• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Containment ability and groove depth design of U type protection ring

    2016-11-23 08:05:25BiCongerXunHijunHungXinninHeZeknHongWeirong
    CHINESE JOURNAL OF AERONAUTICS 2016年2期

    Bi Conger,Xun Hijun,*,Hung Xinnin,He Zekn,Hong Weirong

    aHigh-speed Rotating Machinery Laboratory,Institute of Chemical Machinery,Department of Chemical Engineering,Zhejiang University,Hangzhou 310027,China

    bCollaborative Innovation Center for Advanced Aero-engine,Beijing 100083,China

    Containment ability and groove depth design of U type protection ring

    Bai Congera,b,Xuan Haijuna,b,*,Huang Xianniana,b,He Zekana,b,Hong Weironga

    aHigh-speed Rotating Machinery Laboratory,Institute of Chemical Machinery,Department of Chemical Engineering,Zhejiang University,Hangzhou 310027,China

    bCollaborative Innovation Center for Advanced Aero-engine,Beijing 100083,China

    Disk fragments containment;High energy rotor;Numerical analysis;Protection ring;Verification test

    High-energy rotor uncontained failure can cause catastrophic damage effects to aircraft systems if not addressed in design.In this paper,numerical simulations of three high-energy rotor disk fragments impacting on U type protection rings are carried out using LS-DYNA.Protection rings with the same mass and different groove depths are designed to study the influence of the groove depth.Simulation results including kinetic energy and impact force variation of single fragment are presented.It shows that the groove depth infects both the axial containment ability of the protection ring and the transfer process of energy.The depth of groove ought to be controlled to an appropriate value to meet both the requirement of axial containment and higher safety factor.Verification test on high-speed spin tester has been conducted and shows that protection ring with appropriate U structure can resist the impact of the disk burst fragments.The ring is inflated from a circular to an oval-triangle shape.The corresponding simulation shows good agreement with the test.

    1.Introduction

    In turbine cooler of environment control system(ECS),auxiliary power unit(APU)and air turbine starter in aircraft,failed high speed rotor can be released as high-energy fragments,affecting flying performance in a number of direct and indirect ways and even leading to the loss of airplane.1With a more stringent working condition of higher temperature and rotational velocity,degradation and burst failure are more likely to occur,especially on the critical disks.Even though disk burst accidents happen infrequently nowadays,they are not completely avoidable.2Due to the catastrophic results,specific provisions are established for containment ability in both civil and military airplane specifications.Federal Aviation Administration(FAA)Federal Aviation Regulations(FARs)set requirements for equipment containing high-energy rotors oftransport category airplane in Part 25.3Corresponding technical standards for APU are also put forward in TSO-C77b,gas turbine auxiliary power units by FAA.4

    An available practice for studying the containing process is the combination of experimental tests and numerical simulations.With the advent of computer non-linear finite element codes,numerical simulations have become an important means for researchers to conduct their studies.A number of investigations have included experiments and numerical simulations of high-energy disk fragments containment.Hagg and Sankey5carried out tests which showed that containment of missile-like disk quarter fragments by a steel cylindrical shell is a continuous two-stage process.In Stage 1,the main objects to be considered are the loss in kinetic energy of system and the energy dissipated in plastic compression and shear strain.For non-perforation,the process enters Stage 2,which mainly involves dissipation of energy in plastic tension strain.The effects of mesh refinement on numerical simulations of uncontained engine debris impact on thin plates were studied by Norman Jr.6and Ambur7et al.In their studies,it was concluded that very fine mesh should be used to predict damage similar to that obtained from experimental results.Eric and Steven8proposed a simulation method of using ANSYS/LSDYNA to develop an analysis method that could provide more accurate predictions of containment failure limits for a wider range of disk and containment geometries.Li et al.9carried out aeroengine turbine blade and disk containment tests respectively and analyzed them using numerical simulations with ANSYS/LS-DYNA.He et al.10conducted numerical study of an aeroengine fan blade/casing impact process and the effects of stress initialization on simulation are assessed.Liu et al.11studied compressor disk containment of aircraft cooling turbine used in aircraft environment control system.The disk burst into 3 pieces and containment process was investigated in combination of experimental results and numerical results.In this paper,numerical models are established first to predict the containment ability and loads.Then,simulation results are validated through test data.Detailed data obtained from numerical results are used to analyze the variation of the energy,the force,etc.

    For protection rings,U structure seems to be an optimal design for disk bursting containment of high-energy rotor.In order to meet the requirement of containment,the protection rings must have enough thickness and U groove depth to resist the high-energy fragments.But excessive thickness results in excessive weight.To achieve a minimum weight of the casing which can offer enough containment strength,reasonable structural designs for the casing are expected.In this paper,containment ability and groove depth design of U type protection ring are studied.

    This paper consists of five sections.Following this introduction,numerical simulations of fan impeller fragments in air turbine cooler impacting on the U type protection rings appears in Section 2.The containment ability of rings with different U-groove depths is studied using ANSYS/LS-DYNA.Section 3 shows a verification containment test on highspeed spin tester with the optimal protection ring chosen from the simulations.Section 4 describes the simulation of containment process under the test condition.Comparisons between the test and the simulation results are discussed.The last section presents the conclusions.

    2.Containment ability of different U geometries

    With the aim of saving costs and improving efficiency of research,a series of numerical simulations is carried out to study the effect of U geometry to the containment ability using ANSYS/LS-DYNA.

