• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous state and actuator fault estimation for satellite attitude control systems

    2016-11-23 06:12:10ChengYaoWangRixinXuMinqiangLiYuqing
    CHINESE JOURNAL OF AERONAUTICS 2016年3期

    Cheng Yao,Wang Rixin,Xu Minqiang,Li Yuqing

    Deep Space Exploration Research Center,Harbin Institute of Technology,Harbin 150080,China

    Simultaneous state and actuator fault estimation for satellite attitude control systems

    Cheng Yao,Wang Rixin*,Xu Minqiang,Li Yuqing

    Deep Space Exploration Research Center,Harbin Institute of Technology,Harbin 150080,China

    In this paper,a new nonlinear augmented observer is proposed and applied to satellite attitude control systems.The observer can estimate system state and actuator fault simultaneously.It can enhance the performances of rapidly-varying faults estimation.Only original system matrices are adopted in the parameter design.The considered faults can be unbounded,and the proposed augmented observer can estimate a large class of faults.Systems without disturbances and the fault whose finite times derivatives are zero piecewise are initially considered,followed by a discussion of a general situation where the system is subject to disturbances and the finite times derivatives of the faults are not null but bounded.For the considered nonlinear system,convergence conditions of the observer are provided and the stability analysis is performed using Lyapunov direct method.Then a feasible algorithm is explored to compute the observer parameters using linear matrix inequalities(LMIs).Finally,the effectiveness of the proposed approach is illustrated by considering an example of a closed-loop satellite attitude control system.The simulation results show satisfactory performance in estimating states and actuator faults.It also shows that multiple faults can be estimated successfully.

    1.Introduction

    A satellite attitude control system is an essential subsystem for accomplishing successful space missions.Due to the increasing requirement for high safety and reliability,fault diagnosis for satellite attitude control systems has been an importantresearch topic.Fruitful results can befound in many researches.1–3

    During the last two decades,model-based fault diagnosis techniques have been widely researched and applied in modern systems.4,5Generally speaking,model-based fault diagnosis strategy performs three essential tasks:fault detection,fault isolation and fault estimation.6,7Fault estimation is the superior lever of the three tasks.Accurate fault estimation implies that it not only detects and isolates the fault automatically,but also provides details of the fault,such as the size and time varying behavior of the fault.Besides,once a fault is determined,fault tolerant control can be adopted to compensate for it,which requires a simultaneous state and fault estimation.8,9Thus,state estimation observers that can provide the required state and fault information within one design have attracted a lot of attention.

    Fig.1 State estimation errors in Case 1 by different methods.

    Much research effort has been devoted in this area and fruitful results have been published.To mention a few,proportional multi-integral observers were designed in Refs.10,11to achieve fault estimation for linear and nonlinear descriptor system.In Refs.12,13,actuator fault estimation based on neural network was considered.In Refs.14,15,adaptive observer technique has been used to estimate fault.In Refs.16,17,fault estimation is investigated by sliding mode observers.

    Among various approaches developed in the past,the augmented observer has attracted increasing attention due to its simplicity and the potential for simultaneously estimate system states and faults.The main idea of this kind of observer lies in addressing the faults as additional state variables.Accordingly,a variety of important results have been reported in the literature.For example,the actuator fault estimation based on augmented observer has been addressed in Refs.18,19for linear time invariant systems,and in Ref.20for linear parameter varying systems.Fault diagnosis using augmented observer for rotor systems and satellite attitude control systems have been investigated in Refs.21,22and Refs.23,24,respectively.In Ref.25,a nonlinear augmented observer is designed and applied to a quadrotor aircraft.There are also much literature which can be viewed as the transformations of the augmented observers,such as Refs.26,27.However,the traditional augmented observer is conservative as the faults are assumed to be slowly-varying.In this situation,the constant fault estimation is guaranteed to be unbiased,but it fails to deal with the rapidly-varying fault.Besides,systematic and convenient approaches for the design of nonlinear augmented observers remain lacking in the available literature.

    Inspired by the research problems above,in this paper,a nonlinear augmented observer is designed and applied to satellite attitude control systems.Unlike in Refs.23,24,the Takagi-Sugeno fuzzy model is used to linearise the satellite attitude dynamics or only slowly-varying fault is considered.The augmented observer proposed in this paper can handle the estimation problem for a large class of actuator faults.Moreover,no equivalent transformations are needed for obtaining this observer.Our design uses only original coefficient matrices,thus the observer is convenient and reliable in computations.

    In summary,the main contributions of this paper are as follows:(1)a new nonlinear augmented observer with a novel structure is proposed to estimate states and actuator faults for satellite attitude control systems;(2)the observer parameters can be computed directly using linear matrix inequalities(LMIs)with original coefficient matrices;(3)multiple rapidly-varying faults can be estimated within one design.

    The rest of this paper is organized as follows.Section 2 briefly describes problem statement.In Sections 3 and 4,the design of the augmented observers is developed in detail for two cases,respectively.Section 3 concerns with the ideal case in which the finite times derivatives of the faults is assumed to be zero piecewise.Section 4 deals with the general case that the finite times derivatives of the faults is not null but bounded and disturbances cannot be neglected.Simulations are provided in Section 5 via an example of a satellite attitude control system.Conclusions are drawn in Section 6.

