    5.1.Effects of gain parameters

    Regarding the effectiveness of the cooperative guidance law Eq.(9),the componentAξifor coordination of impact time and the componentAaifor obstacle avoidance are largely determined by the gain parametersKξandKa.Therefore,a proper selection of these gains may guarantee that the multimissile network achieves obstacle avoidance and a satisfactory simultaneous arrival.In this part,the effects of gain parametersKξandKaare discussed through some examples.

    First,we find that the convergence rate of the impact time is mainly influenced by the gain parameterKξ.Fig.7 presents the numerical results of the time-to-go for a group of three interceptor missiles,in which the gain parameterKξis set to be 20/(r0tgo0),30/(r0tgo0),40/(r0tgo0)and 50/(r0tgo0),respectively.It is quite clear that the time-to-go of the multi-missile network has the fastest convergence rate with gainKξ=50/(r0tgo0).In contrast,it becomes slower as the gain gradually decreases toKξ=20/(r0tgo0).The simulations demonstrate that a selection of gain parameterKξbetween 20 and 50 generally result in better performance of the coordination of impact time.

    Further,we examine the effect of the gain parameterKaby another example.Fig.8 presents the numerical results of the ground tracks for the multi-missile network,in which the gainKais set to 10(dash-dot),20(dot),30(dash)and 40(solid),respectively.It is found that the group of missiles move earlier and further rounds to avoid the obstacle as the gain increases fromKa=10 toKa=40.As shown in Fig.9,the control effort of the interceptor missiles(solid for M1,dash for M2and dot for M3)is much lower when a larger gainKais chosen for componentAai.The simulations also suggest that the proper selection of the gain parameterKabetween 10 and 40 is able to meet the requirement for satisfactory obstacle avoidance.

    Fig.7 Effect of gain parameter Kξon times-to-go.

    Fig.8 Effect of gain parameter Kaon ground tracks.

    5.2.Maneuvering target

    In this part,the scenario of cooperative engagement against a maneuvering target is used to evaluate the proposed coordination algorithm.The same initial conditions are selected as those in Section 4.Suppose that the velocity and acceleration of the target are set to constant values,i.e.,VT=100 m/s andAT=-2.0×9.81 m/s2,respectively.The initial heading angle of the target with respect to the inertial reference frame is set to be 60°.

    Figs.10 and 11 illustrate the simulation results of the cooperative engagement against the maneuvering target.Cases 3 and 4 demonstrate the coordination algorithm without componentAaiand the complete coordination algorithm Eq.(9),respectively.It can be found that each member in the multi-missile network intercepts the maneuvering target with effective coordination of impact time.The obstacle avoidance is also achieved using the proposed guidance approach.Note that the final impact time is increasing since the head-pursuit guidance is performed in this scenario.

    Fig.9 Effect of gain parameter Kaon control effort.

    Fig.10 Ground tracks of interceptor missiles against a maneuvering target.

    5.3.Size of obstacle

    Regarding the effect of the obstacle size in the coordination algorithm,another numerical simulation is performed in this part.Some different obstacle sizes(R=2 km,3 km,4 km and 5 km)are selected in the scenario of the cooperative engagement.The same initial conditions are selected as those in Section 4.

    Fig.12 presents the ground tracks of the interceptor missiles.It is shown that the obstacle avoidance can be achieved using the proposed guidance law even though the size of the obstacle is up to 5 km.The coordination of the impact time is effective with satisfactory accuracy of target capture.Fig.13 illustrates the effect of the obstacle size on the acceleration and the time-to-go.It can be found that a larger size of the obstacle typically results in the earlier saturation of the control effort.The time-to-go of the multi-missile network also increases with a larger size of obstacle.

    Fig.11 Times-to-go of interceptor missiles against a maneuvering target.

    6.Conclusions

    In this paper,a distributed coordination algorithm is proposed in which both the obstacle avoidance and the limited communication region among interceptor missiles are taken into account.

    (1)The proposed guidance law takes a simple form on the basis of the traditional PN algorithm.It enables a simultaneous arrival even if some interceptor missiles can only collect the information from nearest neighbors.

