• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage

    2022-11-21 09:28:54WenjunYan閆文君ZhishenJin金志燊ZhengyangLin林政揚(yáng)ShiyuZhou周詩(shī)瑜YonghaiDu杜永海YulongChen陳宇龍andHoupanZhou周后盤
    Chinese Physics B 2022年11期
    關(guān)鍵詞:金志

    Wenjun Yan(閆文君) Zhishen Jin(金志燊) Zhengyang Lin(林政揚(yáng)) Shiyu Zhou(周詩(shī)瑜)Yonghai Du(杜永海) Yulong Chen(陳宇龍) and Houpan Zhou(周后盤)

    1School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China

    2Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    3Institute of Microelectronics,University of Macau,Avenida da Universidade,Taipa,Macau,China

    Li dendrites and electrolyte leakage are common causes of Li-ion battery failure. H2, generated by Li dendrites,and electrolyte vapors have been regarded as gas markers of the early safety warning of Li-ion batteries. SnO2-based gas sensors, widely used for a variety of applications, are promising for the early safety detection of Li-ion batteries, which are necessary and urgently required for the development of Li-ion battery systems. However,the traditional SnO2 sensor,with a single signal,cannot demonstrate intelligent multi-gas recognition. Here,a single dual-mode(direct and alternating current modes)SnO2 sensor demonstrates clear discrimination of electrolyte vapors and H2,released in different states of Li-ion batteries,together with principal component analysis(PCA)analysis. This work provides insight into the intelligent technology of single gas sensors.

    Keywords: gas sensors,single dual-mode,multivariable sensors,Li-batteries,early safety warning

    1. Introduction

    To alleviate ever-growing energy consumption, electrochemical energy storage technology has been a topic of wide concern in recent years.[1,2]In particular,lithium(Li)-ion batteries (LIBs) have dominated both electronics and automotive applications due to their high energy density and reduced cost.[1,2]Unfortunately, LIB safety issues have emerged due to the flammable organic electrolytes and the intrinsic thermal properties during charge and discharge,which could result in explosion and casualties.[3–6]For the development of largescale LIB energy storage equipment,effective safety warnings,as early as possible,are necessary and urgently required.

    The current battery management system (BMS) is regarded as a crucial LIB protection system, which can detect the voltage, state of charge (SOC), and external surface temperature of the battery cell. However, the BMS is unable to detect LIB safety issues in the early stages.[1,4]For example,the external voltage of a leaking battery could be kept at almost the same level as that of a pristine battery for several hours.[4]As reported, special gas detection of LIBs could detect LIB safety issues at an earlier stage.[1,4]In particular, H2, generated by the reaction of Li dendrites with a polymer binder,could be captured first, and over 10 min earlier than smoke and fire,in cases of LIB failure.[1]Furthermore,LIB failure is often associated with electrolyte leakage.[6,7]The main components of the LIBs’electrolyte are volatile and redox neutral solvents, such as dimethyl carbonate(DMC), diethyl carbonate(DEC),ethyl methyl carbonate(EMC)and propylene carbonate(PC).[4,8]

    As is well known, semiconductor sensors have been widely used for various hazardous and flammable gases in the internet of things (IoT) due to their high sensitivity, simple mechanism and real-time response.[9,10]However, selectivity has always been the bottleneck of semiconductor gas sensors,and further limits the recognizability and intelligentization of individual sensors. Combining sensors into arrays is a common method used to mitigate the poor selectivity of sensors,with up to thousands of individual sensors.[11]Obviously,sensor arrays cannot fulfill the convenience of sensors well.

    Recently, new multivariable gas sensors have been reported.[12,13]These multivariable sensors involve a sensing material and a multivariable transducer,to provide diverse and independent responses to different gases and to provide multigas recognition and rejection of interferences.[14,15]The measurable response signals of chemi-electrical sensors include current, capacitance, and resistance/impedance. In contrast to the single signal of DC resistive sensors, AC impedance sensors can provide a multidimensional response over a fitted frequency range, which results from the further extraction of parameters, including the dielectric constant, charge transfer resistance, double-layer capacitance and diffusion constant,and are attracting increasing attention.[6,16–18]AC sensors are characterized not only by low cost and a simple device configuration,but also by different frequencies producing various signals.[6]

    Herein,we use DC–AC dual mode to detect organic electrolytes and H2possibly venting from the failed LIBs, taking a SnO2-based sensor as an example. Multi-sensing parameters extracted from the DC current,as well as AC impedance,and the corresponding phase angle,dissipation factor and frequency data,are comprehensively analyzed. According to the principal component analysis (PCA) of multi-sensing parameters, clear discrimination of electrolyte vapors(DEC,DMC,and PC)and H2is proved,which could improve the accuracy and reliability of the LIBs’early safety warning system.