    Notation.The notation used in the present paper is fairly standard.Rndenotes the n-dimensional Euclidean space,and RnXmis the set of all real matrices of dimension nXm.Pgt;0 means that P is real symmetric and positive definite.||.||stands for the usual L2norm.λmax(X)and λmin(X)denote the maximum and minimum eigenvalues of X.The symmetric terms in a symmetric matrix are denoted by''*quot;.

    2.Problem formulation

    Consider a nonlinear dynamic system with actuator fault as

    where x(t)∈Rnis the system state vector;u(t)∈Rmand y(t)∈Rpare the input and the output vectors,respectively;d(t)∈Rlis the unknown disturbance vector and it is assumed to be L2norm bounded;f(t)∈Rkis the unknown vector that represents all possible actuator faults;A,B,C,E andlare known constant real matrices of appropriate dimensions,and the pair(A,C)is observable;the nonlinear vector function Φ(x)is assumed to be Lipschitz nonlinear with a Lipschitz constant γ,i.e.,

    In this paper,our goal is to develop a new augmented observer to estimate system states and fault simultaneously.And then an effective way to calculate the design parameters is given.First,Section 3 discusses an augmented observer for an ideal case in which system disturbances are neglected and f(t)is assumed to be in a general form as follows:

    where Fi(i=0,1,...,q-1)are unknown constant vectors.One can see that the qth derivative of f(t)with respect to time is zero(i.e.,f(q)=0).And then,Section 4 discusses a robust augmented observer for a more general case in which the system is subjected to disturbances and f(q)is not null but bounded.One can see that the fault considered in this paper may be unbounded.

    It is worth noting that the fault in the form of Eq.(3)can describe a large class of faults.26,27For instance,constant faults correspond to Eq.(3)with q=1 and ramp-wise faults correspond to Eq.(3)with q=2.Actually,since f(q)is required to be bounded in Section 4,lots of faults can be described in the form of Eq.(3)using Taylor expansion.Thus,without loss of generality,we take Eq.(3)to express the considered fault.

    3.Augmented observer design:the ideal case

    Consider a nonlinear dynamic system without disturbance in the following form:

    Letting

    and using f(q)=0,an augmented system can be constructed as

    where

    According to the augmented system above,the observer can be constructed as

    The augmented state estimation error can be de fined asThe following main concern is to design an observer such thatthat is,andwhereandare the state estimation error and fault estimation error,respectively,withthe estimation of fault vector.

    Theorem 1.For the given constant γ,if there exist matrices Pgt;0 and fsuch that the following condition holds:

    then the observer in the form of Eq.(7)is asymptotically stable and the estimated error of state and fault converges exponentially to zero.

    Proof.According to thesystem Eq.(6)and observer Eq.(7),the dynamics of the augmented state error can be derived as

    Choose the following Lyapunov function:

    The time derivative of it reads

    It follows that

    Thus,the augmented observer ensures that ˉe(t)→ 0 as t→∞.

    On the other hand,the Lyapunov function satisfies that

    Thus,one has

    Substituting Eq.(15)into Eq.(17)gives

    Integrating Eq. (18), one can obtainwhere

    Fig.2 Faults and their estimates in Case 1 by different methods.

    Fig.3 State estimation errors in Case 2 by different methods.

    4.Robust augmented observer design:the general case

    In this section,the general case is considered.The nonlinear dynamic system is subject to disturbances and f(q)is not zero but assumed to be bounded.

    For the system given in Eq. (1), let ξi=f(i)(i=1,2,...,q-1)and define the augmented state vector as in Eq.(6),then we have an augmented system as

    where

    and the other symbols are the same as those defined in Eq.(6).

    Fig.4 Faults and their estimates in Case 2 by different methods.

    Theorem 2.For the given constant γ and δ,if there exist matrices Pgt;0 andfsuch that the following condition holds:then the observer in the form of Eq.(7)is robustly stable,that is,the estimated error of state and fault is uniformly bounded.

    Proof.According to the observer Eq.(7)and system Eq.(20),the dynamics of the augmented state error can be derived as

    Choose the following Lyapunov function:

    The time derivative of it reads

    Define

    Then it is clear that

    Under the zero initial condition,we have

    Therefore,

    Remark 1.If there are no disturbances and f(q)=0,Eq.(25)reduces to Eq.(14).Since the matrix Δ is a negative matrix according to Schur Complement Lemma,one can see that it is just the result which has been addressed in the ideal case.Thus,the observer designed in the ideal case serves as a particular case of robust augmented observer design.

    Remark 2.To obtain the augmented observer discussed, how to calculate the corresponding matrices F,T,G and N is an important problem.In the following section,the solution of the above theorem is achieved by transferring inequality(21)to an LMI with the required transformation.Thus,the problem can be solved easily from the standard scientific computing software.

    According to Schur Complement Lemma,Ξlt;0 in inequality(21)can be rewritten into the following matrix inequality form:

    This matrix inequality can be solved by using MATLAB LMI toolbox with X,Y and P as the matrix variables.Once X,Y and P are obtained,one can get N=XP-1and G=YP-1.Furthermore,T andfcan be determined by using Eqs.(8)and(9)and then the observer is obtained.

    Remark 3.In order to compare the proposed method with the traditional method,a system without disturbance is considered and the fault is assumed to be in the form of Eq.(3).

    However,as designed in Section 3,our proposed augmented observer can achieve an unbiased estimation of the state and the fault.Case 1 in simulation part is carried out to verify the above analysis and show the effectiveness.