    2.1.Design objective

    Containment ability is studied through the simulation of fan impeller disk fragments in air turbine cooler impacting on the protection casing.In practical situation,fan protection casing consists of three components,among which the pipe and the protection ring play a major role of protection.Thus,the model in simulation is built without the outer shell(see Fig.1).The installation position of the protection ring is designed(see Fig.2).

    Referring to SAE Aerospae-ARP-85F12,the containment speed is defined 125%of the maximum speed resulting from normal operating condition.According to the design parameter of the air turbine cooler,the fan disk is supposed to burst with the speed of 70,069 r/min.The main design parameters are listed in Table 1.It should be noted that 2Cr13,the material of the protection ring,is a common material used in aerospace for its good corrosion resistance to the atmosphere.Available material parameters for simulation and fine machinability lead the choice.

    2.2.Failure mode

    According to FARs,it must be shown by test that high-energy rotor equipment can contain any failure of a high energy rotor that occurs at the highest speed obtainable with the normal speed control devices inoperative.TSO-C77b also puts forward provision that containment must be substantiated in accordance with the condition of hub containment in APU.4In advisory circular(AC)20-128A of FAA,engine and APU failure model include single one-third disc fragment,intermediate fragment,fan blade fragment,etc.13Before the test,the most dangerous bursting mode must be determined.In order to simplify the question,the impeller is assumed to be a disk with a radius ofr.Therefore,the rotational kinetic energy(Ec)of the disk can be calculated as

    wheremis the total mass of the impeller and ω the disk rotating/burst speed.

    During the process of impacting,translational kinetic energy(Et)plays a leading role among all the types of the energy of fragment.Assume the disk bursts intonequal parts.Thus,the centroid radius(rm)andEtof a fragment can be defined as

    The ratio ofEttoEcis presented as

    Fig.1 Geometric model of test components.

    Fig.3 shows a drawing of energy ratio according to Eq.(4).It is possible to conclude that for a certain disk,the maximum translational kinetic energy of a single fragment occurs when the disk bursts into three parts.

    Fig.2 Schematic of fan components.

    Table 1 Main design parameters of components.

    Fig.3 Ratio of translational kinetic energy(Et)of the fragment to kinetic energy of the disk(Ec).

    2.3.Different U protection rings

    Five protection rings with the same mass are studied in the simulation.The heights of rings are certain because of the overall structure.Fig.4(a)presents four ring structures of different U-groove depths,among which Type I has the deepest U-groove of 17 mm,half height of the ring.U-groove depth is successively and uniformly decreased from Type I to Type IV.A straight cylinder is used in Type V for comparison with U geometries(see Fig.4(b)).To obtain a more obvious contrast,thickness of Type II is set to approach a critical state.

    It should be noted that the five rings are controlled to be of the same mass of 0.57 kg.The corresponding wall thicknesses are designed using UG,listed in Table 2.

    2.4.Finite element model

    To improve simulation efficiency,geometric characteristics that make few effects of containment are simplified.Finite element models are shown in Fig.5.To capture the detailed behavior of the case,at least three elements through the thickness of the case are set.All elements are set to be 8-node solid element which can observe the failure mode through the thickness while other element types such as the shell element cannot easily obtain the message.14

    Material model is a key factor affecting the accuracy of results from a nonlinear finite element simulation.In this paper,the Johnson–Cook(JC)model is chosen for the reason shown in Refs.9,15and has already been described def initely.16,17The material parameters used in this paper are listed in Table 3 and taken from Refs.18–20.In Table 3,Ais the yield stress,Bandnrepresent the effects of strain hardening,Cis the strain rate constant andmrepresents the temperature constant in constitutive model.16For fracture model,D1,D2,D3,D4,D5are failure constants determined by material tests.17

    Fig.4 Five cross-sections of protection ring.

    Table 2 Geometries of five protection rings.

    Fig.5 Finite element models.

    The elements of impeller fragments are given an initial angular velocity.Surface to surface contact between the disk fragment and the containment structure is modeled using a kinematic contact algorithm.The contact stiffness scale factor is defined as 1.0 and the friction coefficient is defined as typical values of 0.15.9

    2.5.Comparison and analysis

    Fig.6 shows the simulation results of different protection rings.It can be observed that Type I protection ring is torn by one fragment and a piece of breach appears.Fragments are contained within Type II.Since the outside surface of the ring damaged slightly,it can be defined as a critical state.For Types III–V,damage of the rings does not occur,but the fragments fly out in axial direction.

    It is shown that smaller depth of the groove leads to less obvious deformation of the protection ring.However,the fragments are more likely to run out of the covered range of ring and fragments flying along axial-direction may cause damage to other components.High energy disk fragments containment should be defined to capture the fragments within the ring,so Type II protection ring,which successfully contains the fragments in both radial and axial direction,shows greater fitness.

    From the forgoing it follows that U structure performs better than straight cylinder in containing the fragments.Under the condition of a constant mass of ring,greater depth of the groove leads to smaller thickness of the impacting zone,which indicates the reduction of safety factor of the protection ring.As shown in Fig.6(a),ring penetration happens.When designing protection rings,the depth of groove ought to be controlled to an appropriate value.

    The above analysis shows that U-groove depth plays an essential role for containment.In addition,it has influence on other aspects.On the one hand,the protection ring requires sufficient stiffness which is directly related to the groove depth.On the other hand,U-groove depth has an effect on the energy transfer process between the fragment and ring.Fig.7 and Table 4 show the kinetic energy variation of the fragments.With the groove depth decreasing,the residual kinetic energy(after impacting)of the fragments increases slightly.Axial deviation of fragments emerges due to the interaction of themselves,for they rebound from the casing with certain kinetic energy.It is shown that the impacting force of the fragments tends to have a lower maximum value and a longer duration with a deeper U-groove,as Fig.8 presents.The maximum impact force is also carried backward as the groove depth increases.

