• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-precision RCS measurement of aircraft's weak scattering source

    2016-11-23 06:12:52HuChufengLiNanjingChenWeijunZhangLinxi
    CHINESE JOURNAL OF AERONAUTICS 2016年3期

    Hu Chufeng,Li Nanjing,Chen Weijun,Zhang Linxi

    Science and Technology on UAV Laboratory,Northwestern Polytechnical University,Xi'an 710072,China

    High-precision RCS measurement of aircraft's weak scattering source

    Hu Chufeng*,Li Nanjing,Chen Weijun,Zhang Linxi

    Science and Technology on UAV Laboratory,Northwestern Polytechnical University,Xi'an 710072,China

    The radar cross section(RCS)of weak scattering source on the surface of an aircraft is usually less than-40 dBsm.How to accurately measure the RCS characteristics of weak scattering source is a technical challenge for the aircraft's RCS measurement.This paper proposes separating and extracting the two-dimensional(2D)reflectivity distribution of the weak scattering source with the microwave imaging algorithm and spectral transform so as to enhance its measurement precision.Firstly,we performed the 2D microwave imaging of the target and then used the 2D gating function to separate and extract the reflectivity distribution of the weak scattering source.Secondly,we carried out the spectral transform of the reflectivity distribution and eventually obtained the RCS of the weak scattering source through calibration.The prototype experimental results and their analysis show that the measurement method is effective.The experiments on an aircraft's low-scattering conformal antenna verify that the measurement method can eliminate the clutter on the surface of aircraft.The precision of measuring a-40 dBsm target is 3–5 dB better than the existing RCS measurement methods.The measurement method can more accurately obtain the weak scattering source's RCS characteristics.

    1.Introduction

    Both theoretical calculations and experimental measurements show that the aircraft's different positions consist of many local scattering sources in the high-frequency range.1,2The echoes of the local scattering sources form the total scatteredfield of a target.The scattered field produced by a weak scattering source is several orders of magnitude lower than that produced by a strong scattering source,and therefore can be well ignored in the normal design of an aircraft.However,the overall radar cross section(RCS)of a stealth aircraft is rather small.At this point,the contribution of the weak scattering source to the overall RCS increases greatly;in particular,its effect is very obvious under certain polarizations or attitude angles.For these reasons,the study of the RCS characteristics of weak scattering sources and their scattering mechanisms is of far-reaching importance for the design of a stealth aircraft.

    The RCS measurement is one of the methods for obtaining the scattering characteristics of a target.3The measurement of a target can not only help us understand the basic scattering mechanism but also obtain massive characteristic data of the target.Its RCS value is ultimately determined by measurement results.When the order of magnitude of its RCS value is rather big,the requirements for measurement system and measurement method are rather low,and the rather accurate results can be obtained with the normal RCS measurement method.4But when the order of magnitude of the RCS value of the target to be measured is rather low,for example,measuring the target whose RCS value is-40 dBsm requires that the error is2 dB and that the background noise level reaches-60 dBsm5,the measurement environment in an anechoic chamber cannot satisfy such requirements.Thus,the precise measurement of a weak scattering source has higher requirements for measurement system and measurement method.To improve the measurement environment,Ref.6designed a low-scattering foam column,enabling the measurement background environment ranging from 1.5 to 40 GHz to reach-50 dBsm and providing support for weak scattering source measurement.Refs.7,8proposed two RCS measurement methods to separate background environment from target signals,being favorable for the precise measurement of a weak scattering source.But they are difficult to apply these methods to an aircraft's weak scattering source measurement.Because the background for weak scattering source study is rather sensitive,there are few papers in the open literature on the topic related to an aircraft.Refs.9,10explained the importance of this type of measurement data for an aircraft's electromagnetic characteristic control and prediction.Refs.11,12gave the measurement results on edge diffraction source and slit diffraction source,demonstrated that this type of target is installed on the low-detectable diamond components and emphasized that the pertinent measurement data are scarce.Refs.13,14designed different measurement models for slit target and step target and performed experimental studies.Refs.15,16proposed the methods of image editing reconstruction,which are used for removing the clutter of background.The image of background is subtracted from the image of target with background.However,it is difficult to eliminate the effect of background when the scattering of target is very low.

    Because the weak scattering source mostly exists on the surface of an aircraft,the scattering from the airframe envelope is the major cause for measurement errors.However,the normal RCS measurement method cannot distinguish the RCS characteristics contributions made by the airframe envelope and weak scattering source.This paper proposes a method for extracting the weak scattering source reflectivity distribution on the surface of an aircraft through microwave imaging and reversely developing its RCS contributions.The method uses a turntable's 2D microwave imaging algorithm to separate and extract the weak scattering source reflectivity distribution on the airframe envelope and then uses the wave spectrum theory to transform the spatial distribution spectra,thus obtaining the weak scattering source's own RCS contributions after prototype comparison.The experiments verify that in a normal anechoic chamber,the error of measuring a standard sphere of-40 dBsm with the method is only 1 dB.After imaging several metal spheres,the image of one of the metal spheres is extracted and then its RCS is reversely developed and compared with that of the sphere directly measured,with the measurement error being less than 0.5 dB.Finally,a low-scattering conformal antenna is used to verify the measurement;the verification results indicate that the measurement accuracy is 3–5 dB better.