    5.Application

    5.1.Mathematical model of satellite attitude control system

    In this section,the effectiveness of the proposed estimation method is illustrated by considering a satellite attitude control system.The dynamics model with actuator faults can be given in state space formulation as Ref.28.

    5.2.Simulation results

    In this simulation,two fault cases are considered to illustrate the performance of the designed augmented observer.The first case concerns with the single-fault in ideal situation and the second case deals with the multiple-fault in general situation.

    Case 1.Assume that x-axis actuator suffers a ramp-wise fault in the following form.That is,friction torque suddenly increases at 50 s and continued to increase.

    It can be seen that the second times derivatives of the fault is zero piecewise.Therefore,a two-step augmentation(the augmented system in the form of Eq.(20)with q=2)is carried out to illustrate the performance of the proposed method.

    The curves of the state estimation errors generated by the proposed method are given in Fig.1(a).In order to show that the proposed method is superior to the conventional method,a traditional augmented observer is also designed.The corresponding simulation results are given in Fig.1(b).The trajectories of the faults and their estimates are exhibited in Fig.2.It can be seen that the tracking performance is desired.From Fig.1(a),it is shown that the state estimation errors converge to zero.From Fig.2(a),one can see that the fault is estimated successfully.Therefore not only the x-axis actuator fault is detected,but also the accurate fault information is provided.It can be seen that the state estimation errors in Fig.1(b)are bounded but not converge to zero.It is not surprising,because the traditional observer serves as one-step augmented observer.This observer can only achieve the unbiased estimation for the fault whose first times derivatives is zero.The estimation performance shown in Fig.2(b)is obviously less satisfactory than that shown in Fig.2(a).

    Case 2.It is supposed that the x-axis actuator and y-axis actuator are prone to faults simultaneously,and z-axis actuator is fault free.The faults are considered in the following form.Friction torque of x-axis actuator rapidly increased after 50 s and stabilized at a certain value after 80 s.Friction torque of y-axis actuator increased periodically after 40 s.

    We still use the observer designed in Case 1.The curves of the state estimation errors and the estimated faults by the proposed method and traditional method are shown in Figs.3 and 4,respectively.Since the disturbances exist and the second times derivatives of the faults are not zero,the state estimation errors in Fig.3(a)are not zero but bounded.It can be seen from Fig.4(a)that the two faults are estimated satisfactorily.Therefore,both the faults of x-axis actuator and y-axis actuator are detected and identified successfully by our proposed method,which means that the designed augmented observer has the ability to diagnose multiple faults simultaneously.From Fig.3(b)and Fig.4(b),it can be seen that the two faults can also be detected and estimated,but the estimation performance is less accurate than the results of our proposed method obviously.

    From the above simulation results,it can be concluded that for the ramp-wise fault in Case 1,an unbiased estimation of the fault can be achieved using our proposed method,but the traditional method can only achieve a biased estimation.As for the two rapidly-varying faults in Case 2,estimation of two simultaneous faults can be both achieved using our proposed and traditional methods,but our method can enhance the performances of rapidly-varying faults estimation.Thus,our proposed augmented observer outperforms the traditional augmented observer.

    6.Conclusions

    (1)In this paper,an augmented observer is presented to simultaneously estimate the states and actuator faults for nonlinear Lipschitz systems.Both of an ideal case and a more general case are considered with detailed theoretical analyses.The design of the observer only adopts the original coefficient matrices.Based on LMIs techniques,the observer parameters are conveniently computed.Compared with the conventional method,the proposed augmented observer can improve the performances of fault estimation.The effectiveness is illustrated by a satellite attitude control system.It is shown that not only single fault but also multiple rapidly varying faults can be estimated successfully.

    (2)Further research work includes two aspects.The first one is that although the robust nonlinear augmented observer is designed in this paper,disturbances should be further tackled using perfect or approximate decoupling strategy.Since only dynamics model of satellite attitude is considered,extension of the system model by adding kinemics model has more research significance,which should be investigated to further verify the proposed method.

    Acknowledgements

    This work was supported by the National Basic Research Program of China(No.2012CB720003)and the National Natural Science Foundation of China(No.61203151).

    1.Gao CY,Zhao Q,Duan GR.Robust actuator fault diagnosis scheme for satellite attitude control systems.J Franklin Inst 2013;350(9):2560–80.

    2.Zhang J,Swain AK,Nguang SK.Robust sensor fault estimation scheme for satellite attitude control systems.J Franklin Inst 2013;350(9):2581–604.

    3.Pirmoradi FN,Sassani F,de Silva CW.Fault detection and diagnosis in a spacecraft attitude determination system.Acta Astronaut 2009;65(5):710–29.

    4.Niu EZ,Wang Q,Dong CY.Robust fault detection and optimization for a network of unmanned vehicles with imperfect communication channels.Chin J Aeronaut 2014;27(1):65–75.

    5.Wang ZL,Wang Q,Dong CY,Gong LG.Closed-loop fault detection for full-envelope flight vehicle with measurement delays.Chin J Aeronaut 2015;28(3):832–44.

    6.Ding SX. Model-based fault diagnosis techniques. New York:Springer;2012.p.3–11.