    2. Experimental details

    2.1. Material preparation and characterization

    The SnO2-based sensing material here was prepared by following Ref. [19]. Typically, 500 g of as-received SnO2micro-powder(2–5 μm in diameter,Jinxin Advanced Materials,China)was mixed with 1425 g deionized water under magnetic stirring, followed by addition of 75 g triethanolamine(Usolf Chemical, China)as a dispersant. Stirring and dispersion continued for 10 mins. Next,the mixture was ball-milled(WG-1L,Vgreen Nanometer Technology,China)for 2 h with balls 300 μm in diameter to produce a uniform dispersion. Finally, 1 g of tetraamminepalladium nitrate (H12N6O6Pd, Aladdin, China) was added to 12 g of the as-obtained dispersion. Consequently,the acquired stable nano-dispersion,with a solid content of 15%,was the Pd-dopped SnO2material utilized for this work.

    The morphologies of the as-prepared material were characterized using scanning electron microscopy (SEM, FEI Nanosem 430).Powder x-ray diffraction(XRD)analyses were performed on a Bruker D8 Advance diffractometer with CuKαradiation(λ ≈1.54 ?A).

    2.2. Gas sensing experiment design

    A schematic of the bare sensor device with a pair of interdigital electrodes(IDEs)integrating a microheater is shown in Fig. S1a (supporting information). The microheater was fabricated based on silicon micro-electromechanical system(MEMS) technology, reported in our previous work.[20]The fabrication details are also described in the supporting information.The typical relationship of the heating temperature vs.the applied voltage of the microheater is shown in Fig. S1b.The complete sensor device was fabricated by facile dropcoating. Afterwards, the device was heated and maintained at 300°C for 7 days to promote SnO2deposition and device aging to obtain reliable testing data.

    The gas sensing tests were performed using a homemade system with an 8-L test chamber, as reported in our previous work.[21]For the analyte sensing test,a fitting concentration of the analyte(standard H2gas of 10×10-6mol/mol,and DMC,DEC and PC vapor) was injected into the chamber. All the sensing tests were taken at ambient temperature of about 25°C and 40%relative humidity,adjusted by an air conditioner and a humidifier. The heating temperature of the microheater was precisely controlled using a bias voltage applied by a Keithley 2602B source-meter. The sensor DC and AC signals were collected by a Keithley 2602B source-meter and a Keysight 1732C LCR meter, respectively. Principal component analysis(PCA)was calculated using the inbuilt library function of Python.

    3. Results and discussion

    3.1. Material analysis

    The SEM image in Fig. 1(a) shows the homogeneity of the as-prepared SnO2powder. The XRD pattern of the asprepared SnO2is shown in Fig. 1(b). Due to the tiny Pd additive, no obvious Pd peaks are detected. All the peaks are assigned to SnO2of tetragonal rutile (JCPDS No. 41-1445).The obvious peaks at 2θ= 26.7°, 33.9°, and 38°correspond to the (110), (101), and (200) planes of SnO2, respectively.Furthermore, the SnO2grain size is~30–40 nm, calculated according to the XRD data.

    Fig.1.(a)An SEM image,and(b)the XRD pattern of the as-prepared SnO2 powder.

    3.2. Gas sensing characteristics

    We chose DEC,DMC,PC and H2as analyte gases,which are mainly produced by failed Li batteries. And the gas sensing performances were investigated via the DC current signal,AC impedance,θand D signals at different frequencies. A similar AC signal response of an IDE sensor device has been reported in our previous work.[22]Figure 2 shows the relative DC and AC signal variations of one sensor device to various analyte concentrations(200,160,120,80,40,and 20 ppm of DEC,DMC,and PC,respectively;200,150,100,50,10,and 5 ppm of H2).