    2.Measurement system construction and measurement method

    2.1.Stepped-frequency wideband RCS measurement system

    To obtain longitudinal high range resolution,we use the stepped-frequency wideband signal.17The signal is a continuous wave signal with changes in equal-interval frequency and usually transmitted and received with the vector network analyzer in an anechoic chamber.The measurement of a target is carried out by transmitting stepped-frequency signals,thus obtaining its frequency response,whose inverse fast Fourier transform(IFFT)produces the high resolution time domain response of the target.The measurement system construction is shown in Fig.1.

    The target to be measured is placed in the quiet zone of an anechoic chamber.The vector network analyzer transmits the stepped-frequency signal,which is amplified by a power amplifier and then transmitted and received by the wideband horn antenna.The measurement is carried out with the quasimonostation mode.There are coupling signals between reception antenna and transmission antenna(about-20 dBsm at the X band).To minimize the influence of the coupling signals on measurement accuracy,we placed some wave-absorption materials between the two antennas during the measurement.The computer controls the rotational speed and sampling interval of the turntable through the network wire.While rotating,the turntable transmits a trigger signal to the vector network analyzer,which then starts to respectively measure the frequency domain data of the background environment,the target to be measured and the calibration body at the same initial angle.The intermediate frequency bandwidth of a vector network analyzer is set to be 1 kHz,and its dynamic range is around 100 dB.

    2.2.Microwave imaging algorithm

    The high resolution imaging in an anechoic chamber often uses a turntable mode.18The wideband signal transmission produces range resolution,while the cross range resolution is achieved by the turntable rotation.The microwave imaging algorithm is similar to the chroma to graph imaging in medicine.19The data obtained with the measurement at a certain angle are used to reconstruct the projection of a target's reflectivity distributed on a plane.The relationship between field and image obtained with measurement is given in Eq.(1)20:

    where the x-y coordinate system is a set of coordinates fixed in a target,and its origin is at the centre of turntable and changes with the change in the target;g(x,y)is the image of the target to be measured;k is the spatial frequency and θ is the azimuth angle.

    Because the integral limit in Eq.(1)does not satisfy the IFFT conditions,the algorithm implementation needs to shift the k frequency to kmin.If B′=kmax-kminand B′is the band-width of the spatial frequency k,then the following20is obtained:

    Fig.1 Diagram of measurement system.

    Because the measurement system transmits stepped frequency signal,their frequency points are discrete.According to the Nnumber of sampling frequency points, we discretize k.If k=nB′/N,n=0,1,...,N-1,then Eq.(2)is rewritten as

    The projection linelis equidistantly discretized according to range resolution lm=m.c/2B=m/B′,m=0,1,...N-1.If Gθ(n)=(B′.n/N+kmin)G(n,θ),then Eq.(5)is expressed as

    Pθ(lm)is the projection value obtained from different lmpoints.The projection linelin the process of integration changes with the θ angle.For g(x,y)at any space point,each θ corresponds to a different l.Therefore,Pθ(l)is the projection value obtained from the discrete l,and Pθ(l)needs to be obtained by interpolating Pθ(lm).The interpolation formulas are as follows:

    After the interpolation,the angle is integrated;the integration formula is given as follows:

    The three steps of IFFT,interpolation and angle integration constitute the microwave imaging algorithm.We then obtained the 2D image of the target to be measured.We used the Hamming window to process the images;as a result,their resolution decreases,around one half smaller than the theoretical resolution.

    2.3.Weak scattering source image extraction and RCS calibration

    To obtain the RCS of a weak scattering source,first and foremost,its reflectivity distribution is extracted from the 2D image of the target to be measured.Depending on the geometrical region where the weak scattering source is located,we use a 2D circular gating function21whose radius r is a to extract the reflectivity distribution within the geometrical region,and set the reflectivity distribution outside the region as zero,thus forming the following new 2D image:

    We perform the 2D Fourier transform of the new 2D image,thus obtaining the spectral domain data of the weak scattering source.

    where Kxand Kyare the horizontal axis and longitudinal axis of the spectral domain respectively;x1,x2,y1and y2correspond to the upper and lower limits of the x-y plane where g1(x,y)is located.

    The interpolation of G1(Kx,Ky)produces the spectral domain data G1(f,θ)that change with frequency and angle.The interpolation formulas are given in the following:

    where c is the velocity of light.Similarly,we measure a metal sphere whose RCS is already known to obtain its 2D image g0(x,y).We perform the 2D Fourier transform of the 2D reflectivity distribution,obtaining the spectral domain data G0(f,θ)of the metal sphere that change with frequency and angle;the comparison of the spectral domain data of the weak scattering source with those of the metal sphere eventually produces the RCS of the weak scattering source:

    where σsis the RCS of metal sphere.

    3.Simulation results

    Fig.2 Enhancement effectiveness of image extraction method.

    The RCS measurement error level is mainly determined by the echo power ratio between target and background,and the resulted maximal error is expressed as follows:where ε denotes the echo power ratio between target and background environment.The formula indicates that when the echo power of the target is 10 dB higher than that of the background,the resulted error is 6 dB.

    To verify the enhancement effectiveness of the image extraction method,we simulated a metal sphere whose diameter is 150 mm and used a metal sphere whose diameter is 50 mm to simulate the interference of the background environment.When the metal sphere whose diameter is 50 mm is present,the synthetic RCS of the two balls produce a rather big oscillation,whose magnitude reaches 6 dB,satisfying the formula for measuring errors.The image extraction method was used to form the images of the two metal spheres and then extract the 2D image of the metal sphere whose diameter is 150 mm.Then the spectral transformation and calibration of the images were performed,thus obtaining the RCS curves as shown by the dotted lines in Fig.2.The figure shows that the RCS oscillation of the metal sphere is already less than 1 dB.The simulation results thus show that the image extraction method can eliminate the interference of the background environment,with the measurement accuracy being 5 dB better than before.