    7.Marzat J,Piet-Lahanier H,Damongeot F,Walter E.Model-based fault diagnosis for aerospace systems:a survey.Proc Inst Mech Eng,Part G:J Aerosp Eng 2012;226(10):1329–60.

    8.Xiao B,Hu Q,Singhose W,Huo X.Reaction wheel fault compensation and disturbance rejection for spacecraft attitude tracking.J Guid Control Dyn 2013;36(6):1565–75.

    9.Zhong L,Fe′lix M-C.A two-stage approach for managing actuators redundancy and its application to fault tolerant flight control.Chin J Aeronaut 2015;28(2):469–77.

    10.Gao ZW,Ding SX.Fault estimation and fault-tolerant control for descriptor systems via proportional,multiple-integral and derivative observer design.IET Control Theory Appl 2007;1(5):1208–18.

    11.Gao ZW,Ding SX.Actuator fault robust estimation and faulttolerant control for a class of nonlinear descriptor systems.Automatica 2007;43(5):912–20.

    12.Talebi HA,Khorasani K.A neural network-based multiplicative actuator fault detection and isolation of nonlinear systems.IEEE Trans Control Syst Technol 2013;21(3):842–51.

    13.Wang ZH,Shen Y,Zhang XL.Actuator fault estimation for a class of nonlinear descriptor systems.Int J Syst Sci 2014;45(3):487–96.

    14.Zhang K,Jiang B,Cocquempot V.Adaptive observer-based fast fault estimation.Int J Control Autom Syst 2008;6(3):320–6.

    15.Shahriari-kahkeshi M,Sheikholeslam F,Askari J.Adaptive fault detection and estimation scheme for a class of uncertain nonlinear systems.Nonlinear Dyn 2015;79(4):2623–37.

    16.Alwi H,Edwards C,Tan CP.Sliding mode estimation schemes for incipient sensor faults.Automatica 2009;45(7):1679–85.

    17.Menon PP,Edwards C.A sliding mode observer for monitoring and fault estimation in a network of dynamical systems.Int J Robust Nonlinear Control 2014;24(17):2669–85.

    18.Shi F,Patton RJ.Simultaneous state and fault estimation for descriptor systems using an augmented PD observer.Proceedings of the 19th IFAC world congress;2014 Aug 24–29;Cape Town,South Africa.Heidelberg:IFAC;2014.p.8006–11.

    19.Patton RJ,Klinkhieo S.Actuator fault estimation and compensation based on an augmented state observer approach.Proceedings of the 48h IEEE conference on decision and control;2009 Dec 16–18;Shanghai,China.Piscataway(NJ):IEEE Press;2009.p.8482–7.

    20.Wang ZH,Mickael R,Didier T,Shen Y.Actuator fault estimation observer design for discrete-time linear parameter-varying descriptor systems.Int J Adapt Control Signal Process 2015;29(2):242–58.

    21.Wang Z,Schittenhelm RS,Borsdorf M,Rinderknecht S.Application of augmented observer for fault diagnosis in rotor systems.Eng Lett 2013;21(1):10–7.

    22.Wang Z,Schittenhelm RS,Rinderknecht S.Design of augmented observer for rotor systems.In:Kim HK,Ao SI,Amouzegar MA,Rieger BB,editors.IAENG transactions on engineering technologies.New York:Springer,Netherlands;2014.p.67–82.

    23.Challoo R,Dubey S.Simultaneous state and actuator fault estimation with fuzzy descriptor PMID and PD observers for satellite control systems.Int J Robot Autom 2011;2(5):344–59.

    24.Wang ZH,Shen Y,Zhang XL.Augmented observer-based actuator fault diagnosis for nonlinear systems.J Astronaut 2012;33(12):1742–6[Chinese].

    25.Wang XH,Shirinzadeh B.Nonlinear augmented observer design and application to quadrotor aircraft.Nonlinear Dyn 2015;80(3):1463–81.

    26.Gao ZW,Ho DW.State/noise estimator for descriptor systems with application to sensor fault diagnosis.IEEE Trans Signal Process 2006;54(4):1316–26.

    27.Koenig D.Unknown input proportional multiple-integral observer design for linear descriptor systems:application to state and fault estimation.IEEE Trans Autom Control 2005;50(2):212–7.

    28.Wang RX,Cheng Y,Xu MQ.Analytical redundancy based fault diagnosis scheme for satellite attitude control systems.J Franklin Inst 2015;352(5):1906–31.

    Cheng Yaoreceived the M.E.degree in general and fundamental mechanics from Harbin Institute of Technology,Harbin,China,in 2012,where he is currently working toward the Ph.D.degree in the Deep Space Exploration Research Center.His current research interests include fault diagnosis for dynamical systems,soft-computing methods and qualitative reasoning.

    Wang Rixinis an associate professor with Harbin Institute of Technology.His research interests include fault detection and diagnosis for machinery and spacecraft.

    Xu Minqiangis a professor with Harbin Institute of Technology.His research interests include machinery and spacecraft fault diagnosis,signal processing and space debris modeling.

    Li Yuqingis an instructor with Harbin Institute of Technology.His main research interests are planning and scheduling,satellite range scheduling,and autonomous spacecraft.

    21 August 2015;revised 10 December 2015;accepted 7 January 2016

    Available online 10 May 2016

    Actuator fault estimation;

    Augmented state observer;

    Fault diagnosis;

    Lipschitz nonlinear system;

    Satellite attitude control

    system

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is an open access article under the CCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 451 86418320.

