• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Test Method for the Static/Moving State of Targets Applied to Airport Surface Surveillance MLAT System

    2016-11-21 06:27:30,,,,

    ,,,,

    1. The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, P.R.China;2. College of Electronic Engineering, University of Electronic Science and Technology of China,Chengdu 611731, P.R.China

    ?

    A Test Method for the Static/Moving State of Targets Applied to Airport Surface Surveillance MLAT System

    HuangRongshun1,PengWe2*,LiJing1,WuHonggang1,LiXingbo1

    1. The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, P.R.China;2. College of Electronic Engineering, University of Electronic Science and Technology of China,Chengdu 611731, P.R.China

    (Received 4 November 2015; revised 24 March 2016; accepted 25 April 2016)

    Due to the particularity of its location algorithm, there are some unique difficulties and features regarding the test of target motion states of multilateration (MLAT) system for airport surface surveillance. This paper proposed a test method applicable for the airport surface surveillance MLAT system, which can effectively determine whether the target is static or moving at a certain speed. Via a normalized test statistic designed in the sliding data window, the proposed method not only eliminates the impact of geometry Dilution of precision (GDOP) effectively, but also transforms the test of different motion states into the test of different probability density functions. Meanwhile, by adjusting the size of the sliding window, it can fulfill different test performance requirements. The method was developed through strict theoretical extrapolation and performance analysis, and simulations results verified its correctness and effectiveness.

    multilateration(MLAT); hypothesis testing; motion state detection; sliding window; geometric Dilution of precision (GDOP)

    0 Introduction

    Multilateration(MLAT) is a novel positioning technology, and the fundamental principle is to identify locations using time difference of arrival (TDOA)[1]. MLAT system is featured with high positioning accuracy, strong anti-interference capability and good redundancy, which is a basic component of the next generation airport surface surveillance system proposed by International Civil Aviation Organization (ICAO)[2-3].

    Airport surface surveillance refers to the process of detecting, positioning, correlating and tracking aircraft and service vehicles in civil airports. The localization signal of airport surface surveillance system based on MLAT technology may come from the transponder and automatic broadcasting signal of aircraft and vehicles[4]. When designing a complete airport surface surveillance system, it not only requires to accurately determine the positions of aircraft and vehicles, but also to detect and determine their motion states, for instance, whether the target is static or moving at a certain speed[5-6].

    Detecting target motion state is ultimately a decision-making process or a hypothetic testing problem[7]. Traditional test methods of motion states construct the test statistics according to the target moving model and noise characteristics, then compare the statistics value with selected thresholds, and thus determine the motion state of targets. In general, noise is considered as stable white Gaussian noise, which also coincides with many practical conditions[8-9].

    MLAT location algorithm is based on TDOA, which means the related localization equation is nonlinear. Many processing techniques have been proposed with different complexity and restrictions. Linearizing the nonlinear equation by Taylor-series expansion and then solving iteratively is one possible way[10]. Chan adopted two liner approximate equations and the corresponding weighted least squares method to estimate target position. Thanks to its linear closed-form solution, Chan algorithm has been widely used in practical engineering[11]. In 2006, Chan proposed approximate maximum likelihood (AML) method, which can attain the theoretical lower bound, but is unable to fulfill the requirements of practical engineering due to its complex calculations[12]. Huang analyzed the influence of target height difference on three stations positioning accuracy[13]. Sharp and Hahn proposed location method of a three-station with auxiliary height difference. However, this method can only be applied when the geometric relationship between the satellite and the Earth is special[14-15]. A novel method is proposed by Yang et al. that uses known pressure altitudes to improve positioning accuracy in MLAT. But there is no in-depth analysis of the theoretical positioning accuracy and robustness of the method[16].

    Due to the particularity of MLAT location algorithm, the errors of estimated target position are related to TDOA measurement accuracy, layout of receiving stations, as well as the relative geometric positions between the target and the set of receiving stations, meaning the location noise of MLAT is related to multiple error variables[17-18]. The application of traditional detection algorithms of target motion state may lead to the degradation of detection performance and even to the failure. Regarding this problem, there is little research at home and abroad and no effective solutions. Yuan and Chen propose a detection algorithm of static state using the features of positioning error and ant colony algorithm[19]. However, this algorithm is rather complex and the calculation is heavy, which therefore is not suitable for the implementation of engineering applications.

    This paper proposed a detection method of motion states of airport surface targets based on MLAT systems. The detection method combines the characteristics of MLAT location algorithm, and implements the detection through the designed normalized test statistic within a sliding data window. The proposed method works on the principle that when the target remains static or moving, the normalized test statistic obeys different distributions (central Chi square or non-central Chi square distribution). Through normalization and adjusting the size of sliding window, the proposed method not only eliminates the effects of geometry dilution of precision (GDOP) on detection performance, but also is able to fulfill different detection requirements.

    The context of this paper is organized as below: Section 1 is introduction, and Section 2 describes the detailed derivation and performance analysis of the proposed method. Section 3 provides the details of simulation verification. Finally, we draw the conclusion.

    1 Theoretical Derivation and Performance Analysis

    In the following derivation process, we first presented the formula of static/moving state based on binary hypothesis test, and used the data within a sliding window to implement linear transformation in order to develop a normalized test statistic. The goal is to eliminate the effects of GDOP, and to transform the test of target motion state into the test of the probability density functions.