    Fig.6 Simulation results of different protection rings.

    Table 3 J-C constitutive relation and fracture criterion constant of TC4,2A12 and 2Cr13.

    It is possible to conclude that appropriate U-groove depth helps to buffer the impact of fragments,leading to an adequate interaction and energy transfer.Rebounding fragments with less kinetic energy and the obstruction of U-groove are conducive to axial containment.However,considering the requirement of less weight and volume,it is also unsuitable for an excessive depth.The present results serve to illustrate that Type II protection ring,with a more suitable U-groove depth,can meet both the requirement of axial containment and higher safety factor.

    3.Verification test and results

    Component level containment test using high-speed spin tester is an appropriate method to study the behavior of fragments/casing impact,penetration and perforation.21Containment ability studied above was verified through a test.Since tests are relatively expensive,they were carried out only for once.

    3.1.Test arrangement

    Protection case used in the test includes a U type protection ring,a pipe and the outer shell.According to the analysis in Section 2,Type II protection ring,with a relatively suitable U-groove depth of 13 mm,was chosen to be tested.Considering the expected result of containment and the limited cost,thickness is redesigned to 2.3 mm,with a safety factor of 1.1.

    The test was conducted on the ZUST1 rotor high-speed spin tester in High-Speed Rotating Machinery Laboratory in Zhejiang University.Parameters of this spin facility are presented in Ref.21.For the requirement of a fan disk burst in speed ranging from 70069 to(75069±50)r/min,a speed increasing gear box with ratio of 4.07 is added to attain a secondary acceleration with a final output maximum speed up to 96000 r/min.The experiment was conducted at room temperature.Fig.9 presents the sketch of the testing rig and pretest photo in testing chamber.

    Fig.7 Kinetic energy variation of single fragment.

    Table 4 Residual kinetic energy of single fragment.

    3.2.Impeller bursting method

    Before test,the fan impeller is supposed to be notched along radial direction at three symmetrical positions circumferentially with the aim of bursting into 3 pieces at target speed range along the direction of presented crack(see Fig.10).In Fig.10(a),area without the section line is supposed to be cut,thus,rcrepresents the distance from center to terminal of the crack andLis the remaining length along the crackdirection.Fracture occurs in the notched cross-section at which the localized plastic zone expands with the increase of rotating speed.When the circumferential stress at the crosssection is beyond the ultimate tensile strength of the material,the impeller bursts with a certain kinetic energy.The average stress method is used to calculate the notched cross-section circumferential stress roughly and provides guidance for cutting.In order to be workable,the process of notching is supposed to be conducted in multiple steps.

    3.3.Results and analysis

    Conservatively,the initial remaining length of the impeller(L)was 9.5 mm and impeller burst did not occur at the highest speed,75069 r/min.The same procedure was carried out until the remaining length reduced to 7.0 mm,with the burst speed of 75069 r/min which is in accordance with simulations.

    The first testing site is presented in Fig.11.It is shown that the casing can resist the impact of three high-energy disk fragments.Blades at three impacting points wore seriously and missed;the pipe was penetrated and the disk fragments were successfully contained within the protection ring.The U type protection ring deformed from a circular to an oval-triangle shape.The test result indicates that the analysis of U type protection ring is conductive.

    4.Numerical simulation of test

    Since the actual bursting speed is 5000 r/min more than that in the simulation before,numerical simulation of the test is conducted with the aim of further verification and better understanding of the impact process.

    Fig.10 Impeller notching pattern.

    Fig.11 The first testing site.

    Geometric configurations of the disk and the protection ring are the same as those used in the test.Simulation method follows that in Section 2.

    Simulation results indicate that the main failure modes of blades include crispation,wear of main impact zone and fracture of the root.It is found that the fragments breach the pipe and cause dishing deformation on the ring.Bulge deformation occurs at the impact region of the protection ring,and because of the three impact points from the disks’fragments,the ring deformed from a circular to an oval-triangle shape.

    The combined disk fragments of simulation show good agreement with the test.Comparison is shown in Fig.12.Fig.13(a)presents the whole containment components in the test.Pipe and protection ring in Figs.13(b)and(c)also accurately reveal the failure characteristics.According to the high concordance between the simulation and the test in Section 3,the simulation method can be regarded reliable.

    Fig.14 shows the von Mises stress contour plots at 8 different time points.The fragments are released after they separate from each other.The blade tip firstly impacts the pipe and bends due to extrusion,and an impact force peak occurs at 0.06 ms(see Fig.15).As a result,for each disk fragment,blades on one side are subjected to severe extrusion while slight impacts occur on the other side.The pipe is perforated firstly at the time of 0.21 ms,meanwhile the impact force reaches the maximum.Contact of the protection ring and the fragments occurs at 0.30 ms,at this point,the pipe is severely deformed and damaged.Hereafter,a part of the fragment proceeds to tear the pipe,and other part impacts the ring.The third impact force peak in Fig.15 at time 0.39 ms is the result from the impact of the fragment and the protection ring.After the time of 3 ms,most of the initial kinetic energy of the fragments is consumed.

    Fig.12 Comparison between test and simulation of impeller.

    Fig.13 Comparison between test and simulation of casing.

    Fig.14 Containment simulation results.