    E-mail address:wangrx@hit.edu.cn(R.Wang).

    Peer review under responsibility of Editorial Committee of CJA.

    国产精品 欧美亚洲| 制服人妻中文乱码| 精品人妻熟女毛片av久久网站| 飞空精品影院首页| 久久国产精品人妻蜜桃| a级毛片在线看网站| 新久久久久国产一级毛片| 丁香六月欧美| 菩萨蛮人人尽说江南好唐韦庄| 又大又爽又粗| 午夜免费男女啪啪视频观看| 日韩一区二区三区影片| 午夜激情久久久久久久| 成人亚洲欧美一区二区av| 美女午夜性视频免费| 激情视频va一区二区三区| 精品卡一卡二卡四卡免费| 亚洲欧洲精品一区二区精品久久久| 这个男人来自地球电影免费观看| 人人妻人人爽人人添夜夜欢视频| 久久久久久免费高清国产稀缺| 少妇猛男粗大的猛烈进出视频| 一本—道久久a久久精品蜜桃钙片| 老鸭窝网址在线观看| 亚洲中文av在线| 久热这里只有精品99| 亚洲中文字幕日韩| 色播在线永久视频| 日韩大片免费观看网站| 中国美女看黄片| 中文字幕人妻丝袜一区二区| 欧美激情极品国产一区二区三区| 十八禁网站网址无遮挡| 日韩 欧美 亚洲 中文字幕| 狂野欧美激情性bbbbbb| √禁漫天堂资源中文www| 两性夫妻黄色片| 国产精品一区二区在线观看99| 一个人免费看片子| 一本久久精品| www.精华液| 最黄视频免费看| 一本一本久久a久久精品综合妖精| 亚洲图色成人| 欧美人与性动交α欧美软件| 国产麻豆69| 国产亚洲精品久久久久5区| 国产av一区二区精品久久| www.自偷自拍.com| 久久综合国产亚洲精品| 日韩一本色道免费dvd| 老司机影院毛片| a级毛片黄视频| 欧美中文综合在线视频| 亚洲欧洲国产日韩| 少妇粗大呻吟视频| 国产日韩欧美视频二区| 免费在线观看视频国产中文字幕亚洲 | 欧美日韩成人在线一区二区| 久久久国产精品麻豆| 久久亚洲精品不卡| 成人国产一区最新在线观看 | 熟女av电影| 亚洲图色成人| 国产欧美日韩一区二区三区在线| 老司机深夜福利视频在线观看 | 国产极品粉嫩免费观看在线| 视频在线观看一区二区三区| 精品免费久久久久久久清纯 | 日本91视频免费播放| 精品人妻一区二区三区麻豆| 男男h啪啪无遮挡| 99热国产这里只有精品6| 欧美激情高清一区二区三区| 久久天堂一区二区三区四区| tube8黄色片| 纯流量卡能插随身wifi吗| 亚洲午夜精品一区,二区,三区| 亚洲国产最新在线播放| 日本av手机在线免费观看| 久久久久国产一级毛片高清牌| 一区二区三区精品91| 国产精品免费视频内射| 久久精品久久久久久久性| 香蕉国产在线看| 熟女少妇亚洲综合色aaa.| 国产一区二区激情短视频 | 新久久久久国产一级毛片| 亚洲 国产 在线| 久久久精品区二区三区| 国产黄色视频一区二区在线观看| 久久精品久久精品一区二区三区| 高清av免费在线| xxx大片免费视频| 亚洲av男天堂| 国产精品久久久久久人妻精品电影 | 久久久欧美国产精品| 三上悠亚av全集在线观看| 97人妻天天添夜夜摸| 91九色精品人成在线观看| 精品第一国产精品| 日本猛色少妇xxxxx猛交久久| 人人妻人人澡人人看| 国产黄色免费在线视频| 大话2 男鬼变身卡| 午夜福利免费观看在线| 国产在线免费精品| 亚洲,欧美,日韩| 91成人精品电影| 国产亚洲一区二区精品| 亚洲欧美一区二区三区久久| 大码成人一级视频| 欧美精品一区二区免费开放| 亚洲国产精品一区二区三区在线| 久久久久精品人妻al黑| 午夜福利一区二区在线看| 丁香六月天网| 国产无遮挡羞羞视频在线观看| 成年人午夜在线观看视频| 两人在一起打扑克的视频| 免费在线观看黄色视频的| 国产精品一国产av| 一二三四在线观看免费中文在| xxxhd国产人妻xxx| 观看av在线不卡| 后天国语完整版免费观看| 中文欧美无线码| 中文字幕人妻熟女乱码| 青草久久国产| 免费观看a级毛片全部| 国产成人av教育| 观看av在线不卡| 亚洲激情五月婷婷啪啪| 国产伦人伦偷精品视频| 99精国产麻豆久久婷婷| 免费高清在线观看日韩| 欧美日韩综合久久久久久| 你懂的网址亚洲精品在线观看| 日本a在线网址| 亚洲av日韩在线播放| 中文字幕人妻丝袜制服| 成人亚洲精品一区在线观看| 亚洲成色77777| 中文字幕人妻丝袜制服| 亚洲国产精品一区二区三区在线| 交换朋友夫妻互换小说| 满18在线观看网站| 大话2 男鬼变身卡| 大香蕉久久成人网| 别揉我奶头~嗯~啊~动态视频 | 狠狠婷婷综合久久久久久88av| 精品久久久久久久毛片微露脸 | 亚洲午夜精品一区,二区,三区| 高清不卡的av网站| 精品少妇内射三级| 日日摸夜夜添夜夜爱| 91精品国产国语对白视频| 午夜日韩欧美国产| av不卡在线播放| 在线 av 中文字幕| 麻豆乱淫一区二区| 免费看av在线观看网站| 999久久久国产精品视频| 国产成人欧美| 国产亚洲精品第一综合不卡| 精品国产一区二区三区四区第35| 日韩精品免费视频一区二区三区| 一区福利在线观看| 80岁老熟妇乱子伦牲交| 日本黄色日本黄色录像| 老司机影院毛片| 欧美xxⅹ黑人| 只有这里有精品99| 国产成人av教育| 国产精品一国产av| 亚洲精品乱久久久久久| 久久国产精品人妻蜜桃| 亚洲午夜精品一区,二区,三区| 亚洲av成人不卡在线观看播放网 | 国产精品国产av在线观看| h视频一区二区三区| 深夜精品福利| 成年人免费黄色播放视频| 亚洲av日韩在线播放| 69精品国产乱码久久久| 十分钟在线观看高清视频www| 国产成人欧美在线观看 | 国产色视频综合| 女警被强在线播放| 成人国语在线视频| www.精华液| 高清不卡的av网站| 欧美性长视频在线观看| 亚洲欧美中文字幕日韩二区| 国产黄色视频一区二区在线观看| 日韩一区二区三区影片| 成人国产一区最新在线观看 | 美女主播在线视频| 各种免费的搞黄视频| 中文字幕最新亚洲高清| 人人妻人人添人人爽欧美一区卜| 丝袜美足系列| 国产精品一区二区精品视频观看| 午夜激情av网站| 悠悠久久av| 新久久久久国产一级毛片| 国产精品久久久av美女十八| 人妻一区二区av| 免费观看av网站的网址| 欧美精品一区二区免费开放| 一区二区av电影网| 中文精品一卡2卡3卡4更新| 精品一区在线观看国产| 国产高清国产精品国产三级| 脱女人内裤的视频| 无限看片的www在线观看| 天堂俺去俺来也www色官网| 99久久人妻综合| 欧美变态另类bdsm刘玥| 五月开心婷婷网| 国产免费现黄频在线看| 少妇裸体淫交视频免费看高清 | 国产精品久久久久久精品古装| 国产免费又黄又爽又色| 免费女性裸体啪啪无遮挡网站| 国产一区二区在线观看av| 色视频在线一区二区三区| 精品国产国语对白av| 在线观看www视频免费| 一个人免费看片子| 中文字幕人妻丝袜一区二区| 欧美日本中文国产一区发布| 一级毛片黄色毛片免费观看视频| 日本色播在线视频| 亚洲伊人久久精品综合| 91老司机精品| 女性被躁到高潮视频| 国产视频一区二区在线看| 国产亚洲av片在线观看秒播厂| 亚洲精品一二三| 国产福利在线免费观看视频| 国产熟女午夜一区二区三区| 黄色片一级片一级黄色片| 高清av免费在线| 一本久久精品| 18禁观看日本| 亚洲,欧美,日韩| 国产女主播在线喷水免费视频网站| 精品熟女少妇八av免费久了| 精品一区在线观看国产| 午夜福利影视在线免费观看| 国产深夜福利视频在线观看| 亚洲,欧美精品.| 这个男人来自地球电影免费观看| 亚洲精品乱久久久久久| 亚洲欧洲精品一区二区精品久久久| 中文乱码字字幕精品一区二区三区| 嫩草影视91久久| 久久亚洲国产成人精品v| 永久免费av网站大全| 精品国产乱码久久久久久小说| 国产高清国产精品国产三级| 欧美精品啪啪一区二区三区 | 老司机午夜十八禁免费视频| 久久综合国产亚洲精品| 97人妻天天添夜夜摸| 无遮挡黄片免费观看| 性高湖久久久久久久久免费观看| 久久久久久久久久久久大奶| 国产麻豆69| 一级毛片女人18水好多 | 国产亚洲精品久久久久5区| 日本午夜av视频| 欧美精品av麻豆av| 美国免费a级毛片| 欧美亚洲日本最大视频资源| 欧美97在线视频| 免费观看人在逋| 国产精品秋霞免费鲁丝片| 一边亲一边摸免费视频| 精品卡一卡二卡四卡免费| 飞空精品影院首页| 亚洲精品一二三| 免费观看av网站的网址| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久国产一区二区| 大片免费播放器 马上看| 国产精品久久久久久精品古装| 欧美变态另类bdsm刘玥| 满18在线观看网站| 十分钟在线观看高清视频www| 久久青草综合色| 又紧又爽又黄一区二区| 人人妻,人人澡人人爽秒播 | 亚洲一码二码三码区别大吗| 国产成人一区二区三区免费视频网站 | 大话2 男鬼变身卡| 中文字幕人妻熟女乱码| 亚洲情色 制服丝袜| 九色亚洲精品在线播放| 亚洲精品久久成人aⅴ小说| 国产免费福利视频在线观看| 欧美日韩福利视频一区二区| 两个人看的免费小视频| 久久久久国产精品人妻一区二区| 