    1.1 Motion state test based on binary hypothesis test

    Based on binary hypothesis test, the formula in terms of a target motion state(static/moving) can be represented as

    (1)

    In the following processes, we will define a sliding window consisting ofNposition samples of a target(the positions ofNsamples is estimated by MLAT system ), and use theNth sample(xN,yN) to subtract the rest samples (xi,yi), respectively (i=1,…,N-1), thus we can obtain the differencedxNi,dyNi(i=1,…,N-1) corresponding tox,yaxis

    (2)

    When the target remain static, namelyvxk=vyk=0 in Eq. (1), then the concrete form of Eq.(2) is

    (3)

    Here we construct difference vector dwx=[dxN1,dxN2,…,dxNN-1]T,dwy=[dyN1,dyN2,…,dyNN-1]Tforxaxis andyaxis withN-1 values in Eq.(3), respectively, and where [·]Trepresents transposition.

    Therefore, we can use vector dwxto construct the test statistics in order to perform motion test onxaxis (without losing the generality, the procedure and conclusion of dwyis similar to dwx). The specific steps for deciding whether a target is static or moving are as follows:

    Step 1 Derive the covariance matrix of dwxbased on MLAT location algorithm characteristic when the target is static.

    Step 2 dxyis normalized using the covariance matrix, and to obtain appropriate test statistics.

    Step 3 Obtain the detection thresholdMxξaccording to the distribution of test statistics and performance requirement.

    Step 4 Determine the motion state of the target using the test statistic and properly chosen threshold in step 2 and 3.

    The detailed descriptions of those steps above is as follow. When the state of target isH0(namely the state of target is static), the covariance matrix of dwxcould be expressed as follows according to Eq.(3).

    (4)

    (5)

    According to Chan and Sharp[12,14], E{(ηxi)2},i=1,…,NinEq.(5)notonlyrelatestoreceiverthermalnoise,butalsototherelativepositionsbetweentargetandstations,andtherelationshipbetweenthemis

    (6)

    Gt=

    (7)

    (8)

    (9)

    To deal withdwxthrough normalization processing as follows, the influence on test process caused by relative localization geometry between target and stations can be eliminated. Then normalized statistic quantityξxkfor test process can be gotten

    (10)

    Substitut Eq.(9) into Eq.(10) gives

    (11)

    1.2 Motion state test based on probability density function

    By properly choosing the level of confidence, the threshold valueMxξcan be determined, and hypothesis testing for static or moving target could be made as

    (12)

    In conclusion, the concrete steps of the test method proposed in this paper applied to judge whether a target is static or moving state are as follows:

    (1) Determine the sliding window size Naccordingtoperformancerequirements,anddeterminethresholdMxξandMyξaccordingtolevelofconfidence.Calculatedwxanddwyinslidingwindow,respectively.

    (4)Tomakerepetitivejudgmentaccordingtothestepsdescribedaboveasthenextsampleslidesintothewindow.

    2 Simulation

    Simulationwascarriedouttoverifythevalidityoftheproposedmethod.Chanalgorithmwasappliedtosimulationtoestimatethetargetlocation.Therewere8stationsandthe(x, y, z)coordinatesofeachstationwere(-114.199 28, 2 913.697 04, -3.489 79), (-331.837 08, -240.138 36, -5.383 16), (586.891 45, 1 854.460 46, 28.302 10),(683.941 72, 3 116.517 55, 18.578 23),(556.024 14, 1 166.376 65, -4.601 39), (-331.926 47, 422.073 61, -4.512 67),(0, 0, 0),and(-0.098 85, 3 527.896 14, -5.710 45) (thesecoordinatesalsoaretheactualstationcoordinatesofMLATatGuilinLiangjiangInternationalAirport).Thetargetcoordinateswas(-360, 300, -10),thetimeintervalofsampleswas1s,theTOAnoisewassetasGaussianwhitenoisewithstandarddeviation3ns.TheexperimentalPDFscamefrom10 000independentMonteCarlotrials.

    ThesimulationgeneratedthePDFswhenthetargetwasstaticormovingatacertainspeed,inordertovalidatethecorrectnessoftheproposedmethod,aswellastoassessitsperformance.Thesimulationconsistedofthefollowingtwoparts:

    (1)BycomparingthedegreeofcoincidenceofsimulatedPDFsandtheoreticalPDFs(instaticstate),weverifedthecorrectnessoftheoryanalysis;

    2)WegeneratdthePDFswhenthetargetwasstaticandmovingatdifferentspeedsandindifferentsizesofslidingwindow.ThePDFwhentargetremainedstaticwasoverlappedwiththosewhentargetmovedatdifferentspeedwithdifferentslidingwindowsize.Thecomparisonsoftheoverlapsshowedtheeffectsoftargetspeedandwindowsizeontestperformancewhichcouldbequantitativelyassessed(sincefalsedetectingandleakingdetectingprobabilitieswererelatedtotheoverlapextentofthePDFs).