    (2)The simulation results show that the proper selection of gain parameterKacan guarantee the obstacle avoidance with satisfactory accuracy of target capture.The convergencerateofimpacttimeisdeterminedbyanothergainKξ.

    (3)The distributed coordination algorithm is typically effective for the common size of obstacle.It also demonstrates that the cooperative interception against maneuvering target can also be achieved using the proposed algorithm.

    Fig.13 Effect of obstacle size on acceleration and time-to-go.

    Acknowledgments

    This study was co-supported by the National Natural Science Foundation of China(Nos.61273349 and 61175109)and the Aeronautical Science Foundation of China (Nos.2014ZA18004 and 2013ZA18001).

    1.Cruz GS,Encarnacao PM.Obstacle avoidance for unmanned aerial vehicles.J Intell Rob Syst2012;65(1–4):203–17.

    2.Raja RG,Chawla C,Padhi R.Dynamic inversion-based nonlinear aiming point guidance of unmanned aerial vehicles for reactive obstacle avoidance.Unmanned Systems2013;1(2):259–75.

    3.Zhao J,Zhou R.Reentry trajectory optimization for hypersonic vehicle satisfying complex constraints.Chin J Aeronaut2013;26(6):1544–53.

    4.Ferrara A,Vecchio C.Collision avoidance strategies and coordinated control of passenger vehicles.Nonlinear Dyn2007;49(4):475–92.

    5.Sezer V,Gokasan M.A novel obstacle avoidance algorithm:Follow the gap method.Robot Auton Syst2012;60(9):1123–34.

    6.Campbell S,Naeem W,Irwin GW.A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidancemanoeuvres.AnnRevControl2012;36(2):267–83.

    7.Naeem W,Irwin GW,Yang A.COLREGs-based collision avoidance strategies for unmanned surface vehicles.Mechatronics2012;22(6):669–78.

    8.Wu XP,Feng ZP,Zhu JM,Allen R.Line of sight guidance with intelligent obstacle avoidance for autonomous underwater vehicles.Proceedings of 2006 OCEANS;Sep 18–21;Boston(MA).Piscataway(NJ):IEEE Press;2006.p.1–6.

    9.Fang MC,Wang SM,Wu MC,Lin YH.Applying the self-tuning fuzzy control with the image detection technique on the obstacleavoidance for autonomous underwater vehicles.Ocean Eng2015;93(1):11–24.

    10.Korayem MH,Zehfroosh A,Tourajizadeh H,Manteghi S.Optimal motion planning of nonlinear dynamic systems in the presence of obstacles and moving boundaries using SDRE:Application on cable-suspended robot.Nonlinear Dyn2014;76(2):1423–41.

    11.Sgorbissa A,Zaccaria R.Planning and obstacle avoidance in mobile robotics.Robot Auton Syst2012;60(4):628–38.

    12.Zhao J,Zhou SY,Zhou R.Distributed time-constrained guidance using nonlinear model predictive control.Nonlinear Dyn2016.http://dx.doi.org/10.1007/s11071-015-2578-z.

    13.Wang GH,Sun XF,Zhang LP,Lyu C.Saturation attack based route planning and threat avoidance algorithm for cruise missiles.J Syst Eng Electron2011;22(6):948–53.

    14.Zhao J,Zhou R,Jin XL.Progress in reentry trajectory planning for hypersonic vehicle.J Syst Eng Electron2014;25(4):627–39.

    15.Liu G,Lao SY,Tan DF,Zhou ZC.Research status and progress on anti-ship missile path planning.Acta Automat Sin2013;39(4):347–59 Chinese.

    16.Zhao J,Zhou R.Particle swarm optimization applied to hypersonic reentry trajectories.Chin J Aeronaut2015;28(3):823–31.

    17.Bao W.Present situation and development tendency of aerospace control techniques.Acta Automat Sin2013;39(6):697–702 Chinese.

    18.Shin HS.Study on cooperative missile guidance for area air defence[dissertation].Cranfield:Cranfield University;2012.

    19.Zhao J,Zhou R.Pigeon-inspired optimization applied to constrained gliding trajectories.Nonlinear Dyn2015;82(4):1781–95.