    Fig.15 Impact force progress.

    5.Conclusions

    In this paper,numerical simulations of high-energy rotor disk fragments impacting on different U-type protection ring are carried out using LS-DYNA.Verification test and the correspondingsimulation werealso performed.Comparisons between the experimental and the numerical results show that the numerical simulations are in fitness.Based on the simulation observations and test results presented,the following conclusions were drawn:

    (1)While containing fragment of 1/3 disk,the U structure performs better than straight cylinder in protection ring design.U-groove depth infects both the axial containment ability and the energy transfer process between fragments and rings.The depth of groove ought to be controlled to an appropriate value to meet both the requirement of axial containment and higher safety factor.

    (2)Containment test shows that the fragments perforate the pipe and cause inflation of the U type protection ring.The ring is inflated from a circular to an oval-triangle shape.The test result indicates that the numerical analysis of U type protection ring is conductive.Simulation shows good agreement with the test and the method can be regarded as reliable.

    1.Mousa NA,Whale MD,Groszmann DE,Zhang XJ.The potential for fuel tank fire and hydrodynamic ram from uncontained aircraft engine debris.Washington,D.C.:US Department of Transportation,Federal Aviation Administration;1997(Report No.:DC 20591 DOT/FAA/AR-96/95).

    2.Xuan HJ,Liu LL,Feng YM,He Q,Li JJ.Containment of highspeed rotating disk fragments.J Zhejiang Univ Sci A2012;13(9):665–73.

    3.FAA Federal Aviation Regulations.Airworthiness standards:Transport category airplanes.Washington,D.C.:Federal Aviation Administration;1984(FAA-FAR-25).

    4.Department of Transportation,Federal Aviation Administration.Gas turbine auxiliary power units.Washington,D.C.:US Department of Transportation,Federal Aviation Administration;2000.p.16–7(Technical Standard Order(TSO-C77b)).

    5.Hagg AC,Sankey GO.The containment of disk burst fragments by cylindrical shells.J Eng Power1974;96(2):114–23.

    6.Norman Jr FK,Jaunky N,Lawson RE,Ambur DR.Penetration simulation for uncontained engine debris impact on fuselage like panels using LS-DYNA.Finite Elem Anal Des2000;36(2):99–133.

    7.Ambur DR,Jaunky N,Lawson RE.Numerical simulations for high-energy impact of thin plates.Int J Impact Eng2001;25(7):683–702.

    8.Eric S,Steven H.The use of LS-DYNA models to predict containment of disk burst fragments.10th international LS-DYNA user conference.2008 Jan 1–9;Detroit(MI).

    9.Li JJ,Xuan HJ,Liao LF,Hong WR,Wu RR.Penetration of disk fragments following impact on thin plate.J Zhejiang Univ Sci A2009;10(5):677–84.

    10.He Q,Xuan HJ,Liu LL,Hong WR,Wu RR.Perforation of aeroengine fan casing by a single rotating blade.J Aerosp Sci Technol2013;35(1):234–41.

    11.Liu LL,Xuan HJ,Zhang N,Hong WR.Research on compressor disc containment of a cooling turbine.22nd proceedings of the conference on structural engineering.2013 Aug 9–11;Urumqi,China.Beijing:Engineering Mechanics Press;2013.p.190–5[Chinese].

    12.SAE Aerospace.SAEAerospace-ARP-85F.Airconditioning systems for subsonic airplanes.Warrendale(PA):Society of Automotive Engineers(SAE)Aerospace;2012.p.27.

    13.Federal Aviation Administration.Design considerations for minimizing hazards caused by uncontained turbine engine and auxiliary power unit rotor failure.Washington,D.C.:Federal Aviation Administration;1997(Report No.:FAA Advisory Circular No.20-128A).

    14.He Q,Xuan HJ,Liao LF,Hong WR,Wu RR.Simulation methodology development for rotating blade containment analysis.J Zhejiang Univ Sci A2012;13(4):239–59.

    15.Teng X,Wierzbicki T.Evaluation of six fracture models in high velocity perforation.Eng Fract Mech2006;73(12):1653–78.

    16.Johnson GR,Cook WH.A constitutive model and data for metals subjected to large strains,high rates and high temperatures.Proceedings of the 7th international symposium on ballistics;1983 Apr 19–21;Hague,Netherlands.p.541–57.

    17.Johnson GR,Cook WH.Fracture characteristics of three metals subjected to various strains,strain rates,temperatures and pressures.Eng Fract Mech1985;21(1):31–48.

    18.Li J,Xie LJ,Wang XB,Wang L,Xie J,Yang HJ.Material constitutive model of 2Cr13 for FEA of chip formation process.Appl Mech Mater2008;10(12):796–800.

    19.Chen G,Chen ZF,Tao JL,Niu W,He P.Dynamic mechanical property research of TC4.J Exp Mech2005;20(4):605–9[Chinese].

    20.Murat B,Steve K,Matti JL.Explicit finite-element analysis of 2024-T3/T351 aluminum material under impact loading for airplane engine containment and fragment shielding.J Aerosp Eng2009;22(3):287–95.

    21.Xuan HJ,Wu RR.Aeroengine turbine blade containment tests using high-speed rotor spin testing facility.Aerosp Sci Technol2006;10(6):501–8.

    21 August 2015;revised 27 November 2015;accepted 31 December 2015

    Available online 23 February 2016

    ?2016 Chinese Society of Aeronautics and Astronautics.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 571 87951223.

    E-mail addresses:baiconger@zju.edu.cn(C.Bai),marine@zju.edu.cn(H.Xuan).