    2.1ComparisonofsimulatedandtheoreticalPDFs

    Fig.1showsthetheoreticalandsimulatedvaluesofPDFswhentargetwasstaticandthesizesofslidingwindowwere3, 5and7,respectively(inthatcasethetheoreticalPDFswerecentralχ2PDFswith2, 4, 6degreesoffreedom).AsshownintheFig.1,thesimulatedresultsfitwellwiththetheoreticalvalues.Itprovesthecorrectnessofpreviousderivation.

    Fig.1 Simulated and theoretical PDFs in different sizes of sliding window (target is static)

    2.2 Performance Comparisons

    LetPfddenotes the probability of false detection, i.e., when target is moving but is determined to be static. LetPlddenotes the probability of leaking detection; i.e., when target is static but the decision is moving. To improve the test performance (i.e. reducePfdandPldat the same time), it requires the overlapping area of the PDF for static target and the PDFs for moving target to be as small as possible.

    We simulated the PDFs, when the target was static and moving at different velocities and in different sizes of sliding window, in order to assess the effects of target speed and window size on test performance.

    The selected parameters in the simulation were as follows:

    (1) The size of sliding window was 3, and the velocity of target was 0.5 m/s, 1 m/s, and 1.3 m/s, respectively.

    (2) The size of sliding window was 5, and the velocity of target was 0.5 m/s, 0.6 m/s, and 1.0 m/s, respectively.

    (3) Both significance level and false detection probabilityPfdwere set as 0.05.

    Figs.2,3 show the simulation results Asxaxis was similar toyaxis, onlyxaxis was simulated.

    From above analysis we can see that, with the static target and window size of 3, the distribution of test statistics was centralized χ2distribution with 2 degrees of freedom. In that case the corresponding detection threshold was obtained to be 6 (namelyMxξ=6) from the distribution. In Fig. 2, when the target velocity was 0.5 m/s,1 m/s and 1.3 m/s, the corresponding PDF was non-centralisedχ2distribution (2 degrees of freedom). By calculation, the simulated non-central Chi-square areas to the left ofMxξwere 0.693, 0.145, 0.023 successively when the target velocity values were 0.5 m/s, 1m/s and 1.3 m/s, respectively (namely correspondingPfdwere 0.693, 0.145, 0.023, respectively). Obviously, it indicates that only when the target is moving at 1.3 m/s and the size of sliding window is 3, the proposed method is able to fulfill the performance requirements ofPfd.

    Fig.2 PDFs with different speed when the size of sliding window is 3

    Fig.3 PDFs with different speed when the size of sliding window is 5

    With the static target and window size of 5, the distribution of test statistics was centralizedχ2distribution with 4 degrees of freedom. In the same way above, we obtained detection threshold (Mxξ=9.49). The data in Fig.3 indicate that, when the velocity of target was 0.5 m/s, 0.6 m/s and 1 m/s, the simulated non-centralizedχ2distribution (4 degrees of freedom) areas to the left ofMxξwere 0.133, 0.039 and 0.0, respectively (i.e. correspondingPfdare 0.133, 0.039 and 0.0, respectively).

    Apparently, it indicates that when the window size is set to 5, the target with velocity of 0.6 m/s is able to fulfill the requirements ofPfd.

    Known in Figs.2,3, along with the increasing window size and target velocity, the overlapping area of centralizedχ2distribution (target remain static) and non-centralizedχ2distribution (target is moving) would be decreased. This will reduce the probability of false detection and the probability of leaking detection at the same time, with the disadvantage of increasing amount of calculation.

    From above simulation results we can see that, the window size and target velocity significantly affect the test performance. In practice, it may choose properly size of window according to the system performance requirements.

    3 Conclusions

    This paper proposed a method of determining the static/moving state of targets, which is applied to MLAT system for airport surface surveillance. Using designed test statistics, this method constructs different PDFs to represent the static/moving state of targets, and uses it as the basis of binary hypothesis test. The main characteristics of this method are as follows:

    (1) It eliminates the effects of GDOP on estimation error in MLAT system, which enables the test performance to have no connection with the relative geometric location between targets and stations;

    (2) The size of sliding data window can be adjusted to fulfill different requirements of test performance.

    As the theoretical basis of the state judging module in A-SMGCS, the proposed method has already been applied to the demonstration project of MLAT experimental system at Guilin Liangjiang International Airport.

    Acknowledgement

    This work was supported by the National Science and Technology Pillar Program of China (No.2011BAH24B06), the National Nature Science Foundation of China and Chinese Civil Aviation Jointly Funded Foundation Project (No.U1433129), and the Sichuan Provincial Department of Education Foundation (No.13ZB0287).

    The authors would like to express their gratitude to Central and Southern Air Traffic Management Bureau of CAAC, Southwest Air Traffic Management Bureau of CAAC and Guilin Liangjiang International Airport.

    [1] SHERMAN L, PER E. Capacity study of multilateration (MLAT) based navigation for alternative position navigation and timing (APNT) services for aviation [J]. Navigation, Journal of the Institute of Navigation, 2012, (59)4:263-279.

    [2] GAVIRIA M, MAURO L, GASPARE G, et al. Localization algorithms for multilateration (MLAT) systems in airport surface surveillance [J].Signal, Image and Video Processing, 2014, 9(7):1549-1558.