    20.Zhao J,Zhou R,Dong Z.Three-dimensional cooperative guidance laws against stationary and maneuvering targets.Chin J Aeronaut2015;28(4):1104–20.

    21.Jeon IS,Lee JI,Tahk MJ.Impact-time-control guidance law for anti-ship missiles.IEEE Trans Control Syst Technol2006;14(2):260–6.

    22.Jeon IS,Lee JI,Tahk MJ.Homing guidance law for cooperative attack of multiple missiles.J Guid Control Dyn2010;33(1):275–80.

    23.Zhang YA,Ma GX,Liu AL.Guidance law with impact time and impact angle constraints.Chin J Aeronaut2013;26(4):960–6.

    24.Lee JI,Jeon IS,Tahk MJ.Guidance law to control impact time and angle.IEEE Trans Aerosp Electron Syst2007;43(1):301–10.

    25.Zhao SY,Zhou R.Cooperative guidance for multimissile salvo attack.Chin J Aeronaut2008;21(6):533–9.

    26.Zhao J,Zhou R.Unified approach to cooperative guidance laws against stationary and maneuvering targets.Nonlinear Dyn2015;81(4):1536–47.

    27.Peng C,Liu X,Wu S,Li M.Consensus problems in distributed cooperative terminal guidance time of multi-missiles.Control Decision2010;25(10):1557–66 Chinese.

    28.Zhang YA,Ma GX,Wang XP.Time cooperative guidance for multi-missiles:A leader-follower strategy.Acta Aeronaut Astronaut Sin2009;30(6):1109–18 Chinese.

    29.Wang X,Hong X,Lin H.A method of controlling impact time and impact angle of multiple-missiles cooperative combat.J Ball2012;24(2):1–6 Chinese.

    30.Sun XJ,Zhou R,Hou DL,Wu J.Consensus of leader–followers system of multi-missile with time-delays and switching topologies.Optik2014;125(3):1202–8.

    31.Zou L,Ding Q,Zhou R.Distributed cooperative guidance for multiple heterogeneous networked missiles.J Beijing Uni Aeronaut Astronaut2010;23(1):103–8 Chinese.

    32.Zhao SY,Zhou R,Wei C,Ding QX.Design of time-constrained guidance laws via virtual leader approach.Chin J Aeronaut2010;23(1):103–8.

    33.Ha IJ,Hur JS,Ko MS,Song TL.Performance analysis of PNG laws for randomly maneuvering targets.IEEE Trans Aerosp Electron Syst1990;26(5):713–21.

    34.Zhou D,Qu P,Sun S.A guidance law with terminal impact angle constraint accounting for missile autopilot.J Dyn Syst Measur Control2013;135(5):051009-1–051009-10.

    23 July 2015;revised 31 August 2015;accepted 30 September 2015

    Available online 23 February 2016

    ?2016 Chinese Society of Aeronautics and Astronautics.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 10 82316849.

    E-mail addresses:jzhao@buaa.edu.cn(J.Zhao),zhr@buaa.edu.cn(R.Zhou).

    Peer review under responsibility of Editorial Committee of CJA.

    Zhao Jiangis currently a Ph.D.candidate in guidance,navigation and control from Beihang University,Beijing,China.His area of expertise includes autonomous flight control and guidance,constrained trajectory optimization,and flight mission planning.

    Zhou Ruiis currently a professor in guidance,navigation,and control from Beihang University,Beijing,China.His area of expertise includes autonomous flight control and guidance,constrained trajectory optimization and flight mission planning.