    4.Experimental verification

    4.1.Verifying RCS measurement precision with microwave imaging

    In an anechoic chamber,we constructed the measurement system as shown in Fig.1.We first measured a metal sphere whose diameter is 11 mm,as shown in Fig.3(a);its theoretical RCS is-40 dBsm.The frequency range for measurement is 8 to 12 GHz;the frequency interval is 5 MHz.The range of rotational angle is 360°the angle interval is 0.2°.The microwave imaging algorithm in Section 2 is used to process the echoes of the metal sphere,obtaining the 2D image of the target as shown in Fig.3(b).

    The 2D image is used to retrieve the RCS of the metal sphere,and then the RCS whose measurement frequency is 10 GHz is selected,as shown in Fig.4.The figure shows that the precision of the RCS measurement with the microwave imaging is less than 1 dB,indicating that the method for retrieving RCS with the microwave imaging is feasible.

    Fig.3 Metal sphere and its 2D image.

    Fig.4 RCS at 360°retrieved by microwave imaging.

    4.2.Experimental results of RCS retrieved by image extraction

    The objects to be measured include five metal spheres whose diameter is 53 mm(see Fig.5(a))and one metal sphere whose diameter is also 53 mm(see Fig.5(b));the measurement frequency range and frequency interval are the same as above.The rotational angle is-25°to 25°;the angle interval does not change.In one case,first,the five metal spheres are imaged;next,the 2D reflectivity distribution of the metal sphere in the same position as Fig.5(b)is extracted and finally its RCS is retrieved.In another case,the metal sphere in Fig.5(b)is tested by the normal RCS measurement.After calibrating them with the metal sphere whose diameter is 150 mm,we compared the differences in the RCS of the single metal sphere between the two cases.

    As shown in Fig.6(a),first,the 2D images of the five metal spheres are obtained,and then the reflectivity distribution of the metal sphere located at the upper-right corner is extracted,as shown in Fig.6(b).

    The spectral transform and calibration of the extracted reflectivity distribution of one metal sphere produce its RCS,as shown by the solid line in Fig.7.Similarly,the result of the metal sphere in Fig.5(b)with normal RCS measurement is given by the dotted line in Fig.7.The figure shows that in an angular domain for measurement,the retrieved RCS with image extraction and the normal RCS measurement have a difference of only less than 0.5 dB,indicating that the method for extracting a local scattering source through imaging and then retrieving its RCS is feasible.

    4.3.Experimental verification of low-scattering conformal antenna of an aircraft

    The typical weak scattering sources of an airplane and their scattering mechanisms are shown in Table 1.To enhance the stealth performance of an aircraft,conformal antenna is designed.

    Fig.5 Five metal spheres and one metal sphere.

    Fig.6 2D images of five metal spheres and reflectivity distribution of one metal sphere.

    Fig.7 Diagram for comparing RCS obtained in two cases.

    Table 1 Typical weak scattering sources of an airplane and their scattering mechanisms.

    During RCS measurement,the incidence electric field and conformal antenna basically remain in a parallel state and therefore form a weak scattering source on the aircraft surface.The conformal antenna in an installation state is measured,as shown in Fig.8(a).The antenna is embedded into the metal envelope of an analogue airframe,which is wrapped with wave-absorption materials to ensure that the scattering at the edge of metal envelope is as small as possible.The frequency range for measurement is 9–11 GHz;the frequency interval is 5 MHz.The rotational angle is-45°to 45°;the angle interval is 0.2°.

    The microwave imaging algorithm produces the 2D image of metal envelope,as shown in Fig.8(b),from which the 2D reflectivity distribution in the area of the conformal antenna is extracted,as shown in Fig.8(c).The spectral transform of the 2D reflectivity distribution produces the spectral distribution of the target,as shown in Fig.8(d).After its calibration with the metal sphere,the RCS whose measurement frequency is 10 GHz is selected,as shown in Fig.9.

    The dotted line in Fig.9 shows the results obtained with the normal RCS measurement method.It contains the scattering of the airframe envelope with the conformal antenna.The curve fluctuates somewhat in the angular domain;the major cause is the scattering on the surface of the airframe envelope.The antenna's RCS is obtained with the extraction and then spectral transform of the reflectivity distribution in the area of conformal antenna is shown by the solid line.It is smoother and 3–5 dB lower than the previous dotted line,indicating that this image extraction method can well separate the scattering of the conformal antenna from that of the airframe envelope,enhancing the measurement accuracy of a weak scattering source.

    Fig.8 Measurement of low-scattering conformal antenna.

    Fig.9 Comparison of two measurement results.

    5.Conclusions

    (1)The experiments with the known prototypes and the conformal antenna of an aircraft show that the method is effective,with the measurable RCS reaching below-40 dBsm.Therefore,it can be applied to the high precision measurement of an aircraft's weak scattering source.

    (2)Its strong scattering sources are separating and extracting the information on the scattering of a target and eliminating clutter.It can build an algorithm into a universal software module,which is embedded into the normal RCS measurement system to perform quasi-realtime processing,thus obtaining a higher precision than the normal RCS measurement method.