国产野战对白在线观看| 久久国产精品大桥未久av| 亚洲av成人精品一二三区| 亚洲精品av麻豆狂野| 黄网站色视频无遮挡免费观看| 亚洲成人国产一区在线观看 | 我要看黄色一级片免费的| 男人舔女人的私密视频| 国产伦理片在线播放av一区| 男女之事视频高清在线观看 | 中文字幕最新亚洲高清| 国产精品久久久久成人av| 久久久久久久国产电影| 深夜精品福利| 国产精品国产三级专区第一集| 搡老乐熟女国产| 老司机在亚洲福利影院| 日本五十路高清| 久久久国产精品麻豆| 久久国产精品大桥未久av| 久久久国产精品麻豆| 美女主播在线视频| 免费在线观看日本一区| 国产精品偷伦视频观看了| 午夜免费鲁丝| 婷婷色av中文字幕| 高清视频免费观看一区二区| 两性夫妻黄色片| 亚洲色图综合在线观看| 在线亚洲精品国产二区图片欧美| 美女高潮到喷水免费观看| 婷婷色综合大香蕉| 青青草视频在线视频观看| 国产无遮挡羞羞视频在线观看| 看免费成人av毛片| 女警被强在线播放| 91精品国产国语对白视频| 久久精品国产a三级三级三级| 夫妻性生交免费视频一级片| 桃花免费在线播放| 女人爽到高潮嗷嗷叫在线视频| 亚洲第一av免费看| 伊人亚洲综合成人网| 欧美大码av| 晚上一个人看的免费电影| 老汉色av国产亚洲站长工具| 午夜老司机福利片| 咕卡用的链子| 自线自在国产av| 国产精品av久久久久免费| 久久这里只有精品19| 啦啦啦在线免费观看视频4| 黄色 视频免费看| 成人亚洲精品一区在线观看| 最新在线观看一区二区三区 | 午夜两性在线视频| 一二三四社区在线视频社区8| 制服诱惑二区| 亚洲色图综合在线观看| 日韩制服丝袜自拍偷拍| 满18在线观看网站| 午夜激情久久久久久久| 中文乱码字字幕精品一区二区三区| 免费看不卡的av| 91国产中文字幕| av在线播放精品| 巨乳人妻的诱惑在线观看| 肉色欧美久久久久久久蜜桃| 国产亚洲欧美精品永久| 9热在线视频观看99| 两个人免费观看高清视频| 免费观看a级毛片全部| 制服人妻中文乱码| 久久久久国产精品人妻一区二区| 国产成人一区二区在线| 精品国产一区二区久久| 国语对白做爰xxxⅹ性视频网站| 日本欧美视频一区| 亚洲精品自拍成人| 一级毛片电影观看| 99热全是精品| 亚洲成av片中文字幕在线观看| 日本午夜av视频| 咕卡用的链子| 一区二区日韩欧美中文字幕| 18在线观看网站| 人人妻人人添人人爽欧美一区卜| 天天躁夜夜躁狠狠躁躁| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产一区二区精华液| 亚洲成人免费电影在线观看 | 一级毛片电影观看| 国产精品久久久久久精品古装| 成人亚洲欧美一区二区av| 美女扒开内裤让男人捅视频| 侵犯人妻中文字幕一二三四区| 一二三四社区在线视频社区8| 视频区图区小说| 夜夜骑夜夜射夜夜干| 国产av一区二区精品久久| 亚洲国产欧美一区二区综合| 精品一区二区三区av网在线观看 | 欧美日韩亚洲综合一区二区三区_| 丰满人妻熟妇乱又伦精品不卡| 又紧又爽又黄一区二区| 黄色一级大片看看| 777米奇影视久久| 欧美日韩精品网址| 99国产精品免费福利视频| 一本色道久久久久久精品综合| 午夜激情av网站| 国产免费现黄频在线看| 午夜激情久久久久久久| 韩国高清视频一区二区三区| 性高湖久久久久久久久免费观看| 七月丁香在线播放| 国产亚洲av高清不卡| videosex国产| 欧美日韩亚洲国产一区二区在线观看 | 免费人妻精品一区二区三区视频| 国产成人av激情在线播放| 日韩制服丝袜自拍偷拍| 日本a在线网址| 夫妻午夜视频| 丁香六月欧美| 欧美另类一区| 欧美日韩一级在线毛片| 这个男人来自地球电影免费观看| 国产午夜精品一二区理论片| 国产精品偷伦视频观看了| 国语对白做爰xxxⅹ性视频网站| 国产一区二区激情短视频 | 一本一本久久a久久精品综合妖精| 欧美激情高清一区二区三区| 精品欧美一区二区三区在线| 亚洲精品成人av观看孕妇| 啦啦啦 在线观看视频| xxx大片免费视频| 999精品在线视频| 国产亚洲精品久久久久5区| 在线观看国产h片| 黑人欧美特级aaaaaa片| 国产真人三级小视频在线观看| 69精品国产乱码久久久| 天堂俺去俺来也www色官网| 欧美在线一区亚洲| 亚洲欧美一区二区三区久久| 91精品三级在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产xxxxx性猛交| 成年女人毛片免费观看观看9 | 天天躁夜夜躁狠狠躁躁| 