    [3] MAURO L, ADOLF M, GASPARE G. Closed form localization algorithms for mode s wide area multilateration[C]∥ Proceeding of the 6th European Radar conference, Rome, Italy: IEEE Press, 2009, 73-76.

    [4] ROEDER M. EMMA-European airport movement management by A-SMGCS-A contribution to the vision 2020[C]∥ 25th Congress of the International Council of the Aeronautical Sciences, Hamburg Germany: Optimage, Ltd, 2006:4013-4019.

    [5] MAURO L, SILVIO S, GASPARE G. ADS-B/MLAT surveillance system from high altitude platform systems[C] ∥2011 Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles, Italy, Capri: IEEE Press, 2011: 153-158.

    [6] IVAN M, JUAN B, REYES L D, et al. Improvement of multilateration (MLAT) accuracy and convergence for airport surveillance[C]∥2011 Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles, Italy, Capri: IEEE Press, 2011: 185-190.

    [7] IIN F, WANG H, WANG W, et al. Vehicle state and parameter estimation based on dual unscented particle filter algorithm[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2014,31(5): 568-576.

    [8] HARRY L, VAN TREES. Detection, estimation, and modulation theory [M]. New York: Wiley Inter Science, 2001: 120-180.

    [9] TODD K M, WYNN C S. Mathematical methods and algorithms for signal processing [M]. Upper Saddle River: Prentice Hall, 2000: 264-267.

    [10]TONIERI D J. Statistical theory of passive location systems[J]. IEEE Trans on AES, 1984, (20)5: 183-198.

    [11]CHAN Y T, HO K C. A Simple and efficient estimator for hyperbolic location[J]. IEEE Trans on SP, 1994, 42(8): 1905-1915.

    [12]CHAN Y T, YAU H, HANG C, et al. Exact and approximate maximum likelihood localization algorithms[J]. IEEE Trans on Vehicular Technology, 2006, 55(1):10-16.

    [13]HUANG J Y, WAN Q. Analysis of TDOA and TDOA/SS based geolocation techniques in a non-line-of-sight environment [J]. Communications and Networks, 2012, 14(5): 533-539.

    [14]SHARP I, YU K. On the GDOP and accuracy for indoor positioning [J]. IEEE Trans on AES, 2012, 48(3): 2032-2051.

    [15]HAHN W R, TRETTER S A. Optimum processing for delay-vector estimation in passive signal arrays [J]. IEEE Trans on Inform Theory, 1973, (19): 608-614

    [16]YANG Lin, ZHOU Yiyu, XU Hui, et al. Passive location and error analysis using TDOA and aided height information by three stations[J]. Acta Electronica Sinica, 1998, 26(12): 71-74(in Chinese).

    [17]SHARP I, KEGEN Y. GDOP Analysis for Positioning System Design[J]. IEEE Trans on Vehicular Technology, 2009, 58(7): 3371-3382.

    [18]ZHANG Zhengchao, TONG Li. Precision Analysis of passive location of 4-stations based on TDOA [J]. Journal of China Academy of Electronics and Information Technology, 2010, 5(6): 582-587. (in Chinese)

    [19]YUAN Gang, CHEN Jing. A clustering detection algorithm of stationary target for passive time difference location system [J]. Journal of Electronics & Information Technology, 2010, 32(3): 728-731. (in Chinese).

    [20]CHAN Y T, TSUI W Y, SO H C, et al. Time-of-arrival based localization under NLOS conditions [J].IEEE Trans on Vehicular Technology, 2006, 55(1): 17-24.

    Dr. Huang Rongshun is currently a Researcher in the Second Research Institute of CAAC. He received his Ph.D. in Sichuan University, and his main research interests focus on information processing and system integration.

    Dr. Peng Wei is currently working as postdoctoral research fellow in University of Electronic Science and Technology of China. He received his Ph.D. in University of Electronic Science and Technology of China, and his main research interests are radar, digital signal processing and MLAT system.

    Ms. Li Jing is currently an engineer in the Second Research Institute of CAAC, She received master degree in computer science and technology in 2008 from Northwest A&F University and her main research interests include MALT, ADS-B and A-SMGCS.

    Dr. Wu Honggang is currently a researcher in the Second Research Institute of CAAC. He received his Ph.D. in Beijing University of Aeronautics and Astronautics, and his main research interests include signal processing and air traffic control systems.

    Dr. Li Xingbo is the engineer of the Second Research Institute of CAAC. She received her Ph.D. in Warwick University, UK. Her research interests include multi-agent systems and swarm intelligence.

    (Executive Editor: Zhang Bei)

    TN958.97 Document code:A Article ID:1005-1120(2016)04-0425-08

    *Corresponding author, E-mail address: pw7@163.com.