    Fig.2. Continuous response characteristics to different gases. DC current relative change(I/I0)to a)DEC,(b)DMC,(c)PC and(d)H2. AC impedance relative change(Z0/Z)at the frequency of 100 Hz to(e)DEC,(f)DMC,(g)PC,and(h)H2.AC impedance relative change(Z0/Z)and θ relative change(θ0/θ) at the frequency of 1 kHz to (i) DEC, (j) DMC, and (k) PC. AC impedance relative change (Z0/Z), θ relative change (θ0/θ), and D relative change(D/D0)at the frequency of 10 kHz to l)DEC,(m)DMC,(n)PC,and(o)H2. Here, I0 (Z0, θ0 and D0)and I (Z, θ and D)are the sensor DC current(AC impedance,phase angle,and dissipation factor)in ambient air and the real-time value in analyte gas,respectively.

    Under DC mode,upon exposure to each analyte,the sensor current increases rapidly, and then decreases back to the original baseline when the analyte is off. DEC, DMC, PC and H2are all electron donors. Each of the analytes adsorbed on the n-type SnO2surface could contribute electrons to the conduction band of SnO2, leading to an increase in the concentrations of the majority of electron carriers, consequently increasing the current of the SnO2device.

    Under AC mode at the frequency of 100 Hz, only an impedance response could be detected for each analyte. Notably, at AC frequency of 1 kHz, both impedance and phase angle (θ) responses to DEC, DMC, and PC are obvious, but no responses to H2. At AC frequency of 10 kHz, all the impedance,θ, and dissipation factor (D) responses to DEC,DMC, and PC are excellent, while only an impedance response to H2could be detected. Interestingly, the sensor impedance decreases quickly when exposed to each analyte,at different AC frequencies, and then quickly increases back to the original baseline when the analyte is off. Moreover,the phase angle has the same response and recovery trend, while theDhas the opposite response and recovery trend to each analyte. A detailed explanation will be given in the following section.

    Figure S2 shows that the gas response values increase as each analyte concentration increases. According to reported electrochemical gas sensors,the response could be empirically linearly expressed as[23]

    whereCrepresents the analyte concentration,andaandbare constants, depending on the type of gas sensor and sensing material. Figure 3 displays linear plots of logarithms of the response value as a function of the logarithms of each analyte concentration under different modes,except for the impedance response to H2at 10 kHz. A similar linear relationship is seen in a previous report.[24]The relative parameters(slope, intercept, andR2) of each fitting equation are summarized in Table 1.

    Fig.3. The relationship of response values vs. concentration in logarithmic terms for different gases. DEC:(a)DC current, (b)AC impedance at the frequency of 100 Hz,(c)AC impedance and θ at the frequency of 1 kHz,(d)AC impedance,θ and D at the frequency of 10 kHz. DMC:(e)DC current,(f) AC impedance at the frequency of 100 Hz, (g) AC impedance and θ at the frequency of 1 kHz, (h) AC impedance, θ and D at the frequency of 10 kHz. PC:(i)DC current, (j)AC impedance at the frequency of 100 Hz, (k)AC impedance and θ at the frequency of 1 kHz, (l)AC impedance, θ and D at the frequency of 10 kHz. H2: (m)DC current,(n)AC impedance at the frequency of 100 Hz,(o)AC impedance,θ and D at the frequency of 10 kHz. The symbols are response values;the lines are the fitting of response values vs. concentration.

    Table 1. Slope,intercept,and R2 values of the fitting equations of response vs. concentration for different gases under DC and AC dual modes.

    Moreover,a comparison of response values to different analytes(200 ppm DEC,DMC,PC,and H2)under different modes is shown in Fig. 4. Obviously, for different signal modes, the selectivity of the sensor to the various analytes is different. The different selectivity enables various analyte recognition using one device.

    Fig.4. A comparison of response values towards different gases under DC and AC modes(200 ppm DEC,DMC,PC and H2).

    In contrast to the operating principle of the DC current mode, the AC responses (includingZ0/Z,θ0/θ, andD/D0)are closely related to not only the conductivity of the sensing layer,but also the permittivity of the sensing material and analytes.[12]The equivalent circuit of the SnO2sensor with IDEs could be simply regarded as a typical Randles circuit,as depicted in Fig.5.Here,R1andC1represent the time-constant resistance and capacitance of the SnO2layer,respectively.The parallel circuit element(R2‖C2)corresponds to the resistance and capacitance of gas-dependent interfaces,which dominate the AC responses of the device.[12,25]The Warburg impedance,ascribed asZw,is as a result of the gas diffusion process,and only observed in the low-frequency regime(<10 kHz).[25–27]The imaginary and real parts of impedance can be described by

    whereεis the relative permittivity (dielectric constant),ε0is the vacuum permittivity,eis the electron charge,Ndis the majority carrier concentration,Eis the applied electrical potential,kis the Boltzmann constant,andTis the absolute temperature.