    Peer review under responsibility of Editorial Committee of CJA.

    BAI Congeris a Ph.D.candidate at Institute of Process Equipment in Zhejiang University.Her research interests are structure and strength of aeroengine,especially of containment design methodology study for high-energy rotor disk fragments.

    XUAN Haijunis an associate professor and Ph.D.supervisor at Highspeed Rotating Machinery Lab.,Zhejiang University,Hangzhou,P.R.China.He received the Ph.D.degree from the same university in 2004.His current research interests are rotordynamics,rotor strengthen,disk low cycle fatigue,rotating blade high cycle fatigue and impacted structure dynamics response in high-speed rotating machinery.

    又黄又爽又免费观看的视频| 人妻夜夜爽99麻豆av| 成人一区二区视频在线观看| 在线a可以看的网站| 日韩欧美国产一区二区入口| 国产精品一区二区三区四区久久| 中国美女看黄片| 成年人黄色毛片网站| 法律面前人人平等表现在哪些方面| 91九色精品人成在线观看| 每晚都被弄得嗷嗷叫到高潮| 女生性感内裤真人,穿戴方法视频| 午夜福利视频1000在线观看| 久久久久精品国产欧美久久久| 欧美激情久久久久久爽电影| 国产成人系列免费观看| 淫秽高清视频在线观看| 亚洲成a人片在线一区二区| АⅤ资源中文在线天堂| 老熟妇仑乱视频hdxx| 国产探花在线观看一区二区| 中文字幕最新亚洲高清| 精品久久久久久久人妻蜜臀av| 91在线观看av| 一级毛片女人18水好多| 老司机在亚洲福利影院| 欧美+亚洲+日韩+国产| 香蕉av资源在线| 欧美性猛交╳xxx乱大交人| 午夜免费激情av| 制服诱惑二区| 好男人在线观看高清免费视频| 欧美中文日本在线观看视频| 久久久久性生活片| 国产单亲对白刺激| 国产精品一区二区免费欧美| 久久人妻av系列| 国产成人啪精品午夜网站| 日韩欧美在线二视频| 国产欧美日韩一区二区精品| 亚洲成av人片免费观看| 免费在线观看成人毛片| 非洲黑人性xxxx精品又粗又长| 久久亚洲精品不卡| 露出奶头的视频| 一本一本综合久久| 成人亚洲精品av一区二区| 看片在线看免费视频| 欧美日韩瑟瑟在线播放| 12—13女人毛片做爰片一| 亚洲精品在线观看二区| 亚洲男人天堂网一区| 久久久久久久午夜电影| 日本一二三区视频观看| 黄色丝袜av网址大全| 特级一级黄色大片| 精品人妻1区二区| 岛国视频午夜一区免费看| 亚洲av电影在线进入| 成年人黄色毛片网站| 欧美一级毛片孕妇| 国产亚洲精品一区二区www| 久久久久久免费高清国产稀缺| 午夜福利欧美成人| 久久久久久国产a免费观看| 色综合亚洲欧美另类图片| 国内少妇人妻偷人精品xxx网站 | 久久久国产精品麻豆| 丝袜美腿诱惑在线| 一边摸一边抽搐一进一小说| 在线观看免费午夜福利视频| tocl精华| 女人高潮潮喷娇喘18禁视频| 美女免费视频网站| 国产精品久久久久久久电影 | 亚洲av第一区精品v没综合| 一个人观看的视频www高清免费观看 | 婷婷丁香在线五月| 正在播放国产对白刺激| 亚洲av中文字字幕乱码综合| 色老头精品视频在线观看| 三级男女做爰猛烈吃奶摸视频| 人妻夜夜爽99麻豆av| 欧美av亚洲av综合av国产av| 精品乱码久久久久久99久播| 精品免费久久久久久久清纯| 国产熟女午夜一区二区三区| 色尼玛亚洲综合影院| 欧美乱码精品一区二区三区| 小说图片视频综合网站| 亚洲电影在线观看av| 国产精品亚洲一级av第二区| 精品国产乱子伦一区二区三区| 久久久久久久久中文| 黄色成人免费大全| 国产成人系列免费观看| 久久精品综合一区二区三区| 51午夜福利影视在线观看| 美女 人体艺术 gogo| 97超级碰碰碰精品色视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久国产乱子伦精品免费另类| av欧美777| 精品乱码久久久久久99久播| 欧美日韩中文字幕国产精品一区二区三区| 两个人视频免费观看高清| 亚洲精华国产精华精| 无人区码免费观看不卡| 人妻久久中文字幕网| 怎么达到女性高潮| 