    (3)Because the RCS by image extraction involves the extraction area of a target,the results on different extraction areas may be different.Therefore,to obtain optimal results,the complete scattering points in the concerned area should be selected in accordance with the scattering properties of the target.Besides,when the measurement frequency is rather low and the target is rather small,the extracted area of the target should not be too small;if smaller than the wavelength,the information on the scattering of the target may be lost,causing rather great errors.

    (4)The minimum spacing has something to do with the imaging resolution.When the resolution can distinguish between the images of two targets,the distance between the two targets is the minimum spacing.If there is enough movable space,the RCS can also separate the targets that have great differentiation.

    (5)The method mainly uses microwave imaging,whose theoretical foundation is the model of multiple scattering centers.According to the electromagnetic field theory,each scattering center is equivalent to the mathematical discontinuity in the Stratton-Chu integral.The weak scattering source just results from the electromagnetic waves irradiated by the discontinuous structure on the surface of an airplane.Therefore,the method is applicable to the scattering characteristic analysis of a weak scattering source.

    Acknowledgements

    This study was co-supported by the National Natural Science Foundation of China(Nos.61201320,61371023)and the Fundamental Research Funds for the Central Universities of China(No.3102014JCQ01103).

    1.Mensa DL.Wideband radar cross section diagnostic measurements.IEEE Trans Instrum Meas 1984;33(3):206–14.

    2.Melin JO.Measuring radar cross section at short distance.IEEE Trans Antennas Propag 1987;35(8):991–6.

    3.Hess DW.Introduction to RCS measurements.Antennas and propagation conference,2008 Mar 17–18;Loughborough,UK.Piscataway,NJ:IEEE Press;2008.p.37–44.

    4.Tice TE.An overview of radar cross section measurement techniques.IEEE Trans Instrum Meas 1990;39(1):205–7.

    5.Knott EF,Shaeffer JF,Tuley MT.Radar cross section.4th ed.Raleigh,NC:Sci Tech Publishing Inc.;2004.p.449–83.

    6.Baggett M,Thomas T.Obtaining high quality RCS measurements with a very large foam column.AMTA annual meetingamp;symposium;2005 Oct 13–15;Newport,USA.New York:Curran Associates Inc.;2005.p.1–5.

    7.Muth LA,Wang CM,Conn T.Robust separation of background and target signals in radar cross section measurements.IEEE Trans Instrum Meas 2005;54(6):2462–8.

    8.Burns JW,Subotic NS.Reduction of clutter contamination in radar cross section measurements using independent components analysis.IEEE antennas and propagation society symposium,2004 Jun 20-25;Monterey,USA.Piscataway,NJ:IEEE Press;2004.p.731–4.

    9.White MO.Radar cross-section measurement prediction and control.Electron Commun Eng J 1998;10(4):169–80.

    10.Kemptner E,Klement D,Wagner H.RCS determination for DLR stealth design F7.The ROT SCI symposium on''non-cooperative air target identification using radarquot;,1998 Apr 22–24,Mannheim,Germany.p.1–12.

    11.Smith FC.Measurement of diffraction radar cross section.Electron Lett 2000;36(9):830–1.

    12.Wang HTG,Sanders ML.Benchmarking of RCS codes.IEEE antennas and propagation society symposium,1992 Jun18–25,Chicago,USA.Piscataway,NJ:IEEE Press;1992.p.1320–2.

    13.Huang PL,Liu ZH.Research on electromagnetic scattering characteristics of slits on aircraft.Acta Aeronautica et Astronautica Sinica 2008;29(3):675–80(Chinese).

    14.Huang PL,Liu ZH,Wu Z.Analysis of electromagnetic scattering characteristics of steps.Acta Aeronautica et Astronautica Sinica 2008;29(2):399–404(Chinese).

    15.Bati A,To L,Hilliard D.Advanced radar cross section clutter removal algorithms.Antennas and propagation conference,2010 Apr 12–16;Barcelona,Spain.Piscataway,NJ:IEEE Press;2010.p.1–5.

    16.Tulgar O,Ergin AA.Improved pencil back-projection method with image segmentation for far field near field SAR imaging and RCS extraction.IEEE Trans Antennas Propag 2015;63(6):2572–84.

    17.Karakasiliotis AV,Lazarov AD,Frangos PV,Boultadakis G,Kalognomos G.Two-dimensional ISAR model and image reconstruction with stepped frequency-modulated signal.IET Signal Proc 2008;2(3):277–90.

    18.Hu CF,Zhou Z,Li NJ,Zhang K.Multi-dimensional scattering properties diagnosis system of scale aircraft model in an anechoic chamber.J Syst Eng Electron 2014;25(1):1–9.

    19.Cheng GG,Zhu Y,Grzesik J.Microwave medical imaging techniques.Antennas and propagation conference,2013 Apr 8–12;Gothenburg,Sweden.Piscataway,NJ:IEEE Press;2013.p.2669–73.

    20.?zdemir C.Inverse synthetic aperture radar imaging with MATLAB algorithms.Hoboken,NJ:Wiley;2012.p.133–9.

    21.Patrosky A,Sekora R.Structural integration of a thin conformal annular slot antenna for UAV applications.Antennas and propagation conference,2010 Nov 8–9;Lough borough,UK.Piscataway,NJ:IEEE Press;2010.p.229–32.