    The phase angle (θ) can be calculated by the following equation:

    Upon exposure to the analytes of electron donors, under AC modes, electrons will contribute to the SnO2surface due to analyte adsorption,and will result in a decrease in the gasdependent interface resistanceR2. Beyond this,changes in the dielectric properties of analyte-dependent interfaces in a fixed frequency could also contribute to the impedance responses,according to Eqs. (1)–(4). The permittivities of DEC, DMC,PC and H2are 2.805, 3.107, 64.92 and 1, respectively.[29]Based on reports, the gas-dependent interface capacitanceC2mainly relies on the dielectric constants of analytes.[25,30]Hence,C2has no significant effect on the AC responses of SnO2to DEC and DMC, due to their low permittivities. But for PC with high permittivity,C2generates an obvious AC response improvement,except for theθresponse at 10 kHz.

    Fig. 5. The AC equivalent circuit of the SnO2 sensor. R0 represents phase constant contact resistance. The parallel circuit element(R1‖C1)represents capacitance and resistance of the SnO2 sensing layer. The parallel element(R2 ‖C2) is the equivalent resistance and capacitance of the analyte-gasdependent interface. The Warburg impedance is described as the Zw.

    Furthermore, the only detectedZresponse to each analyte at 100 Hz indicates that electronic resistance properties of gas-dependent interfaces mainly controls the sensing response. When the frequency increased to 1 kHz, an obvious capacitance effect appears, resulting in the detectedZandθresponse;when the frequency further increased to 10 kHz,an additionalDresponse could be detected with more capacitance effect(Figs.2–3).

    Interestingly, the impedance response of H2at 100 Hz was increased dramatically compared to the DC current response, although the permittivity of H2is also small. According to previous reports, it is proposed that the chemical species induced by H2adsorption enhances the AC impedance response at the low frequency of 100 Hz, via generation of a polarization potential in the H2–SnO2interface.[12,31,32]When the AC frequency increases to 1 kHz, no AC impedancerelated parameter responses to H2could be detected. A similar sharp response decrement with the frequency increasing has previously been reported.[31,32]When the AC frequency further increases to 10 kHz,quick diffusion of H2plays an important role,with more capacitor effects(Zw)due to the small molecular size, resulting in a non-linear impedance response to concentration.

    3.3. Principal component analysis

    PCA is a commonly used effective method in exploratory data analysis and classification. In the present work, differences in the various parameter responses to each analyte provide the possibility of multi-gas recognition based on one device. Utilizing Python and the PCA function in the Sklearn Library,the database was projected into a 2D plane.Visualization in a two-dimensional graph in Fig.6 reveals that the electrolyte vapors and H2are actually and clearly discriminated.The mathematic derivation in the PCA code is attached in the supporting information. The cumulative variance of the principal components of over 97%(PC1 90.48%and PC2 6.52%)indicates that the major information is maintained from the raw database.

    Fig.6. (a)PCA-assisted classification and regression of electrolyte vapors(red dots)and H2(black dots). (b)Nine characteristic values of the covariance matrix for PCA.

    4. Conclusions

    In summary, smart and clear classification of electrolyte vapors and H2has been realized using a single common SnO2sensor,by combining DC current signals and AC impedancerelated signals.Due to the dielectric properties of analytes,the SnO2sensing layer, and the analyte adsorption on the SnO2surface, diverse sensing parameters were obtained under DC and AC dual test modes, which enable the single sensor to build signature-difference patterns for tested gases via PCA analysis. The accurate distinction of electrolyte vapors and H2would contribute to the monitoring of the operating conditions of LIBs. This robust method for the classification and recognition of various chemical vapors using an individual device paves the way toward applications in intelligent identification of multi-gas with very few sensors.

    Acknowledgements

    This research was supported by the Zhejiang Science and Technology Foundation(Grant No.LQ20F040006).

    The authors acknowledge L. M. for help with the SEM and XRD characterizations. Yan W.J.acknowledges the 2011 Zhejiang Regional Collaborative Innovation Center for Smart City.