欧美不卡视频在线免费观看 | 久久久精品欧美日韩精品| 欧美成人一区二区免费高清观看 | 少妇的丰满在线观看| 可以免费在线观看a视频的电影网站| 国内久久婷婷六月综合欲色啪| 亚洲在线自拍视频| 一本大道久久a久久精品| 三级国产精品欧美在线观看 | 99热只有精品国产| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区免费欧美| 最好的美女福利视频网| 51午夜福利影视在线观看| 国产精品 欧美亚洲| 熟女电影av网| 老汉色av国产亚洲站长工具| 欧美人与性动交α欧美精品济南到| 免费看日本二区| 亚洲va日本ⅴa欧美va伊人久久| 一a级毛片在线观看| 51午夜福利影视在线观看| 日韩大码丰满熟妇| 欧美高清成人免费视频www| 天天一区二区日本电影三级| 国产真人三级小视频在线观看| 免费看十八禁软件| 可以在线观看毛片的网站| 此物有八面人人有两片| 夜夜爽天天搞| 国产av麻豆久久久久久久| 免费看a级黄色片| 国产成人精品久久二区二区91| 精品久久蜜臀av无| 国产99白浆流出| 淫秽高清视频在线观看| 亚洲第一电影网av| 身体一侧抽搐| 国产高清有码在线观看视频 | 日本五十路高清| 亚洲av熟女| 久久人妻av系列| 欧美+亚洲+日韩+国产| 18禁美女被吸乳视频| 中出人妻视频一区二区| 亚洲一区二区三区色噜噜| 淫秽高清视频在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲中文字幕一区二区三区有码在线看 | 久久精品综合一区二区三区| 日韩欧美在线二视频| 精品国产亚洲在线| 少妇裸体淫交视频免费看高清 | 亚洲乱码一区二区免费版| 色综合站精品国产| 亚洲av熟女| 精品乱码久久久久久99久播| 亚洲精品美女久久久久99蜜臀| 91av网站免费观看| 久久人妻福利社区极品人妻图片| 国产精华一区二区三区| 欧美中文综合在线视频| 午夜日韩欧美国产| 日韩欧美 国产精品| 可以在线观看的亚洲视频| 精品第一国产精品| 欧美激情久久久久久爽电影| 97碰自拍视频| 国产精品一及| 亚洲国产精品成人综合色| 欧美一级毛片孕妇| 老司机深夜福利视频在线观看| av中文乱码字幕在线| 国产一区二区在线av高清观看| 亚洲成av人片免费观看| 亚洲国产精品久久男人天堂| 国产精品99久久99久久久不卡| 精品人妻1区二区| 久久99热这里只有精品18| 亚洲欧美日韩东京热| 一进一出抽搐gif免费好疼| 日韩欧美一区二区三区在线观看| 国产一区二区激情短视频| 一边摸一边抽搐一进一小说| 一卡2卡三卡四卡精品乱码亚洲| 超碰成人久久| 日韩精品青青久久久久久| 久久久久久久午夜电影| 精品无人区乱码1区二区| 99精品在免费线老司机午夜| 在线观看www视频免费| 国产蜜桃级精品一区二区三区| 两个人视频免费观看高清| 狂野欧美激情性xxxx| 中文资源天堂在线| 国产爱豆传媒在线观看 | x7x7x7水蜜桃| 精品国产乱子伦一区二区三区| 国产午夜福利久久久久久| 色综合亚洲欧美另类图片| 在线观看日韩欧美| 精品福利观看| 久久精品影院6| 欧美成人免费av一区二区三区| 亚洲电影在线观看av| 久久人妻福利社区极品人妻图片| 国产精品电影一区二区三区| 欧美午夜高清在线| 欧美一级毛片孕妇| 免费在线观看影片大全网站| www.999成人在线观看| 免费观看人在逋| 在线视频色国产色| 欧美黄色片欧美黄色片| 精品久久久久久久毛片微露脸| 亚洲免费av在线视频| 日本熟妇午夜| 久久久久久久久久黄片| 免费在线观看亚洲国产| 中文字幕高清在线视频| www日本黄色视频网| 日本a在线网址| 亚洲人成伊人成综合网2020| 一区二区三区国产精品乱码| 欧美日韩精品网址| 久久99热这里只有精品18| 丝袜人妻中文字幕| 日本一本二区三区精品| 小说图片视频综合网站| 婷婷六月久久综合丁香| 人成视频在线观看免费观看| 最新在线观看一区二区三区| netflix在线观看网站| 婷婷精品国产亚洲av在线| 亚洲中文av在线| 国产成人精品久久二区二区91| 成人国语在线视频| 一级毛片精品| 每晚都被弄得嗷嗷叫到高潮| 18禁国产床啪视频网站| 中国美女看黄片| 亚洲国产精品久久男人天堂| 亚洲国产精品合色在线| 男女下面进入的视频免费午夜| 国产欧美日韩一区二区三| 成在线人永久免费视频| 别揉我奶头~嗯~啊~动态视频| 免费一级毛片在线播放高清视频| 国产精品综合久久久久久久免费| 男女午夜视频在线观看| 免费高清视频大片| 精品国产乱码久久久久久男人| aaaaa片日本免费| 亚洲成av人片在线播放无| 欧美激情久久久久久爽电影| 亚洲av美国av| 午夜福利欧美成人| 国产欧美日韩一区二区三| 亚洲无线在线观看| 99精品久久久久人妻精品| 一级作爱视频免费观看| 99精品在免费线老司机午夜| 久久精品人妻少妇| 美女午夜性视频免费| АⅤ资源中文在线天堂| 久久亚洲真实| 国产高清videossex| 免费观看精品视频网站| 999精品在线视频| 哪里可以看免费的av片| 成人三级做爰电影| 每晚都被弄得嗷嗷叫到高潮| 日本a在线网址| 欧美人与性动交α欧美精品济南到| 亚洲av电影不卡..