    How to cite this article: Huang Rongshun, Peng We, Li Jing, et al.A test method for the static/moving state of targets applied to airport surface surveillance mlat system[J]. Trans. Nanjing Univ. Aero. Astro., 2016,33(4):425-432.

    http://dx.doi.org/10.16356/j.1005-1120.2016.04.425

    欧美日本亚洲视频在线播放| 日本-黄色视频高清免费观看| 久久国内精品自在自线图片| 看黄色毛片网站| 特大巨黑吊av在线直播| 亚洲欧美日韩东京热| 亚洲精品在线观看二区| 亚洲狠狠婷婷综合久久图片| 热99re8久久精品国产| 国产又黄又爽又无遮挡在线| 女同久久另类99精品国产91| 国产三级在线视频| 男女之事视频高清在线观看| 国产亚洲精品久久久com| 桃色一区二区三区在线观看| 成人亚洲精品av一区二区| 啦啦啦观看免费观看视频高清| 在线观看免费视频日本深夜| 日韩欧美三级三区| 在现免费观看毛片| 国产欧美日韩精品一区二区| 成人特级黄色片久久久久久久| 精品一区二区免费观看| 男插女下体视频免费在线播放| 亚洲国产精品久久男人天堂| 国产精品1区2区在线观看.| 精华霜和精华液先用哪个| 听说在线观看完整版免费高清| 国产精品一区www在线观看 | 精品一区二区三区人妻视频| 18禁黄网站禁片免费观看直播| 噜噜噜噜噜久久久久久91| 久99久视频精品免费| 成人欧美大片| 精品一区二区三区人妻视频| 露出奶头的视频| 人妻少妇偷人精品九色| 男女那种视频在线观看| 两个人的视频大全免费| 亚洲av日韩精品久久久久久密| 1024手机看黄色片| 国内精品久久久久精免费| 黄色日韩在线| 高清日韩中文字幕在线| 性色avwww在线观看| 久久精品国产亚洲av天美| 国产精品一区二区三区四区免费观看 | 中文字幕av成人在线电影| 十八禁网站免费在线| 免费观看的影片在线观看| 亚洲天堂国产精品一区在线| 免费在线观看影片大全网站| 欧美精品国产亚洲| 能在线免费观看的黄片| 国产午夜精品论理片| av在线观看视频网站免费| 亚洲无线在线观看| 51国产日韩欧美| 成人一区二区视频在线观看| 国产av在哪里看| 乱人视频在线观看| 欧美成人免费av一区二区三区| 国内精品一区二区在线观看| 成人国产麻豆网| 全区人妻精品视频| 欧美bdsm另类| 亚洲av第一区精品v没综合| 狂野欧美白嫩少妇大欣赏| 99久久精品一区二区三区| 亚洲一区二区三区色噜噜| 深夜精品福利| 美女 人体艺术 gogo| a级一级毛片免费在线观看| 国内少妇人妻偷人精品xxx网站| 国产国拍精品亚洲av在线观看| 男人和女人高潮做爰伦理| av在线老鸭窝| 又粗又爽又猛毛片免费看| 亚洲av日韩精品久久久久久密| 国内精品久久久久久久电影| 国产伦一二天堂av在线观看| 日韩精品有码人妻一区| 国产亚洲av嫩草精品影院| 中文在线观看免费www的网站| 中文亚洲av片在线观看爽| 色吧在线观看| 狂野欧美白嫩少妇大欣赏| 在线播放无遮挡| 精品人妻1区二区| 亚洲av日韩精品久久久久久密| 无人区码免费观看不卡| 国内精品一区二区在线观看| 日本精品一区二区三区蜜桃| 很黄的视频免费| 日日摸夜夜添夜夜添小说| 波多野结衣高清无吗| 亚洲性夜色夜夜综合| 久久精品国产亚洲网站| 亚洲国产精品合色在线| 搡女人真爽免费视频火全软件 | 在线观看午夜福利视频| 成人综合一区亚洲| 久久精品人妻少妇| 亚洲av熟女| 亚洲av不卡在线观看| 看免费成人av毛片| 久久中文看片网| 嫁个100分男人电影在线观看| 乱码一卡2卡4卡精品| 在线天堂最新版资源| 97超视频在线观看视频| 国内精品宾馆在线| 在线国产一区二区在线| 精品久久久久久久久亚洲 | 国内精品美女久久久久久| 十八禁网站免费在线| 乱系列少妇在线播放| 亚洲av中文字字幕乱码综合| 亚洲精品成人久久久久久| 一区二区三区四区激情视频 | 久久久久性生活片| 欧美不卡视频在线免费观看| 长腿黑丝高跟| 成人二区视频| 免费av不卡在线播放| 99热网站在线观看| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久人妻蜜臀av| 免费观看在线日韩| 搡老岳熟女国产| 色在线成人网| 午夜免费成人在线视频| 少妇的逼好多水| 乱系列少妇在线播放| 中文字幕高清在线视频| 