    猜你喜歡
    金志
    Robust free-space optical frequency transfer in time-varying link distances conditions
    從炮兵團(tuán)戰(zhàn)士到關(guān)愛團(tuán)團(tuán)長(zhǎng)
    基于AquaCrop模型的茶葉產(chǎn)量和開采期預(yù)報(bào)*
    5次赴朝尋找,他要把父親帶回家
    婦女生活(2021年1期)2021-02-23 02:38:04
    金志文發(fā)行最新EP專輯《路遙知馬力》
    青年歌聲(2017年9期)2017-03-15 03:33:36
    韓劇迷傷別“奶奶專業(yè)戶”
    會(huì)變的云姑娘
    金志文的向日葵愛情
    閱讀(2013年3期)2013-04-23 03:31:34
    乘火車
    乘火車
    亚洲精品乱码久久久v下载方式| 日韩欧美精品v在线| 亚洲最大成人手机在线| 黄色女人牲交| 久久精品91蜜桃| 人人妻人人看人人澡| 夜夜夜夜夜久久久久| 日韩av在线大香蕉| 亚洲av成人av| 深夜a级毛片| 一本综合久久免费| 午夜激情欧美在线| 国产成人福利小说| 日韩中文字幕欧美一区二区| 真人一进一出gif抽搐免费| 每晚都被弄得嗷嗷叫到高潮| 校园春色视频在线观看| 免费高清视频大片| 国产精品亚洲美女久久久| 国产成人影院久久av| 少妇被粗大猛烈的视频| 在线观看舔阴道视频| 国产人妻一区二区三区在| 精品午夜福利在线看| 网址你懂的国产日韩在线| 美女 人体艺术 gogo| 亚洲av美国av| 色哟哟哟哟哟哟| 可以在线观看毛片的网站| 欧美xxxx黑人xx丫x性爽| 亚州av有码| 亚洲精品在线观看二区| h日本视频在线播放| 午夜激情欧美在线| 国产精品免费一区二区三区在线| 亚洲av二区三区四区| 无人区码免费观看不卡| 亚洲内射少妇av| 国产精品影院久久| 小蜜桃在线观看免费完整版高清| 国产黄色小视频在线观看| 日韩中文字幕欧美一区二区| 丰满人妻熟妇乱又伦精品不卡| 色播亚洲综合网| 成人三级黄色视频| 午夜免费男女啪啪视频观看 | 少妇丰满av| 少妇高潮的动态图| 桃色一区二区三区在线观看| 欧美黄色片欧美黄色片| 身体一侧抽搐| 日本在线视频免费播放| 男女视频在线观看网站免费| av中文乱码字幕在线| 久久久久性生活片| 欧美一区二区亚洲| 91av网一区二区| 欧美+日韩+精品| 老司机午夜福利在线观看视频| 超碰av人人做人人爽久久| 最好的美女福利视频网| 国产视频一区二区在线看| 色综合欧美亚洲国产小说| 精品免费久久久久久久清纯| 婷婷六月久久综合丁香| 波野结衣二区三区在线| 欧洲精品卡2卡3卡4卡5卡区| 国产精华一区二区三区| 亚洲第一区二区三区不卡| 熟女人妻精品中文字幕| netflix在线观看网站| 亚洲精品成人久久久久久| 真人做人爱边吃奶动态| 国产单亲对白刺激| 亚洲一区二区三区不卡视频| 国产日本99.免费观看| 成人一区二区视频在线观看| 亚洲熟妇熟女久久| 国产精品亚洲av一区麻豆| 成人毛片a级毛片在线播放| 久久精品国产自在天天线| 中文在线观看免费www的网站| 国产精品av视频在线免费观看| 亚洲精品久久国产高清桃花| 久久久久九九精品影院| avwww免费| 成人毛片a级毛片在线播放| 色综合站精品国产| 国产精品野战在线观看| 狂野欧美白嫩少妇大欣赏| 悠悠久久av| 成年女人毛片免费观看观看9| 日韩欧美精品v在线| 亚洲欧美精品综合久久99| 国产精品免费一区二区三区在线| 极品教师在线视频| 在线观看舔阴道视频| 毛片一级片免费看久久久久 | 国产亚洲精品久久久久久毛片| 日韩欧美精品v在线| 俺也久久电影网| 