在线观看| 特大巨黑吊av在线直播| 高潮久久久久久久久久久不卡| 看黄色毛片网站| 亚洲欧美日韩东京热| 热99re8久久精品国产| 精品久久久久久久久久久久久| 一区二区三区国产精品乱码| 成年版毛片免费区| 国产精品1区2区在线观看.| 中文字幕人妻丝袜一区二区| 精品免费久久久久久久清纯| 给我免费播放毛片高清在线观看| 国产久久久一区二区三区| 亚洲中文日韩欧美视频| 国产精品 欧美亚洲| 99精品在免费线老司机午夜| 亚洲美女黄片视频| or卡值多少钱| 亚洲精品久久国产高清桃花| 亚洲天堂国产精品一区在线| 国产免费男女视频| 亚洲精品久久成人aⅴ小说| 中文字幕熟女人妻在线| 欧美色视频一区免费| 亚洲av电影不卡..在线观看| 一本大道久久a久久精品| 欧美黑人欧美精品刺激| 啦啦啦免费观看视频1| 一边摸一边抽搐一进一小说| 久久香蕉激情| 99久久精品国产亚洲精品| 91大片在线观看| 在线观看66精品国产| 99久久精品热视频| 99久久无色码亚洲精品果冻| 国产成人aa在线观看| 脱女人内裤的视频| 国产精品1区2区在线观看.| 欧美av亚洲av综合av国产av| 久久久久久国产a免费观看| 好男人在线观看高清免费视频| www.熟女人妻精品国产| 在线观看66精品国产| 国产免费av片在线观看野外av| 欧美性猛交黑人性爽| 女警被强在线播放| 中文字幕久久专区| 每晚都被弄得嗷嗷叫到高潮| 51午夜福利影视在线观看| 黄色片一级片一级黄色片| 午夜久久久久精精品| 色老头精品视频在线观看| 悠悠久久av| 日韩精品免费视频一区二区三区| 亚洲狠狠婷婷综合久久图片| 1024手机看黄色片| 精品久久久久久成人av| 亚洲av中文字字幕乱码综合| 亚洲国产精品999在线| 黄频高清免费视频| 亚洲欧美精品综合久久99| 日日爽夜夜爽网站| 超碰成人久久| 人人妻人人澡欧美一区二区| 国产精品影院久久| 欧美午夜高清在线| 69av精品久久久久久| 女人被狂操c到高潮| 看黄色毛片网站| 天天躁夜夜躁狠狠躁躁| 黄片小视频在线播放| 国模一区二区三区四区视频 | 午夜福利欧美成人| 露出奶头的视频| 可以在线观看的亚洲视频| 亚洲人成网站高清观看| 亚洲色图av天堂| 亚洲欧美日韩无卡精品| 九九热线精品视视频播放| 国产熟女午夜一区二区三区| 精品久久久久久久久久免费视频| 日韩精品青青久久久久久| 亚洲国产精品成人综合色| 国产99久久九九免费精品| 美女免费视频网站| 国产麻豆成人av免费视频| 久久久久久九九精品二区国产 | 午夜影院日韩av| 免费在线观看成人毛片| 亚洲自拍偷在线| 国产日本99.免费观看| 好男人电影高清在线观看| 亚洲成人久久爱视频| 久久久久久九九精品二区国产 | 精华霜和精华液先用哪个| 老司机午夜福利在线观看视频| 日韩成人在线观看一区二区三区| 久久草成人影院| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩亚洲国产一区二区在线观看| 男女下面进入的视频免费午夜| 久久久久性生活片| 亚洲电影在线观看av| 性色av乱码一区二区三区2| 午夜精品一区二区三区免费看| 欧美黑人欧美精品刺激| 一级毛片精品| av在线天堂中文字幕| 久久精品国产综合久久久| 91成年电影在线观看| 久久 成人 亚洲| 亚洲av日韩精品久久久久久密| 国产成人精品久久二区二区免费| 亚洲性夜色夜夜综合| 成人永久免费在线观看视频| 欧美成人性av电影在线观看| 国产乱人伦免费视频| 日本 欧美在线| 麻豆成人av在线观看| 国模一区二区三区四区视频 | 久久天堂一区二区三区四区| 久久人妻av系列| 亚洲熟妇中文字幕五十中出| 精品高清国产在线一区| 国产精品精品国产色婷婷| 欧美日本视频| 18禁美女被吸乳视频| 高潮久久久久久久久久久不卡| 一二三四社区在线视频社区8| 欧美最黄视频在线播放免费| 90打野战视频偷拍视频| 日韩国内少妇激情av| 亚洲七黄色美女视频| 国产成+人综合+亚洲专区| 国产高清有码在线观看视频 | 久久人妻福利社区极品人妻图片| 白带黄色成豆腐渣| 狠狠狠狠99中文字幕| 欧美日韩精品网址| 毛片女人毛片| 国内少妇人妻偷人精品xxx网站 | 国产伦一二天堂av在线观看| 大型av网站在线播放| av福利片在线观看| 成年人黄色毛片网站| ponron亚洲| 99久久精品国产亚洲精品| 美女大奶头视频| 成熟少妇高潮喷水视频| 国产精品久久久久久精品电影| 黑人欧美特级aaaaaa片| 亚洲精品美女久久av网站| 国产成人精品久久二区二区免费| 91av网站免费观看| av免费在线观看网站| 亚洲五月婷婷丁香| 999久久久国产精品视频| 久久这里只有精品19| 亚洲国产精品999在线| 99久久精品国产亚洲精品| 精品久久久久久,| 国产精品久久电影中文字幕| 