精华霜和精华液先用哪个| 男女视频在线观看网站免费| 精品久久久久久久久久免费视频| 老熟妇仑乱视频hdxx| 久久精品综合一区二区三区| 久久精品国产99精品国产亚洲性色| 欧美日本视频| 国产主播在线观看一区二区| 欧美在线一区亚洲| 99热这里只有是精品在线观看| 国产精品电影一区二区三区| 日韩中文字幕欧美一区二区| 国产黄a三级三级三级人| 无人区码免费观看不卡| 一个人看视频在线观看www免费| 男女做爰动态图高潮gif福利片| 国产成人影院久久av| 精品久久久噜噜| 久久久久久九九精品二区国产| 国产精品自产拍在线观看55亚洲| 国产单亲对白刺激| 麻豆久久精品国产亚洲av| 长腿黑丝高跟| 精品午夜福利视频在线观看一区| 欧美日韩黄片免| 亚洲熟妇熟女久久| 蜜桃亚洲精品一区二区三区| 动漫黄色视频在线观看| 欧美一区二区亚洲| 精品一区二区三区av网在线观看| 亚洲精品一区av在线观看| 国产伦人伦偷精品视频| 国产 一区 欧美 日韩| 日韩人妻高清精品专区| 听说在线观看完整版免费高清| 一级av片app| 久久久久国产精品人妻aⅴ院| 国产主播在线观看一区二区| 久久久久九九精品影院| 少妇的逼水好多| av在线观看视频网站免费| 日韩av在线大香蕉| 色综合婷婷激情| 少妇丰满av| 欧美成人一区二区免费高清观看| 热99re8久久精品国产| 亚洲avbb在线观看| 亚洲精品色激情综合| 欧美性感艳星| 熟女人妻精品中文字幕| 免费一级毛片在线播放高清视频| 日韩欧美 国产精品| 99热只有精品国产| 嫩草影院入口| 性欧美人与动物交配| 国产亚洲精品av在线| 亚洲一区二区三区色噜噜| 少妇的逼好多水| 午夜激情欧美在线| 国产精品不卡视频一区二区| 国产午夜精品久久久久久一区二区三区 | 天堂网av新在线| 精品人妻一区二区三区麻豆 | 亚洲欧美日韩高清专用| 国产精品一区二区免费欧美| 色在线成人网| 男人和女人高潮做爰伦理| 看黄色毛片网站| 一区福利在线观看| 国产麻豆成人av免费视频| 久久久久免费精品人妻一区二区| 国产精品av视频在线免费观看| 成人av在线播放网站| 中国美白少妇内射xxxbb| avwww免费| 国产精华一区二区三区| 国产伦一二天堂av在线观看| 色吧在线观看| 欧美中文日本在线观看视频| 日本-黄色视频高清免费观看| 亚洲性夜色夜夜综合| 国产av一区在线观看免费| 国产精品综合久久久久久久免费| 一个人观看的视频www高清免费观看| 日韩大尺度精品在线看网址| 男女下面进入的视频免费午夜| 高清毛片免费观看视频网站| 国产免费男女视频| 欧美精品国产亚洲| 蜜桃久久精品国产亚洲av| 1000部很黄的大片| 国产高清有码在线观看视频| 国产 一区 欧美 日韩| 男人舔奶头视频| 日日干狠狠操夜夜爽| 日本一本二区三区精品| 欧美日韩精品成人综合77777| 国产亚洲av嫩草精品影院| 伦精品一区二区三区| 男女做爰动态图高潮gif福利片| 熟女人妻精品中文字幕| 亚洲中文字幕日韩| 亚洲国产精品成人综合色| 国产成人a区在线观看| 亚洲精品在线观看二区| 亚洲四区av| 91在线观看av| 国产精品,欧美在线| 97超级碰碰碰精品色视频在线观看| .国产精品久久| 久久久久久国产a免费观看| 蜜桃久久精品国产亚洲av| 久久精品人妻少妇| 午夜精品在线福利| 国语自产精品视频在线第100页| 亚洲av成人av| 国产亚洲欧美98| 日本黄色视频三级网站网址| 国产伦人伦偷精品视频| 国产激情偷乱视频一区二区| 久久精品影院6| 国内久久婷婷六月综合欲色啪| 成人国产一区最新在线观看| 亚洲最大成人手机在线| 亚洲av五月六月丁香网| 国产精品精品国产色婷婷| 中文字幕人妻熟人妻熟丝袜美| 久久欧美精品欧美久久欧美| 久久午夜亚洲精品久久| 女同久久另类99精品国产91| 亚洲国产精品成人综合色| 国产欧美日韩精品一区二区| 国产精品一及| 亚洲欧美精品综合久久99| 日本黄大片高清| 一区二区三区四区激情视频 | 亚洲精品日韩av片在线观看| 欧美人与善性xxx| 成年女人看的毛片在线观看| 国产精品久久久久久精品电影| 欧美黑人巨大hd| 精品久久久久久成人av| 在线观看66精品国产| 91麻豆精品激情在线观看国产| 久久久久国内视频| 亚洲第一电影网av| 99久久九九国产精品国产免费| 黄色女人牲交| 69av精品久久久久久| 欧美3d第一页| 日韩,欧美,国产一区二区三区 | 亚洲成人精品中文字幕电影| 午夜精品久久久久久毛片777| 免费看光身美女| 国产精品一及| 99久国产av精品| 12—13女人毛片做爰片一| 亚洲欧美日韩卡通动漫| 国产成人一区二区在线| 欧美日韩中文字幕国产精品一区二区三区| 