黄色日韩在线| 久久久久国内视频| 网址你懂的国产日韩在线| 嫩草影院入口| 国产乱人视频| 88av欧美| 久久性视频一级片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产午夜精品久久久久久一区二区三区 | 国产高清视频在线观看网站| 欧美色视频一区免费| 99久久成人亚洲精品观看| 亚洲欧美日韩东京热| 亚洲精品一区av在线观看| 亚洲内射少妇av| 日本一二三区视频观看| 久久国产精品人妻蜜桃| 欧美三级亚洲精品| 我的女老师完整版在线观看| 给我免费播放毛片高清在线观看| 亚洲在线自拍视频| 色哟哟哟哟哟哟| 国产精品一及| 国产精华一区二区三区| 成人美女网站在线观看视频| 国产免费一级a男人的天堂| 久久中文看片网| 国产精品久久视频播放| 国产大屁股一区二区在线视频| 伦理电影大哥的女人| 97人妻精品一区二区三区麻豆| 俄罗斯特黄特色一大片| 久久草成人影院| 色5月婷婷丁香| 男人舔奶头视频| 国产一区二区在线av高清观看| 最近在线观看免费完整版| 久久人妻av系列| 亚洲成人免费电影在线观看| 亚洲av免费在线观看| 日韩欧美精品免费久久 | 欧美精品国产亚洲| 1024手机看黄色片| 国产伦精品一区二区三区四那| 国内精品美女久久久久久| 精品乱码久久久久久99久播| 国产亚洲精品久久久com| 午夜久久久久精精品| 亚洲av二区三区四区| 久久精品久久久久久噜噜老黄 | 免费在线观看亚洲国产| 99国产精品一区二区三区| 国产野战对白在线观看| 69人妻影院| 国产精品久久久久久久久免 | 亚洲内射少妇av| 女人十人毛片免费观看3o分钟| 在现免费观看毛片| av专区在线播放| 久久性视频一级片| 一本综合久久免费| 亚洲国产精品999在线| 国产伦一二天堂av在线观看| 夜夜躁狠狠躁天天躁| 日本三级黄在线观看| 精品99又大又爽又粗少妇毛片 | 少妇人妻精品综合一区二区 | 亚洲午夜理论影院| 免费观看精品视频网站| 久久久久久久久中文| 成年女人看的毛片在线观看| 俄罗斯特黄特色一大片| 久久人妻av系列| 精品人妻偷拍中文字幕| 精品免费久久久久久久清纯| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 免费人成视频x8x8入口观看| av在线老鸭窝| 无遮挡黄片免费观看| 啪啪无遮挡十八禁网站| 日日摸夜夜添夜夜添小说| 国产男靠女视频免费网站| av视频在线观看入口| 黄色丝袜av网址大全| 亚洲国产高清在线一区二区三| 精品久久久久久久久av| 成人鲁丝片一二三区免费| 婷婷精品国产亚洲av| 香蕉av资源在线| 麻豆成人午夜福利视频| 黄色配什么色好看| 久久久久久国产a免费观看| 一级av片app| 国语自产精品视频在线第100页| 精品一区二区免费观看| x7x7x7水蜜桃| 中文亚洲av片在线观看爽| 精品久久久久久久久av| 国产av一区在线观看免费| 我的老师免费观看完整版| 淫秽高清视频在线观看| 精品日产1卡2卡| 熟女电影av网| 免费观看人在逋| 精品人妻一区二区三区麻豆 | 国产成人a区在线观看| 亚洲专区中文字幕在线| 在线观看午夜福利视频| 中文资源天堂在线| 我的女老师完整版在线观看| 亚洲一区高清亚洲精品| 日本黄大片高清| 久久精品综合一区二区三区| 直男gayav资源| 国产三级中文精品| 日本一二三区视频观看| 成人高潮视频无遮挡免费网站| 久久精品国产清高在天天线| 性欧美人与动物交配| 又紧又爽又黄一区二区| 美女xxoo啪啪120秒动态图 | 黄色视频,在线免费观看| 免费黄网站久久成人精品 | 桃色一区二区三区在线观看| 精品一区二区三区人妻视频| 69av精品久久久久久| 男女那种视频在线观看| 一级a爱片免费观看的视频| 亚洲欧美清纯卡通| 