    欧美日本中文国产一区发布| 亚洲av片天天在线观看| 激情视频va一区二区三区| 欧美在线黄色| 国产成人精品久久二区二区91| 亚洲国产欧美一区二区综合| av网站在线播放免费| 日日摸夜夜添夜夜添小说| 一级黄色大片毛片| 青春草视频在线免费观看| 午夜福利在线免费观看网站| 日韩制服骚丝袜av| 99久久99久久久精品蜜桃| 激情视频va一区二区三区| 国产精品久久久人人做人人爽| 欧美日韩亚洲综合一区二区三区_| 午夜精品久久久久久毛片777| 亚洲av电影在线观看一区二区三区| 亚洲一区中文字幕在线| h视频一区二区三区| 叶爱在线成人免费视频播放| 国产97色在线日韩免费| 欧美人与性动交α欧美软件| 亚洲欧美色中文字幕在线| 亚洲av电影在线进入| 午夜精品久久久久久毛片777| 黄片播放在线免费| 欧美日韩黄片免| 国产不卡av网站在线观看| 亚洲黑人精品在线| 国产精品 欧美亚洲| 免费日韩欧美在线观看| 男女无遮挡免费网站观看| 精品免费久久久久久久清纯 | 天天影视国产精品| 91av网站免费观看| 色综合欧美亚洲国产小说| av电影中文网址| 欧美亚洲日本最大视频资源| 黄色视频不卡| 亚洲国产av新网站| av电影中文网址| 狠狠精品人妻久久久久久综合| 天天躁狠狠躁夜夜躁狠狠躁| 97在线人人人人妻| 91麻豆精品激情在线观看国产 | 亚洲国产欧美日韩在线播放| 一二三四社区在线视频社区8| 国产成人影院久久av| 国产激情久久老熟女| 淫妇啪啪啪对白视频 | 一本一本久久a久久精品综合妖精| 男女边摸边吃奶| 国产精品欧美亚洲77777| 亚洲国产精品成人久久小说| 久久久欧美国产精品| 日韩人妻精品一区2区三区| 久久久国产一区二区| 亚洲va日本ⅴa欧美va伊人久久 | 菩萨蛮人人尽说江南好唐韦庄| 黄色毛片三级朝国网站| 欧美亚洲日本最大视频资源| 90打野战视频偷拍视频| 成人国语在线视频| 国产精品久久久久久精品电影小说| 国产真人三级小视频在线观看| 天堂中文最新版在线下载| 十分钟在线观看高清视频www| av电影中文网址| 国产日韩欧美亚洲二区| 男女免费视频国产| 男女高潮啪啪啪动态图| 午夜两性在线视频| 啦啦啦 在线观看视频| 啪啪无遮挡十八禁网站| 日本wwww免费看| 精品少妇内射三级| 亚洲少妇的诱惑av| 中文字幕另类日韩欧美亚洲嫩草| 免费久久久久久久精品成人欧美视频| 国产日韩欧美视频二区| 十八禁网站免费在线| 欧美日韩视频精品一区| 中文字幕av电影在线播放| 国产欧美日韩一区二区三区在线| 免费观看人在逋| 亚洲精品乱久久久久久| 成年人午夜在线观看视频| avwww免费| 老鸭窝网址在线观看| 国产精品 欧美亚洲| 秋霞在线观看毛片| 亚洲av美国av| 精品国产一区二区久久| 欧美精品啪啪一区二区三区 | 极品人妻少妇av视频| 久久精品国产综合久久久| 国产野战对白在线观看| 老鸭窝网址在线观看| 成人影院久久| 999久久久国产精品视频| 一个人免费在线观看的高清视频 | 欧美日韩亚洲高清精品| 国产精品.久久久| 精品国产一区二区久久| 丝袜脚勾引网站| 少妇被粗大的猛进出69影院| 美女主播在线视频| 老司机深夜福利视频在线观看 | 国产成人av激情在线播放| 国产成人欧美| 久久人妻福利社区极品人妻图片| 2018国产大陆天天弄谢| 在线观看www视频免费| 日本黄色日本黄色录像| 日韩大片免费观看网站| 亚洲五月色婷婷综合| 亚洲男人天堂网一区| 男人操女人黄网站| 国产亚洲精品一区二区www | 婷婷色av中文字幕| 亚洲av成人不卡在线观看播放网 | 视频区欧美日本亚洲| 