    Hu Chufengreceived the degrees of B.S.,M.S.and Ph.D.from Northwestern Polytechnical University in 2004,2007 and 2010,respectively.Now he is an associate professor in Science and Technology on UAV Laboratory,Northwestern Polytechnical University.His research interests include radar cross section measurement,microwave imaging and radar remote sensing.

    31 August 2015;revised 30 January 2016;accepted 28 February 2016

    Available online 9 May 2016

    Microwave imaging;

    RCS measurement;

    Reflectivity distribution;

    Spectral transform;

    Weak scattering source

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is an open access article under the CCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 29 88451041 810.

    E-mail address:huchufeng@nwpu.edu.cn(C.Hu).

    Peer review under responsibility of Editorial Committee of CJA.

    久久99蜜桃精品久久| 国产精品久久久久久精品电影小说 | 在现免费观看毛片| 国产v大片淫在线免费观看| 精品久久久久久久久久久久久| 国产激情偷乱视频一区二区| 亚洲欧美精品自产自拍| 97人妻精品一区二区三区麻豆| 免费电影在线观看免费观看| 日韩av在线大香蕉| 91精品国产九色| 中文字幕av在线有码专区| 国产一级毛片七仙女欲春2| 九九久久精品国产亚洲av麻豆| 日韩强制内射视频| 桃色一区二区三区在线观看| 亚洲,欧美,日韩| 男人舔奶头视频| 久久人人爽人人爽人人片va| 最近中文字幕高清免费大全6| 美女cb高潮喷水在线观看| 热99re8久久精品国产| 男人狂女人下面高潮的视频| 国产日韩欧美在线精品| 国产午夜精品一二区理论片| 色尼玛亚洲综合影院| 超碰97精品在线观看| 最近2019中文字幕mv第一页| 欧美成人免费av一区二区三区| 精品99又大又爽又粗少妇毛片| 婷婷色av中文字幕| 高清毛片免费看| 九九爱精品视频在线观看| 国产精品人妻久久久久久| 两个人的视频大全免费| 亚洲内射少妇av| 丰满少妇做爰视频| 99热这里只有是精品在线观看| av免费观看日本| 午夜视频国产福利| 国产精品电影一区二区三区| 少妇的逼水好多| 亚洲丝袜综合中文字幕| 国产伦精品一区二区三区四那| 欧美人与善性xxx| 亚洲国产精品合色在线| 两性午夜刺激爽爽歪歪视频在线观看| 九九在线视频观看精品| 少妇被粗大猛烈的视频| 成年女人永久免费观看视频| 97热精品久久久久久| 欧美成人午夜免费资源| 精品国产一区二区三区久久久樱花 | 国产伦一二天堂av在线观看| 97超碰精品成人国产| 网址你懂的国产日韩在线| 国产精品一区二区在线观看99 | 永久免费av网站大全| 又粗又爽又猛毛片免费看| 亚洲怡红院男人天堂| 久久久久久久久久成人| 欧美不卡视频在线免费观看| 欧美区成人在线视频| 国产精品久久久久久久电影| 2022亚洲国产成人精品| 嫩草影院新地址| 蜜桃亚洲精品一区二区三区| 欧美最新免费一区二区三区| 最近最新中文字幕免费大全7| 亚洲国产最新在线播放| 一级爰片在线观看| av在线蜜桃| 一边亲一边摸免费视频| 秋霞在线观看毛片| 日韩,欧美,国产一区二区三区 | 午夜福利成人在线免费观看| 久久久久久久久久久丰满| 18禁动态无遮挡网站| 国产精品一二三区在线看| 少妇熟女欧美另类| 国产v大片淫在线免费观看| 久久精品熟女亚洲av麻豆精品 | 99热6这里只有精品| 欧美丝袜亚洲另类| 免费看av在线观看网站| 乱码一卡2卡4卡精品| 久久久久免费精品人妻一区二区| 联通29元200g的流量卡| 天天一区二区日本电影三级| 国产探花在线观看一区二区| 国产午夜精品论理片| a级一级毛片免费在线观看| 99热精品在线国产| 国产精品不卡视频一区二区| 最近中文字幕2019免费版| 欧美变态另类bdsm刘玥| 丰满少妇做爰视频| 国产片特级美女逼逼视频| 日韩 亚洲 