欧美日韩瑟瑟在线播放| 国产一区二区在线av高清观看| 婷婷丁香在线五月| ponron亚洲| av视频在线观看入口| 人妻丰满熟妇av一区二区三区| 2021天堂中文幕一二区在线观| 日本 欧美在线| 免费在线观看日本一区| 精品国产三级普通话版| 美女高潮的动态| 色哟哟哟哟哟哟| 最近中文字幕高清免费大全6 | 国产精品亚洲美女久久久| 99热只有精品国产| 欧美极品一区二区三区四区| 97碰自拍视频| 亚洲五月婷婷丁香| 一个人看的www免费观看视频| 色哟哟·www| 如何舔出高潮| 人人妻人人澡欧美一区二区| 日韩亚洲欧美综合| 国产视频一区二区在线看| 日韩欧美免费精品| 中文字幕av在线有码专区| 热99在线观看视频| 成人鲁丝片一二三区免费| 亚洲一区二区三区色噜噜| 亚洲七黄色美女视频| 脱女人内裤的视频| 久久精品夜夜夜夜夜久久蜜豆| 国产真实乱freesex| 成人永久免费在线观看视频| 久久久久亚洲av毛片大全| 国产私拍福利视频在线观看| 欧美日韩乱码在线| 18禁在线播放成人免费| 欧美国产日韩亚洲一区| 久久久国产成人精品二区| 天堂影院成人在线观看| 激情在线观看视频在线高清| 最好的美女福利视频网| 一二三四社区在线视频社区8| 亚洲欧美日韩高清专用| 国产又黄又爽又无遮挡在线| 熟妇人妻久久中文字幕3abv| 成人特级黄色片久久久久久久| 中文字幕人成人乱码亚洲影| 国产国拍精品亚洲av在线观看| 亚洲av熟女| 97超级碰碰碰精品色视频在线观看| 丁香六月欧美| 村上凉子中文字幕在线| 国产美女午夜福利| 免费在线观看影片大全网站| 男插女下体视频免费在线播放| 久久精品国产亚洲av涩爱 | 欧美高清成人免费视频www| 亚洲av美国av| 亚洲不卡免费看| 色在线成人网| 美女 人体艺术 gogo| 小说图片视频综合网站| av视频在线观看入口| 久久久久久久久中文| 欧美黄色片欧美黄色片| 级片在线观看| 国产蜜桃级精品一区二区三区| 亚洲一区高清亚洲精品| 日韩人妻高清精品专区| 欧美日韩福利视频一区二区| 日日摸夜夜添夜夜添av毛片 | 狠狠狠狠99中文字幕| 亚洲精品影视一区二区三区av| 最近在线观看免费完整版| 国产精品永久免费网站| 午夜福利高清视频| 给我免费播放毛片高清在线观看| 亚洲成人免费电影在线观看| 欧美xxxx黑人xx丫x性爽| 国产伦一二天堂av在线观看| 国产精品自产拍在线观看55亚洲| 国产精品野战在线观看| 国产一区二区在线av高清观看| 真实男女啪啪啪动态图| 色综合亚洲欧美另类图片| 蜜桃亚洲精品一区二区三区| 自拍偷自拍亚洲精品老妇| 日韩有码中文字幕| 老熟妇仑乱视频hdxx| 99riav亚洲国产免费| 免费看光身美女| 噜噜噜噜噜久久久久久91| 啦啦啦观看免费观看视频高清| 91麻豆精品激情在线观看国产| 欧美中文日本在线观看视频| 亚洲美女黄片视频| 成年免费大片在线观看| 免费看a级黄色片| 国产精品美女特级片免费视频播放器| 国产精品一区二区性色av| 最近最新免费中文字幕在线| 欧美激情国产日韩精品一区| 欧美日韩中文字幕国产精品一区二区三区| 国产av麻豆久久久久久久| 国产91精品成人一区二区三区| 日本黄色片子视频| 久久人人精品亚洲av| 99精品久久久久人妻精品| 欧美日韩综合久久久久久 | 国模一区二区三区四区视频| 欧美激情久久久久久爽电影| 久久6这里有精品| 久久久久久久久久成人| 亚洲性夜色夜夜综合| 欧美潮喷喷水| 久久久久久久久大av| 久久草成人影院| 日韩欧美国产一区二区入口| 99精品久久久久人妻精品| 成年女人看的毛片在线观看| 毛片女人毛片| 我的老师免费观看完整版| 日韩高清综合在线| 日韩中文字幕欧美一区二区| 美女cb高潮喷水在线观看| 麻豆成人av在线观看| 欧美黑人巨大hd| 少妇的逼水好多| 天堂√8在线中文| 