午夜免费观看网址| 日日摸夜夜添夜夜添小说| 俄罗斯特黄特色一大片| 777久久人妻少妇嫩草av网站| 男人的好看免费观看在线视频 | 女人被狂操c到高潮| avwww免费| 制服人妻中文乱码| 19禁男女啪啪无遮挡网站| 人人妻人人看人人澡| 免费看美女性在线毛片视频| 国产精品98久久久久久宅男小说| 国产欧美日韩一区二区精品| 亚洲精品一区av在线观看| 亚洲欧美精品综合久久99| 一进一出好大好爽视频| 免费一级毛片在线播放高清视频| 国产黄色小视频在线观看| 欧美精品啪啪一区二区三区| 这个男人来自地球电影免费观看| 人妻夜夜爽99麻豆av| 老司机午夜十八禁免费视频| 国产又色又爽无遮挡免费看| xxx96com| 亚洲性夜色夜夜综合| 激情在线观看视频在线高清| 桃红色精品国产亚洲av| 日韩精品青青久久久久久| 精品欧美一区二区三区在线| 黄片小视频在线播放| 一区二区三区国产精品乱码| 69av精品久久久久久| 久久精品91蜜桃| 亚洲成人久久爱视频| 亚洲国产精品999在线| 高清在线国产一区| av有码第一页| 国产精品一区二区三区四区免费观看 | 亚洲国产精品sss在线观看| 欧美国产日韩亚洲一区| 国产一区二区在线av高清观看| 国产成+人综合+亚洲专区| 色精品久久人妻99蜜桃| 99久久久亚洲精品蜜臀av| 久久香蕉激情| 18禁黄网站禁片免费观看直播| 级片在线观看| videosex国产| 激情在线观看视频在线高清| 久9热在线精品视频| 亚洲成人精品中文字幕电影| 久久午夜综合久久蜜桃| 午夜福利免费观看在线| 欧美不卡视频在线免费观看 | 亚洲全国av大片| 精品熟女少妇八av免费久了| 97碰自拍视频| 一卡2卡三卡四卡精品乱码亚洲| 深夜精品福利| 亚洲一区二区三区不卡视频| 18禁裸乳无遮挡免费网站照片| 午夜福利高清视频| 国产麻豆成人av免费视频| 国产不卡一卡二| 黄色a级毛片大全视频| 成在线人永久免费视频| 在线观看免费视频日本深夜| 久久久精品国产亚洲av高清涩受| 男人舔女人下体高潮全视频| 99精品在免费线老司机午夜| 岛国在线免费视频观看| www日本在线高清视频| 最近最新中文字幕大全免费视频| 中文亚洲av片在线观看爽| 国产成人一区二区三区免费视频网站| 日韩精品免费视频一区二区三区| 日日夜夜操网爽| 亚洲av第一区精品v没综合| 亚洲精品在线美女| 国产区一区二久久| 亚洲激情在线av| 在线国产一区二区在线| 午夜福利在线观看吧| 男人舔女人的私密视频| 亚洲avbb在线观看| 日韩三级视频一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 给我免费播放毛片高清在线观看| 欧美成人性av电影在线观看| 精品国产超薄肉色丝袜足j| 成年免费大片在线观看| 黄片小视频在线播放| 欧美日韩国产亚洲二区| 成人手机av| 久久人人精品亚洲av| 天堂影院成人在线观看| 久久中文字幕人妻熟女| 国产视频一区二区在线看| 欧美色欧美亚洲另类二区| 黄色女人牲交| 在线观看舔阴道视频| 国模一区二区三区四区视频 | 久久中文字幕人妻熟女| 日本黄色视频三级网站网址| 国产69精品久久久久777片 | 欧美乱妇无乱码| 无遮挡黄片免费观看| 最近最新中文字幕大全电影3| 嫩草影院精品99| 国产亚洲av高清不卡| aaaaa片日本免费| 国产私拍福利视频在线观看| 国产伦一二天堂av在线观看| 两性夫妻黄色片| 美女免费视频网站| 窝窝影院91人妻| cao死你这个sao货| www.自偷自拍.com| 伦理电影免费视频| 叶爱在线成人免费视频播放| 国产一级毛片七仙女欲春2| 99久久综合精品五月天人人| 19禁男女啪啪无遮挡网站| 老司机在亚洲福利影院| 国内精品久久久久久久电影| 黄片小视频在线播放| 亚洲自偷自拍图片 自拍| 亚洲色图 男人天堂 中文字幕| 国产成人系列免费观看| 日日夜夜操网爽| 中亚洲国语对白在线视频| 成人国产一区最新在线观看| 久久久久精品国产欧美久久久| 亚洲九九香蕉| 免费在线观看影片大全网站| 法律面前人人平等表现在哪些方面| 亚洲精品粉嫩美女一区| 国产黄片美女视频| xxxwww97欧美| 亚洲国产欧洲综合997久久,| 亚洲va日本ⅴa欧美va伊人久久| 成人av在线播放网站| 搡老岳熟女国产| 国产av麻豆久久久久久久| av超薄肉色丝袜交足视频| 国产精品久久久久久亚洲av鲁大| 成人18禁高潮啪啪吃奶动态图| 18禁美女被吸乳视频| 男人舔女人的私密视频| 成人18禁高潮啪啪吃奶动态图| 黄频高清免费视频| 天天躁夜夜躁狠狠躁躁| 一本精品99久久精品77| 搡老妇女老女人老熟妇| 一进一出抽搐gif免费好疼| 高清在线国产一区| 制服丝袜大香蕉在线| 老熟妇仑乱视频hdxx| 午夜久久久久精精品| 亚洲欧美一区二区三区黑人| 欧美一区二区精品小视频在线| 正在播放国产对白刺激| 18禁美女被吸乳视频| 男人舔女人的私密视频| 国产片内射在线| 黄频高清免费视频| 日韩中文字幕欧美一区二区| bbb黄色大片|