久久精品国产鲁丝片午夜精品 | 免费黄网站久久成人精品| 日韩欧美国产一区二区入口| 99久久精品国产国产毛片| 欧美日韩国产亚洲二区| 久久精品综合一区二区三区| 免费人成在线观看视频色| 久久久成人免费电影| 麻豆av噜噜一区二区三区| 精品一区二区三区人妻视频| 性色avwww在线观看| 不卡视频在线观看欧美| 亚洲最大成人av| 国产在视频线在精品| 村上凉子中文字幕在线| 日本撒尿小便嘘嘘汇集6| 全区人妻精品视频| 久久天躁狠狠躁夜夜2o2o| 波多野结衣巨乳人妻| 深夜精品福利| 乱码一卡2卡4卡精品| 五月伊人婷婷丁香| 国内精品久久久久久久电影| 久久久久久九九精品二区国产| 一区二区三区免费毛片| 少妇高潮的动态图| 超碰av人人做人人爽久久| 日韩欧美在线乱码| 女生性感内裤真人,穿戴方法视频| 亚洲国产精品久久男人天堂| 婷婷色综合大香蕉| 亚洲欧美激情综合另类| 久久久久久九九精品二区国产| 一本久久中文字幕| 中文亚洲av片在线观看爽| 啪啪无遮挡十八禁网站| 欧美日韩瑟瑟在线播放| av视频在线观看入口| 国产av麻豆久久久久久久| 色综合亚洲欧美另类图片| 成年女人毛片免费观看观看9| 国产高潮美女av| 18禁裸乳无遮挡免费网站照片| 日韩,欧美,国产一区二区三区 | 伦理电影大哥的女人| 淫秽高清视频在线观看| 午夜视频国产福利| 国产一区二区激情短视频| 国内久久婷婷六月综合欲色啪| 少妇人妻一区二区三区视频| 亚洲成a人片在线一区二区| 亚洲一区二区三区色噜噜| 国产精品久久视频播放| 老女人水多毛片| 人人妻,人人澡人人爽秒播| 国内精品宾馆在线| av.在线天堂| 日韩av在线大香蕉| 熟妇人妻久久中文字幕3abv| 免费大片18禁| 亚洲性久久影院| 淫秽高清视频在线观看| 99久久精品一区二区三区| 亚洲精品色激情综合| 中文在线观看免费www的网站| 午夜福利欧美成人| 亚洲欧美精品综合久久99| 亚洲成人中文字幕在线播放| 男人狂女人下面高潮的视频| 亚洲自拍偷在线| 中文字幕精品亚洲无线码一区| 悠悠久久av| 国产精华一区二区三区| av.在线天堂| 久久久久九九精品影院| 熟女电影av网| 一本久久中文字幕| 久久精品91蜜桃| 久久天躁狠狠躁夜夜2o2o| 国产乱人伦免费视频| 色播亚洲综合网| 国产精品99久久久久久久久| 观看美女的网站| 韩国av一区二区三区四区| 亚洲熟妇熟女久久| 可以在线观看毛片的网站| 亚洲熟妇熟女久久| 欧美最黄视频在线播放免费| 久久人人爽人人爽人人片va| 日本在线视频免费播放| 久久精品国产亚洲av香蕉五月| 99热这里只有精品一区| 成人国产麻豆网| 内地一区二区视频在线| 少妇丰满av| 国产精品久久久久久久久免| 美女大奶头视频| 亚洲一区高清亚洲精品| 欧美日韩精品成人综合77777| 亚洲av电影不卡..在线观看| 男女下面进入的视频免费午夜| 午夜福利成人在线免费观看| 少妇被粗大猛烈的视频| 亚洲avbb在线观看| 国产伦精品一区二区三区视频9| 91精品国产九色| 欧美日本亚洲视频在线播放| 性欧美人与动物交配| 午夜福利18| 国产69精品久久久久777片| 午夜福利在线观看免费完整高清在 | 国产乱人视频| 可以在线观看的亚洲视频| 亚洲专区中文字幕在线| 亚洲成a人片在线一区二区| av天堂在线播放| 51国产日韩欧美| 日韩一本色道免费dvd| 麻豆国产av国片精品| 日本黄大片高清| 亚洲四区av| 国产免费一级a男人的天堂| 性插视频无遮挡在线免费观看| 欧美最新免费一区二区三区| 99riav亚洲国产免费| 亚洲国产高清在线一区二区三| 国产成人影院久久av| 在线天堂最新版资源| 午夜免费激情av| .国产精品久久| 久久午夜福利片| av福利片在线观看| 18禁裸乳无遮挡免费网站照片| 国产老妇女一区| 一区二区三区免费毛片| 亚洲中文字幕一区二区三区有码在线看| 男人和女人高潮做爰伦理| 一区二区三区高清视频在线| 欧美色欧美亚洲另类二区| 亚洲av中文av极速乱 | 欧美bdsm另类| 九九爱精品视频在线观看| 午夜a级毛片| 成熟少妇高潮喷水视频| 欧美一区二区精品小视频在线| 国产黄色小视频在线观看| av专区在线播放| 日本免费一区二区三区高清不卡| 最近中文字幕高清免费大全6 | 久久香蕉精品热| 国产精品精品国产色婷婷| 国产精品电影一区二区三区| 国产高潮美女av| 国产高清有码在线观看视频| 99热精品在线国产| 一a级毛片在线观看| 免费观看人在逋| 免费在线观看日本一区| 亚洲一级一片aⅴ在线观看| 欧美高清性xxxxhd video| 精品久久久久久,| xxxwww97欧美| 97人妻精品一区二区三区麻豆| 