欧美精品一区二区免费开放| 侵犯人妻中文字幕一二三四区| 大型av网站在线播放| 人妻人人澡人人爽人人| 成人免费观看视频高清| 国产av国产精品国产| 亚洲男人天堂网一区| 日日夜夜操网爽| 丝袜美腿诱惑在线| 欧美 亚洲 国产 日韩一| 大型av网站在线播放| 日韩中文字幕欧美一区二区 | 日本欧美视频一区| 久久午夜综合久久蜜桃| 国产免费现黄频在线看| 手机成人av网站| 亚洲五月婷婷丁香| 精品亚洲乱码少妇综合久久| 国产精品三级大全| 亚洲精品美女久久久久99蜜臀 | 国产精品久久久久久人妻精品电影 | 丰满人妻熟妇乱又伦精品不卡| 91精品三级在线观看| 亚洲国产最新在线播放| 久久久亚洲精品成人影院| 老司机靠b影院| 性少妇av在线| 日韩欧美一区视频在线观看| 日本av手机在线免费观看| 色网站视频免费| 国产精品99久久99久久久不卡| 日本色播在线视频| 国产一区有黄有色的免费视频| 中文字幕最新亚洲高清| 波野结衣二区三区在线| 狂野欧美激情性bbbbbb| 99精品久久久久人妻精品| 欧美av亚洲av综合av国产av| 两个人看的免费小视频| 99国产综合亚洲精品| 久热爱精品视频在线9| 欧美日韩一级在线毛片| 国产免费又黄又爽又色| 人人妻人人添人人爽欧美一区卜| 国产有黄有色有爽视频| 一级黄片播放器| bbb黄色大片| 免费少妇av软件| 久久人人爽av亚洲精品天堂| 久久人妻福利社区极品人妻图片 | 亚洲国产av新网站| 久热这里只有精品99| 国产精品一区二区在线不卡| 国产在线免费精品| 亚洲午夜精品一区,二区,三区| 午夜av观看不卡| 精品亚洲成a人片在线观看| www.熟女人妻精品国产| 人人妻人人澡人人爽人人夜夜| 亚洲国产精品成人久久小说| 欧美日韩福利视频一区二区| 亚洲国产看品久久| 国产av国产精品国产| 亚洲一码二码三码区别大吗| 免费在线观看影片大全网站 | 亚洲av在线观看美女高潮| 夫妻午夜视频| 亚洲成色77777| 国产黄色视频一区二区在线观看| 午夜老司机福利片| av视频免费观看在线观看| 精品高清国产在线一区| 男女边摸边吃奶| 亚洲图色成人| 欧美少妇被猛烈插入视频| 国产亚洲欧美在线一区二区| 午夜激情av网站| 黄色片一级片一级黄色片| 久久亚洲精品不卡| 国产成人精品久久二区二区免费| 久久久久久久久久久久大奶| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧洲日产国产| 久久女婷五月综合色啪小说| 精品福利观看| 国产精品秋霞免费鲁丝片| 国产精品国产av在线观看| 精品国产国语对白av| 久久天躁狠狠躁夜夜2o2o | 亚洲欧洲日产国产| 视频区欧美日本亚洲| 国产精品免费视频内射| 菩萨蛮人人尽说江南好唐韦庄| 热99久久久久精品小说推荐| 一区二区三区乱码不卡18| 超色免费av| tube8黄色片| 久久久久久久精品精品| 天天操日日干夜夜撸| 国产爽快片一区二区三区| 一级毛片电影观看| 大陆偷拍与自拍| 欧美成人午夜精品| 国产成人免费观看mmmm| 亚洲,欧美,日韩| www日本在线高清视频| 午夜av观看不卡| 美女中出高潮动态图| 亚洲,一卡二卡三卡| 欧美在线一区亚洲| 丝瓜视频免费看黄片| 久久久精品94久久精品| 色网站视频免费| 啦啦啦啦在线视频资源| 成人三级做爰电影| 视频区欧美日本亚洲| 久久人人爽人人片av| 最新在线观看一区二区三区 | 久久久久精品国产欧美久久久 | 亚洲精品久久久久久婷婷小说| 日本91视频免费播放| 黄片播放在线免费| 国产伦人伦偷精品视频| 中文字幕制服av| 国产精品 欧美亚洲| 最近中文字幕2019免费版| 另类精品久久| 国产亚洲欧美精品永久| 久久女婷五月综合色啪小说| 天堂俺去俺来也www色官网| 91麻豆av在线| 成人亚洲精品一区在线观看| 建设人人有责人人尽责人人享有的| 精品久久蜜臀av无| 女人久久www免费人成看片| 一边摸一边做爽爽视频免费| 国产一区亚洲一区在线观看| 五月开心婷婷网| 亚洲五月色婷婷综合| 中文字幕色久视频| 性高湖久久久久久久久免费观看| 久久人人爽人人片av| 日韩中文字幕视频在线看片| 成年人免费黄色播放视频| 国产精品一区二区精品视频观看| 女人精品久久久久毛片| 成年人免费黄色播放视频| 亚洲精品第二区| av又黄又爽大尺度在线免费看| 看十八女毛片水多多多| 激情视频va一区二区三区| 一边亲一边摸免费视频| 天天添夜夜摸| 老司机靠b影院| 亚洲精品国产色婷婷电影| 亚洲欧美精品自产自拍| 丝瓜视频免费看黄片| 50天的宝宝边吃奶边哭怎么回事|