欧美在线| 好男人视频免费观看在线| 三级毛片av免费| 国产成人aa在线观看| 亚洲av一区综合| 嫩草影院新地址| 日韩欧美精品免费久久| 一边摸一边抽搐一进一小说| 97热精品久久久久久| 午夜爱爱视频在线播放| 成人亚洲精品av一区二区| 大又大粗又爽又黄少妇毛片口| 18+在线观看网站| 一个人看视频在线观看www免费| 欧美日韩一区二区视频在线观看视频在线 | 蜜桃久久精品国产亚洲av| 99热6这里只有精品| 中文字幕精品亚洲无线码一区| 欧美成人午夜免费资源| 欧美高清成人免费视频www| 国产黄片美女视频| 亚洲中文字幕一区二区三区有码在线看| 久久精品91蜜桃| 国产三级在线视频| 草草在线视频免费看| 色噜噜av男人的天堂激情| 又粗又硬又长又爽又黄的视频| 国产精品人妻久久久影院| 国产精品人妻久久久影院| 最近最新中文字幕免费大全7| 久久精品影院6| 一级二级三级毛片免费看| 最近视频中文字幕2019在线8| 狂野欧美激情性xxxx在线观看| 免费大片18禁| 国产成人a∨麻豆精品| 99久久无色码亚洲精品果冻| 男插女下体视频免费在线播放| 一级爰片在线观看| 亚洲国产精品sss在线观看| 亚洲av熟女| 国产乱人偷精品视频| 亚洲欧美精品自产自拍| 欧美性猛交╳xxx乱大交人| 国产精品久久久久久久久免| 夫妻性生交免费视频一级片| 男女边吃奶边做爰视频| 成人亚洲精品av一区二区| 你懂的网址亚洲精品在线观看 | 人人妻人人看人人澡| 日日啪夜夜撸| 欧美zozozo另类| 欧美成人午夜免费资源| 欧美激情国产日韩精品一区| 夜夜看夜夜爽夜夜摸| 黄片无遮挡物在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人一区二区视频在线观看| 亚洲经典国产精华液单| 最新中文字幕久久久久| 美女xxoo啪啪120秒动态图| 国产麻豆成人av免费视频| 人妻制服诱惑在线中文字幕| АⅤ资源中文在线天堂| 三级国产精品片| 亚洲国产日韩欧美精品在线观看| 成人毛片60女人毛片免费| eeuss影院久久| 国产亚洲最大av| 国产精品久久久久久久久免| 国产av码专区亚洲av| 久久久久久久久久黄片| 久久精品久久久久久久性| 亚洲经典国产精华液单| 欧美性猛交╳xxx乱大交人| 成人亚洲精品av一区二区| 亚洲色图av天堂| 亚洲国产精品sss在线观看| 免费观看人在逋| 禁无遮挡网站| 亚洲国产精品久久男人天堂| 日韩一本色道免费dvd| 少妇裸体淫交视频免费看高清| 亚洲图色成人| 人人妻人人澡欧美一区二区| 午夜福利在线观看吧| 天堂av国产一区二区熟女人妻| 欧美三级亚洲精品| 色吧在线观看| 男女视频在线观看网站免费| 久99久视频精品免费| 黄色欧美视频在线观看| 欧美不卡视频在线免费观看| 日韩欧美在线乱码| 久久久久国产网址| 午夜福利网站1000一区二区三区| 国产精品福利在线免费观看| 国语对白做爰xxxⅹ性视频网站| 啦啦啦韩国在线观看视频| 永久免费av网站大全| 日本爱情动作片www.在线观看| 晚上一个人看的免费电影| 欧美日韩国产亚洲二区| 日本免费一区二区三区高清不卡| 91av网一区二区| 99久久中文字幕三级久久日本| 欧美激情在线99| 国产片特级美女逼逼视频| 可以在线观看毛片的网站| 白带黄色成豆腐渣| 日本午夜av视频| 一个人免费在线观看电影| 国产老妇伦熟女老妇高清| 成年av动漫网址| 国产免费男女视频| 纵有疾风起免费观看全集完整版 | 男女那种视频在线观看| 不卡视频在线观看欧美| 欧美三级亚洲精品| 国产三级中文精品| 高清日韩中文字幕在线| 成人特级av手机在线观看| 久热久热在线精品观看| 亚洲激情五月婷婷啪啪| 毛片女人毛片| 久久久久久久久久久免费av| 中国国产av一级| 最近最新中文字幕大全电影3| 午夜日本视频在线| 99久久精品国产国产毛片| 欧美人与善性xxx| 欧美精品国产亚洲| 99久久人妻综合| 久久久午夜欧美精品| 精品久久久久久久末码| 日韩,欧美,国产一区二区三区 | 国产午夜精品论理片| 国产欧美另类精品又又久久亚洲欧美| 蜜桃久久精品国产亚洲av| 男人舔奶头视频| 18禁裸乳无遮挡免费网站照片| kizo精华| 最近最新中文字幕免费大全7| 免费看av在线观看网站| 亚洲精品日韩在线中文字幕| 在现免费观看毛片| 国产av码专区亚洲av| 一个人免费在线观看电影| 免费观看精品视频网站| 日日撸夜夜添| 欧美成人午夜免费资源| 黄片无遮挡物在线观看| 韩国av在线不卡| 国产av码专区亚洲av| 搡老妇女老女人老熟妇| kizo精华| 成人特级av手机在线观看| 老师上课跳d突然被开到最大视频| 国产三级在线视频| 精品一区二区三区视频在线| 九九在线视频观看精品| 91在线精品国自产拍蜜月| 国产伦精品一区二区三区四那| 国产精品久久久久久精品电影| 国产视频内射| 人妻夜夜爽99麻豆av| 欧美成人a在线观看| 日韩在线高清观看一区二区三区| 