国产在线视频一区二区| 90打野战视频偷拍视频| 国产熟女午夜一区二区三区| 两个人看的免费小视频| 一本综合久久免费| 亚洲五月色婷婷综合| 在线观看人妻少妇| 热99久久久久精品小说推荐| 老司机影院毛片| 色精品久久人妻99蜜桃| 99久久精品国产亚洲精品| 亚洲精品国产一区二区精华液| 中国国产av一级| 老熟妇乱子伦视频在线观看 | 久久久久国内视频| 亚洲成国产人片在线观看| 色播在线永久视频| 美女视频免费永久观看网站| 巨乳人妻的诱惑在线观看| 狠狠婷婷综合久久久久久88av| 亚洲色图 男人天堂 中文字幕| 黄色a级毛片大全视频| 麻豆乱淫一区二区| 妹子高潮喷水视频| 热re99久久精品国产66热6| 免费少妇av软件| 国产欧美日韩一区二区三 | 黄色片一级片一级黄色片| 丰满迷人的少妇在线观看| 一二三四在线观看免费中文在| 久热这里只有精品99| 超色免费av| 丰满迷人的少妇在线观看| 精品少妇一区二区三区视频日本电影| 啦啦啦免费观看视频1| 久久天堂一区二区三区四区| 嫁个100分男人电影在线观看| av片东京热男人的天堂| 国精品久久久久久国模美| 777久久人妻少妇嫩草av网站| 91字幕亚洲| 久久久久精品人妻al黑| 在线观看免费高清a一片| 一区二区三区激情视频| 国产在线视频一区二区| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品美女久久av网站| 中国美女看黄片| 国产精品 欧美亚洲| 亚洲精品久久午夜乱码| 日韩制服丝袜自拍偷拍| 日韩三级视频一区二区三区| 中文欧美无线码| 国产成人av激情在线播放| 99热全是精品| 人妻 亚洲 视频| 最近最新中文字幕大全免费视频| 欧美另类一区| 国产精品99久久99久久久不卡| 午夜影院在线不卡| 一个人免费在线观看的高清视频 | 国产成人精品久久二区二区91| 成人黄色视频免费在线看| 国产亚洲午夜精品一区二区久久| 我的亚洲天堂| 一本综合久久免费| 丝瓜视频免费看黄片| 亚洲精品美女久久av网站| 免费高清在线观看视频在线观看| 一区在线观看完整版| 午夜激情久久久久久久| 热re99久久国产66热| 亚洲成人免费电影在线观看| 在线观看免费视频网站a站| 五月开心婷婷网| 久久性视频一级片| 精品久久蜜臀av无| 王馨瑶露胸无遮挡在线观看| 亚洲国产欧美日韩在线播放| 久久久精品免费免费高清| 亚洲精华国产精华精| 欧美中文综合在线视频| 一级黄色大片毛片| 亚洲第一av免费看| 国产熟女午夜一区二区三区| 亚洲欧美日韩另类电影网站| 精品国产乱码久久久久久男人| 伦理电影免费视频| 亚洲国产毛片av蜜桃av| 亚洲五月婷婷丁香| 咕卡用的链子| 搡老岳熟女国产| 国产精品自产拍在线观看55亚洲 | 搡老岳熟女国产| 黑丝袜美女国产一区| 18禁黄网站禁片午夜丰满| 一区二区三区四区激情视频| 每晚都被弄得嗷嗷叫到高潮| 美女高潮喷水抽搐中文字幕| 香蕉国产在线看| 天堂8中文在线网| 欧美日韩黄片免| 国产在线视频一区二区| 别揉我奶头~嗯~啊~动态视频 | 在线天堂中文资源库| 99香蕉大伊视频| 亚洲欧美一区二区三区久久| 国产亚洲av片在线观看秒播厂| 男女免费视频国产| 亚洲欧洲精品一区二区精品久久久| 欧美日韩黄片免| 侵犯人妻中文字幕一二三四区| 波多野结衣一区麻豆| 一本色道久久久久久精品综合| 免费在线观看日本一区| 亚洲欧美一区二区三区久久| 国产精品久久久久久精品古装| 免费黄频网站在线观看国产| 国产伦人伦偷精品视频| 久久九九热精品免费| 日韩大片免费观看网站| av国产精品久久久久影院| 