国产精品久久久久久久久免| 国产高清激情床上av| 老女人水多毛片| 欧美精品国产亚洲| av专区在线播放| 美女xxoo啪啪120秒动态图| 特级一级黄色大片| 久久久久久久精品吃奶| 亚洲电影在线观看av| 亚洲最大成人手机在线| 欧美又色又爽又黄视频| 午夜福利成人在线免费观看| 91麻豆精品激情在线观看国产| 大又大粗又爽又黄少妇毛片口| 国产亚洲91精品色在线| 日韩欧美在线乱码| 欧美zozozo另类| 亚洲成人免费电影在线观看| 国产精品嫩草影院av在线观看 | 在线观看午夜福利视频| 我的老师免费观看完整版| 无人区码免费观看不卡| 成人三级黄色视频| 内地一区二区视频在线| 亚州av有码| av专区在线播放| 亚洲性夜色夜夜综合| 亚洲va日本ⅴa欧美va伊人久久| 色播亚洲综合网| 日本-黄色视频高清免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲成人中文字幕在线播放| 国产 一区 欧美 日韩| 99在线人妻在线中文字幕| 午夜日韩欧美国产| 校园人妻丝袜中文字幕| 少妇高潮的动态图| 精品久久久久久久末码| 免费在线观看影片大全网站| 久久午夜亚洲精品久久| 国产熟女欧美一区二区| videossex国产| 色精品久久人妻99蜜桃| aaaaa片日本免费| 久久久久久九九精品二区国产| 久久久精品欧美日韩精品| av专区在线播放| 天堂√8在线中文| 日日夜夜操网爽| 天堂动漫精品| 精品久久久久久久久久久久久| 在线观看一区二区三区| 精品午夜福利视频在线观看一区| 亚洲美女黄片视频| 免费av不卡在线播放| 成人午夜高清在线视频| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美免费精品| 成人永久免费在线观看视频| 黄色视频,在线免费观看| 欧美高清成人免费视频www| 国产一区二区激情短视频| 99精品在免费线老司机午夜| 88av欧美| 亚洲在线观看片| 十八禁网站免费在线| 天堂网av新在线| 国产精品一区二区三区四区久久| 中文在线观看免费www的网站| 久久久成人免费电影| 国产精品永久免费网站| 久久精品夜夜夜夜夜久久蜜豆| 欧美另类亚洲清纯唯美| 在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 久久99热这里只有精品18| 国产av一区在线观看免费| 久久久久久久久大av| av在线老鸭窝| 国产亚洲91精品色在线| 淫妇啪啪啪对白视频| 成人国产麻豆网| 精品99又大又爽又粗少妇毛片 | 一本久久中文字幕| 全区人妻精品视频| 99久久精品国产国产毛片| 12—13女人毛片做爰片一| 亚洲欧美日韩高清专用| 又粗又爽又猛毛片免费看| 在线免费观看不下载黄p国产 | 一进一出抽搐动态| 此物有八面人人有两片| 18禁黄网站禁片午夜丰满| 日韩精品青青久久久久久| 久久精品国产亚洲网站| 无遮挡黄片免费观看| 久久精品国产99精品国产亚洲性色| 久久国产乱子免费精品| 亚洲美女搞黄在线观看 | 高清毛片免费观看视频网站| av在线观看视频网站免费| 中文字幕人妻熟人妻熟丝袜美| 少妇的逼好多水| 尾随美女入室| 岛国在线免费视频观看| 黄色日韩在线| 一本久久中文字幕| 国产探花极品一区二区| 久久久午夜欧美精品| 国产精品av视频在线免费观看| 99热这里只有是精品50| 久久精品综合一区二区三区| 久久精品国产亚洲av涩爱 | 亚洲专区中文字幕在线| 国产日本99.免费观看| 亚洲成人中文字幕在线播放| 亚洲不卡免费看| 亚州av有码| 国产精品野战在线观看| 免费大片18禁| 亚洲欧美日韩东京热| 69av精品久久久久久| 国产视频一区二区在线看| 国产真实乱freesex| 国产午夜精品久久久久久一区二区三区 | 深爱激情五月婷婷| 色综合色国产| 国内精品宾馆在线| 波多野结衣高清无吗| 中出人妻视频一区二区| 国产不卡一卡二| 久久久久久久久久久丰满 | 欧美xxxx性猛交bbbb| 亚洲欧美日韩无卡精品| 直男gayav资源| 变态另类丝袜制服| 看黄色毛片网站| 日本a在线网址| 国产精品国产高清国产av| 美女cb高潮喷水在线观看| 在线观看av片永久免费下载| 欧美3d第一页| 草草在线视频免费看| 成人美女网站在线观看视频| 亚洲自偷自拍三级| 成人欧美大片| 久久久精品欧美日韩精品| 成人永久免费在线观看视频| 日本免费a在线| 看十八女毛片水多多多| 禁无遮挡网站| 两个人的视频大全免费| 亚洲人与动物交配视频| 人人妻人人澡欧美一区二区| 亚洲一区高清亚洲精品| 色噜噜av男人的天堂激情| 人妻久久中文字幕网|