国产av不卡久久| 成年av动漫网址| av在线观看视频网站免费| 中文乱码字字幕精品一区二区三区 | www.av在线官网国产| 国产精品三级大全| 夜夜爽夜夜爽视频| 黑人高潮一二区| 一卡2卡三卡四卡精品乱码亚洲| 日韩av不卡免费在线播放| 男插女下体视频免费在线播放| 亚洲国产精品合色在线| 搡老妇女老女人老熟妇| 国产午夜精品一二区理论片| 国产一区二区亚洲精品在线观看| 国产精品电影一区二区三区| 久久精品影院6| 级片在线观看| 国产成人91sexporn| 成人鲁丝片一二三区免费| 精品人妻偷拍中文字幕| 国产老妇伦熟女老妇高清| 一级黄色大片毛片| 卡戴珊不雅视频在线播放| 亚洲精华国产精华液的使用体验| 丰满乱子伦码专区| 国产在线男女| 亚洲精品色激情综合| 日本三级黄在线观看| 久久国产乱子免费精品| 男人狂女人下面高潮的视频| 2022亚洲国产成人精品| 秋霞在线观看毛片| 亚洲av中文av极速乱| 国内精品宾馆在线| 全区人妻精品视频| 亚洲精品国产av成人精品| 成年版毛片免费区| 99国产精品一区二区蜜桃av| 黄色配什么色好看| 久久99热这里只频精品6学生 | 精品久久久久久久久av| 国产精品电影一区二区三区| 九色成人免费人妻av| 国产色爽女视频免费观看| 久久婷婷人人爽人人干人人爱| 美女高潮的动态| 亚洲av中文av极速乱| 国产淫片久久久久久久久| 国产高清不卡午夜福利| 亚洲高清免费不卡视频| 看十八女毛片水多多多| 日日摸夜夜添夜夜爱| 91狼人影院| 日韩强制内射视频| 91精品一卡2卡3卡4卡| 午夜精品国产一区二区电影 | 中文在线观看免费www的网站| 22中文网久久字幕| 乱人视频在线观看| 蜜桃久久精品国产亚洲av| 亚洲精品aⅴ在线观看| 国产高清国产精品国产三级 | 18+在线观看网站| 久久亚洲精品不卡| 乱系列少妇在线播放| 不卡视频在线观看欧美| 亚洲精品色激情综合| 色视频www国产| 在线天堂最新版资源| 最近视频中文字幕2019在线8| 蜜桃久久精品国产亚洲av| 中文天堂在线官网| 搡老妇女老女人老熟妇| 真实男女啪啪啪动态图| 午夜福利网站1000一区二区三区| 校园人妻丝袜中文字幕| 精品久久久久久久久久久久久| 中文字幕av成人在线电影| 亚洲av电影在线观看一区二区三区 | 国产男人的电影天堂91| 久久精品夜色国产| 欧美日韩综合久久久久久| 久久久久久大精品| 亚洲欧美精品综合久久99| 人妻夜夜爽99麻豆av| 成人漫画全彩无遮挡| 免费黄网站久久成人精品| 国产女主播在线喷水免费视频网站 | 男人舔女人下体高潮全视频| 成人二区视频| 色噜噜av男人的天堂激情| 欧美成人免费av一区二区三区| av免费观看日本| 久久精品国产99精品国产亚洲性色| 亚洲乱码一区二区免费版| 三级毛片av免费| 国产三级中文精品| 日本黄色片子视频| av国产免费在线观看| 亚洲一区高清亚洲精品| 天堂中文最新版在线下载 | 天堂影院成人在线观看| 日韩精品青青久久久久久| av视频在线观看入口| 青春草视频在线免费观看| 国产精品无大码| 久久久色成人| 国产精品乱码一区二三区的特点| 国产亚洲91精品色在线| 成人鲁丝片一二三区免费| 国产精品一区二区性色av| 亚洲av熟女| 欧美变态另类bdsm刘玥| 男女国产视频网站| 波多野结衣巨乳人妻| 综合色av麻豆| 欧美日韩国产亚洲二区| 精品午夜福利在线看| 亚洲欧美中文字幕日韩二区| 国产在线男女| 亚州av有码| 亚洲在线观看片| 亚洲18禁久久av| 国产大屁股一区二区在线视频| 97超视频在线观看视频| 欧美97在线视频| 国产av不卡久久| 日韩一区二区视频免费看| 国产私拍福利视频在线观看| 视频中文字幕在线观看| 色噜噜av男人的天堂激情| 日本欧美国产在线视频| 国产成人午夜福利电影在线观看| 色吧在线观看| 久久午夜福利片| 国产探花在线观看一区二区| 免费看a级黄色片| 国产精品女同一区二区软件| 18禁动态无遮挡网站| 亚洲成人av在线免费| 九九热线精品视视频播放| 99久久人妻综合| 美女大奶头视频| 好男人在线观看高清免费视频| 久久鲁丝午夜福利片| 国产黄a三级三级三级人| 青春草国产在线视频| 99视频精品全部免费 在线| 噜噜噜噜噜久久久久久91| 日韩欧美国产在线观看| 精品一区二区免费观看| 啦啦啦观看免费观看视频高清| 国产一区二区在线av高清观看| 国产成人午夜福利电影在线观看| 国产黄片视频在线免费观看| 一级黄色大片毛片| 99久国产av精品国产电影| 91久久精品电影网| 久久久久性生活片| 精华霜和精华液先用哪个| 别揉我奶头 嗯啊视频| 我的女老师完整版在线观看| 夜夜爽夜夜爽视频| 噜噜噜噜噜久久久久久91| 国产探花极品一区二区| 男女视频在线观看网站免费| 国产一级毛片七仙女欲春2| 亚洲成人久久爱视频| 国产极品天堂在线| 如何舔出高潮| 午夜日本视频在线| 老司机福利观看| 美女国产视频在线观看| av专区在线播放| 