热re99久久精品国产66热6| 宅男免费午夜| 久9热在线精品视频| 真人做人爱边吃奶动态| 99久久人妻综合| 黑丝袜美女国产一区| 欧美另类亚洲清纯唯美| 精品少妇一区二区三区视频日本电影| 久久亚洲精品不卡| 99国产综合亚洲精品| 欧美日韩成人在线一区二区| 首页视频小说图片口味搜索| 日日摸夜夜添夜夜添小说| 丰满饥渴人妻一区二区三| 久久精品国产亚洲av香蕉五月 | 亚洲国产中文字幕在线视频| 久久99热这里只频精品6学生| 在线 av 中文字幕| 91麻豆精品激情在线观看国产 | 狠狠狠狠99中文字幕| 2018国产大陆天天弄谢| 精品少妇一区二区三区视频日本电影| 欧美激情 高清一区二区三区| 免费在线观看黄色视频的| 一本久久精品| 国产日韩欧美在线精品| 免费看十八禁软件| 桃花免费在线播放| 香蕉国产在线看| 9色porny在线观看| 动漫黄色视频在线观看| 亚洲国产精品999| 青草久久国产| 丁香六月欧美| 自线自在国产av| 成在线人永久免费视频| 极品人妻少妇av视频| 99国产精品一区二区三区| 亚洲国产毛片av蜜桃av| 又紧又爽又黄一区二区| 在线观看一区二区三区激情| 久久精品国产亚洲av高清一级| 最新在线观看一区二区三区| 99国产精品一区二区三区| 免费少妇av软件| 母亲3免费完整高清在线观看| 少妇的丰满在线观看| 午夜福利影视在线免费观看| 国产又爽黄色视频| 99精国产麻豆久久婷婷| 午夜老司机福利片| 大片免费播放器 马上看| www.自偷自拍.com| 午夜福利在线免费观看网站| 亚洲欧美成人综合另类久久久| 亚洲国产精品一区三区| 美女视频免费永久观看网站| 亚洲国产日韩一区二区| 69精品国产乱码久久久| 啦啦啦在线免费观看视频4| 九色亚洲精品在线播放| 国产亚洲av片在线观看秒播厂| 叶爱在线成人免费视频播放| 亚洲成国产人片在线观看| 一本久久精品| 在线观看人妻少妇| 99国产综合亚洲精品| 久久久久视频综合| 老司机深夜福利视频在线观看 | 久久中文字幕一级| 18禁黄网站禁片午夜丰满| 久久国产亚洲av麻豆专区| 久久久久久久大尺度免费视频| 亚洲中文av在线| 热99re8久久精品国产| 日本av手机在线免费观看| 国产精品99久久99久久久不卡| 精品人妻在线不人妻| 亚洲黑人精品在线| 免费av中文字幕在线| 少妇 在线观看| 久久精品国产亚洲av香蕉五月 | 搡老熟女国产l中国老女人| 欧美+亚洲+日韩+国产| 精品久久久久久久毛片微露脸 | 91麻豆av在线| 最新在线观看一区二区三区| 久久国产亚洲av麻豆专区| 亚洲国产精品成人久久小说| www.自偷自拍.com| 十八禁网站网址无遮挡| 老鸭窝网址在线观看| 精品欧美一区二区三区在线| 人人澡人人妻人| 一级a爱视频在线免费观看| 99久久人妻综合| 黄色视频不卡| 一区二区三区精品91| 18禁裸乳无遮挡动漫免费视频| 脱女人内裤的视频| 黑人巨大精品欧美一区二区蜜桃| 欧美精品一区二区大全| 搡老乐熟女国产| 水蜜桃什么品种好| 欧美变态另类bdsm刘玥| 国产免费福利视频在线观看| 国产亚洲欧美精品永久| 一本大道久久a久久精品| 亚洲成人免费av在线播放| 黑丝袜美女国产一区| 国产麻豆69| 在线观看舔阴道视频| av在线app专区| 香蕉丝袜av| 国产精品亚洲av一区麻豆| 欧美性长视频在线观看| 黄色片一级片一级黄色片| 久久久精品94久久精品| 国产老妇伦熟女老妇高清| 亚洲精品久久成人aⅴ小说| 俄罗斯特黄特色一大片| 两人在一起打扑克的视频| 我要看黄色一级片免费的| 亚洲成人免费av在线播放| 