偷拍熟女少妇极品色| 天天一区二区日本电影三级| 午夜老司机福利剧场| 国产成人精品久久久久久| 国产人妻一区二区三区在| 日韩大片免费观看网站 | 最近中文字幕2019免费版| 老司机影院成人| 黄色日韩在线| 久久6这里有精品| 久久鲁丝午夜福利片| 天天躁日日操中文字幕| 亚洲欧美日韩东京热| 淫秽高清视频在线观看| www.av在线官网国产| 国语对白做爰xxxⅹ性视频网站| 国产成人精品久久久久久| 中文字幕精品亚洲无线码一区| 久久国产乱子免费精品| 日韩欧美国产在线观看| 亚洲欧洲日产国产| 亚洲欧美日韩东京热| 一边摸一边抽搐一进一小说| 男的添女的下面高潮视频| 亚洲一区高清亚洲精品| 久久久成人免费电影| 大又大粗又爽又黄少妇毛片口| 我要看日韩黄色一级片| 一个人看的www免费观看视频| 久久久色成人| 国产三级在线视频| 亚洲精品乱码久久久v下载方式| 精品午夜福利在线看| 亚洲欧美成人精品一区二区| 白带黄色成豆腐渣| 久久久国产成人免费| 亚洲美女搞黄在线观看| 九色成人免费人妻av| 亚洲,欧美,日韩| videossex国产| 中文天堂在线官网| 99久国产av精品| 国产精品国产三级国产av玫瑰| 99久久精品一区二区三区| 一夜夜www| 中文亚洲av片在线观看爽| 亚洲欧美中文字幕日韩二区| 日韩欧美精品v在线| 级片在线观看| 舔av片在线| 亚洲av二区三区四区| 久久久久网色| 亚洲精品日韩av片在线观看| 国产一区有黄有色的免费视频 | 一个人免费在线观看电影| 色网站视频免费| 国产真实乱freesex| 国产三级在线视频| 天堂影院成人在线观看| 亚洲最大成人av| 亚洲经典国产精华液单| 国产精品一区www在线观看| 日本色播在线视频| 国产日韩欧美在线精品| 视频中文字幕在线观看| 亚洲电影在线观看av| 在线免费观看不下载黄p国产| 最新中文字幕久久久久| 免费人成在线观看视频色| 日本av手机在线免费观看| 插逼视频在线观看| 青春草国产在线视频| 亚洲伊人久久精品综合 | 美女国产视频在线观看| 少妇的逼水好多| 色播亚洲综合网| 国内精品美女久久久久久| 久久久国产成人精品二区| 国产精品国产三级国产av玫瑰| 亚洲欧美成人精品一区二区| 能在线免费看毛片的网站| 亚洲精品乱码久久久久久按摩| 中文字幕亚洲精品专区| 精品久久久久久久久av| 白带黄色成豆腐渣| 欧美xxxx性猛交bbbb| 久久精品久久久久久噜噜老黄 | 欧美性感艳星| 色网站视频免费| 久久久久性生活片| 高清日韩中文字幕在线| 久久久久免费精品人妻一区二区| 亚洲精品国产av成人精品| 只有这里有精品99| videos熟女内射| 亚洲av电影在线观看一区二区三区 | 成人亚洲精品av一区二区| 高清av免费在线| 国产毛片a区久久久久| 亚洲欧美中文字幕日韩二区| 午夜a级毛片| 麻豆一二三区av精品| 69av精品久久久久久| 22中文网久久字幕| 高清毛片免费看| 九九热线精品视视频播放| 在线观看66精品国产| 麻豆乱淫一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 简卡轻食公司| 亚洲av成人精品一二三区| 赤兔流量卡办理| 欧美xxxx黑人xx丫x性爽| 亚洲精品久久久久久婷婷小说 | 免费观看a级毛片全部| 免费观看精品视频网站| 免费搜索国产男女视频| 久久久久久九九精品二区国产| 亚洲美女搞黄在线观看| 日韩强制内射视频| 国产精品久久久久久久电影| 免费看日本二区| 一边亲一边摸免费视频| 一个人看的www免费观看视频| 99热6这里只有精品| 色吧在线观看| 国产成人freesex在线| 成人av在线播放网站| 精品国产三级普通话版| 日韩在线高清观看一区二区三区| 男人的好看免费观看在线视频| 成人三级黄色视频| 成人综合一区亚洲| 国产成人a∨麻豆精品| 婷婷色麻豆天堂久久 | 舔av片在线| 免费观看在线日韩| 免费看日本二区| 高清av免费在线| 一个人看的www免费观看视频| 久久久久性生活片| 亚洲国产欧美在线一区| 女人久久www免费人成看片 | 菩萨蛮人人尽说江南好唐韦庄 | 丰满乱子伦码专区| 国产熟女欧美一区二区| 超碰97精品在线观看| 床上黄色一级片| 看十八女毛片水多多多| a级毛色黄片| 亚洲国产欧洲综合997久久,| 亚洲色图av天堂| 国产精品一二三区在线看| 亚洲国产欧洲综合997久久,| 看十八女毛片水多多多| 国产精品一二三区在线看| 亚洲av成人av| av天堂中文字幕网| 少妇人妻精品综合一区二区| 五月伊人婷婷丁香| 色尼玛亚洲综合影院| 国产女主播在线喷水免费视频网站 | av在线亚洲专区| 国产高清国产精品国产三级 | 看十八女毛片水多多多| 美女cb高潮喷水在线观看| 欧美精品一区二区大全| 三级国产精品片| 日韩精品有码人妻一区| 久久久久久久亚洲中文字幕| 一级毛片电影观看 | 欧美日韩精品成人综合77777| 亚洲精品乱码久久久v下载方式| 亚洲av福利一区|