精品国产乱码久久久久久男人| 正在播放国产对白刺激| 老司机靠b影院| 国产av精品麻豆| √禁漫天堂资源中文www| 在线十欧美十亚洲十日本专区| 涩涩av久久男人的天堂| 精品久久久久久久毛片微露脸 | 视频区图区小说| 国产成人免费无遮挡视频| 亚洲伊人色综图| 国产亚洲精品久久久久5区| 大码成人一级视频| 9热在线视频观看99| 精品一品国产午夜福利视频| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美一区二区综合| 国产高清videossex| 国产精品一二三区在线看| 亚洲精品美女久久av网站| 日韩制服骚丝袜av| 不卡av一区二区三区| 午夜影院在线不卡| a级毛片在线看网站| 久久久久久久久免费视频了| 久久久久久久大尺度免费视频| 亚洲人成77777在线视频| 亚洲熟女精品中文字幕| 在线观看免费高清a一片| 日本91视频免费播放| 一级片免费观看大全| 丰满迷人的少妇在线观看| 亚洲国产成人一精品久久久| 欧美激情高清一区二区三区| 大片电影免费在线观看免费| 亚洲精品第二区| 欧美午夜高清在线| 中文字幕人妻熟女乱码| 一本久久精品| 18禁国产床啪视频网站| 两性夫妻黄色片| 久久青草综合色| av天堂在线播放| 亚洲av日韩在线播放| 搡老乐熟女国产| 每晚都被弄得嗷嗷叫到高潮| 国产av精品麻豆| 女警被强在线播放| 一本久久精品| 日韩欧美一区视频在线观看| 午夜福利在线观看吧| xxxhd国产人妻xxx| 亚洲 国产 在线| 大香蕉久久成人网| 精品福利观看| 久久人妻熟女aⅴ| 精品国内亚洲2022精品成人 | 别揉我奶头~嗯~啊~动态视频 | 国产成人系列免费观看| 天堂中文最新版在线下载| 国产人伦9x9x在线观看| 韩国精品一区二区三区| 亚洲av日韩在线播放| 久久久精品94久久精品| 每晚都被弄得嗷嗷叫到高潮| 免费观看人在逋| 亚洲国产中文字幕在线视频| 啦啦啦啦在线视频资源| 岛国毛片在线播放| 成人国产av品久久久| 性少妇av在线| 曰老女人黄片| 精品人妻熟女毛片av久久网站| 一级毛片电影观看| 在线观看免费高清a一片| 啦啦啦免费观看视频1| 成年人黄色毛片网站| 一本大道久久a久久精品| 免费在线观看完整版高清| e午夜精品久久久久久久| 一级黄色大片毛片| 国产亚洲欧美在线一区二区| av网站在线播放免费| 12—13女人毛片做爰片一| 国产亚洲精品久久久久5区| 高潮久久久久久久久久久不卡| 亚洲专区中文字幕在线| 亚洲七黄色美女视频| xxxhd国产人妻xxx| 国产在线观看jvid| 如日韩欧美国产精品一区二区三区| 超碰成人久久| 19禁男女啪啪无遮挡网站| 欧美另类亚洲清纯唯美| 男人舔女人的私密视频| 美女大奶头黄色视频| 啦啦啦视频在线资源免费观看| 国产精品香港三级国产av潘金莲| 青草久久国产| 欧美国产精品va在线观看不卡| www.av在线官网国产| 国产激情久久老熟女| 老熟女久久久| 汤姆久久久久久久影院中文字幕| 国产1区2区3区精品| 国产av一区二区精品久久| 国产成人免费观看mmmm| 久久人人爽人人片av| 精品国产一区二区三区久久久樱花| 男女国产视频网站| 日本五十路高清| 亚洲一区二区三区欧美精品| 久久国产亚洲av麻豆专区| 国产精品国产av在线观看| 久久免费观看电影| 亚洲国产精品一区三区| 女人高潮潮喷娇喘18禁视频| 99精国产麻豆久久婷婷| 国产男女内射视频| 97在线人人人人妻| 国产一区二区在线观看av| 在线观看www视频免费| 香蕉丝袜av| 啦啦啦中文免费视频观看日本| 国产又爽黄色视频| 久久香蕉激情| 水蜜桃什么品种好| 久久中文字幕一级| 在线观看免费高清a一片| 在线永久观看黄色视频| 十分钟在线观看高清视频www| 国产精品一二三区在线看| 亚洲国产精品一区二区三区在线| 国精品久久久久久国模美| 在线永久观看黄色视频| 成人国产av品久久久| 日韩免费高清中文字幕av| 亚洲国产精品一区三区| 亚洲av成人不卡在线观看播放网 | 老司机影院成人| 亚洲性夜色夜夜综合| 久久人人爽av亚洲精品天堂| 成年动漫av网址| 99久久精品国产亚洲精品| 美女视频免费永久观看网站| 视频在线观看一区二区三区| 亚洲精品国产av成人精品| 啦啦啦 在线观看视频| 久久国产精品人妻蜜桃| 一区福利在线观看| 操美女的视频在线观看| 成人av一区二区三区在线看 | 97人妻天天添夜夜摸| 久久人妻福利社区极品人妻图片| av在线播放精品| 亚洲成人国产一区在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产野战对白在线观看| 成人黄色视频免费在线看| a 毛片基地| videosex国产| 国产一区二区 视频在线| 亚洲欧美色中文字幕在线| 菩萨蛮人人尽说江南好唐韦庄| 午夜两性在线视频| 国产精品av久久久久免费| 久久国产精品人妻蜜桃| 久久国产精品男人的天堂亚洲| 99热国产这里只有精品6| 不卡一级毛片| 欧美精品人与动牲交sv欧美| 9191精品国产免费久久| 国产一区二区三区综合在线观看| 欧美另类亚洲清纯唯美| 在线观看人妻少妇| 国产成人一区二区三区免费视频网站| 热re99久久精品国产66热6| 1024视频免费在线观看| netflix在线观看网站| 男女床上黄色一级片免费看| 99久久国产精品久久久| 午夜视频精品福利| 免费高清在线观看视频在线观看| 曰老女人黄片| 亚洲精品中文字幕一二三四区 | 久久久久久久久免费视频了| 亚洲国产看品久久| 日本wwww免费看| 成年av动漫网址| 亚洲熟女精品中文字幕| 在线观看www视频免费| 久久精品成人免费网站| 国产在视频线精品| 久久女婷五月综合色啪小说| 黄色怎么调成土黄色| 久久av网站| 成人18禁高潮啪啪吃奶动态图| 久久精品国产亚洲av香蕉五月 | 国产精品影院久久| 视频区图区小说| 狠狠精品人妻久久久久久综合| 香蕉国产在线看| 国产成人欧美| 18在线观看网站| 动漫黄色视频在线观看| 日韩大码丰满熟妇| 国产精品一二三区在线看| 免费人妻精品一区二区三区视频| 日韩中文字幕欧美一区二区| 国产精品偷伦视频观看了| 麻豆乱淫一区二区| 黄片大片在线免费观看| 一区二区三区激情视频| 欧美日韩成人在线一区二区| 亚洲欧美日韩另类电影网站| 丝袜人妻中文字幕| 亚洲欧美激情在线| 亚洲av国产av综合av卡| 亚洲三区欧美一区| 如日韩欧美国产精品一区二区三区| 国产精品一二三区在线看| 欧美日韩视频精品一区| 亚洲精品中文字幕在线视频| 亚洲精品日韩在线中文字幕| 久久国产精品影院| 在线观看免费日韩欧美大片| 在线观看www视频免费| 成人黄色视频免费在线看| 午夜视频精品福利| 精品久久久久久电影网| 国产亚洲精品第一综合不卡| 国产97色在线日韩免费| 巨乳人妻的诱惑在线观看| 午夜成年电影在线免费观看| 欧美午夜高清在线| 亚洲精品久久午夜乱码| 国产精品九九99| 亚洲av成人一区二区三| 黄色视频,在线免费观看| 无限看片的www在线观看| 国产伦人伦偷精品视频| 下体分泌物呈黄色| 欧美亚洲 丝袜 人妻 在线| 动漫黄色视频在线观看| 亚洲五月婷婷丁香| 中文字幕制服av|