国产综合懂色| 波多野结衣高清作品| 久久人妻av系列| 精品一区二区免费观看| 黄色丝袜av网址大全| 久久这里只有精品中国| 久久精品国产亚洲av天美| 亚洲国产精品sss在线观看| 成人鲁丝片一二三区免费| 免费看a级黄色片| 亚洲欧美激情综合另类| 午夜免费成人在线视频| 成年免费大片在线观看| 久久国产乱子免费精品| 色综合欧美亚洲国产小说| 美女免费视频网站| 一卡2卡三卡四卡精品乱码亚洲| 97人妻精品一区二区三区麻豆| 国产成人欧美在线观看| 3wmmmm亚洲av在线观看| 午夜福利成人在线免费观看| 午夜a级毛片| 婷婷丁香在线五月| 欧美日本亚洲视频在线播放| 久久99热6这里只有精品| 亚洲精品亚洲一区二区| 51国产日韩欧美| 人妻夜夜爽99麻豆av| 真人一进一出gif抽搐免费| 成人特级黄色片久久久久久久| 俺也久久电影网| 久久精品91蜜桃| 精品久久久久久久末码| 国产精品久久久久久久电影| 18禁裸乳无遮挡免费网站照片| 欧美日韩综合久久久久久 | 精品熟女少妇八av免费久了| 又粗又爽又猛毛片免费看| 狂野欧美白嫩少妇大欣赏| 亚洲 国产 在线| 能在线免费观看的黄片| 欧美又色又爽又黄视频| 女人被狂操c到高潮| 成人三级黄色视频| 亚洲av不卡在线观看| 亚洲成人中文字幕在线播放| 如何舔出高潮| 精品人妻视频免费看| 别揉我奶头~嗯~啊~动态视频| 国产午夜福利久久久久久| 在现免费观看毛片| 久久精品人妻少妇| 欧美3d第一页| 国产真实伦视频高清在线观看 | 在线国产一区二区在线| 天堂动漫精品| 尤物成人国产欧美一区二区三区| 波多野结衣高清无吗| 亚洲成人精品中文字幕电影| а√天堂www在线а√下载| 免费av观看视频| www.999成人在线观看| 亚洲avbb在线观看| 国产亚洲精品综合一区在线观看| 亚洲av成人av| 亚洲男人的天堂狠狠| 久久国产乱子免费精品| 国产中年淑女户外野战色| 亚洲精品一卡2卡三卡4卡5卡| 女生性感内裤真人,穿戴方法视频| 男人和女人高潮做爰伦理| 欧美黄色淫秽网站| 亚洲一区二区三区色噜噜| 欧美xxxx黑人xx丫x性爽| 91狼人影院| 亚洲av日韩精品久久久久久密| 丰满人妻熟妇乱又伦精品不卡| 村上凉子中文字幕在线| 国产亚洲精品久久久com| 两性午夜刺激爽爽歪歪视频在线观看| 九九久久精品国产亚洲av麻豆| 国产成人av教育| 国语自产精品视频在线第100页| 精品久久国产蜜桃| 亚洲美女搞黄在线观看 | 一进一出抽搐动态| 日本成人三级电影网站| 超碰av人人做人人爽久久| 国内久久婷婷六月综合欲色啪| av天堂在线播放| 午夜老司机福利剧场| 成人欧美大片| 国产私拍福利视频在线观看| 亚洲av电影在线进入| 国产亚洲精品综合一区在线观看| 国产高清有码在线观看视频| 国产白丝娇喘喷水9色精品| 午夜免费激情av| 人妻夜夜爽99麻豆av| 国产成年人精品一区二区| 精品国内亚洲2022精品成人| 欧美性猛交╳xxx乱大交人| 搞女人的毛片| 免费人成视频x8x8入口观看| 999久久久精品免费观看国产| 国产成人av教育| 精品人妻视频免费看| 亚洲不卡免费看| 99热只有精品国产| 人人妻人人看人人澡| 欧美性感艳星| 亚洲经典国产精华液单 | 亚洲av成人不卡在线观看播放网| 男人狂女人下面高潮的视频| 免费av毛片视频| 免费观看精品视频网站| 午夜亚洲福利在线播放| 国产精品久久久久久久电影| 免费在线观看亚洲国产| 黄色女人牲交| 99久久精品一区二区三区| 亚洲性夜色夜夜综合| 网址你懂的国产日韩在线| 1024手机看黄色片| 亚洲国产精品sss在线观看| 午夜久久久久精精品| 久久久久久久午夜电影| 757午夜福利合集在线观看| 禁无遮挡网站| 欧美又色又爽又黄视频| 欧美国产日韩亚洲一区| 国产精品日韩av在线免费观看| 国产免费男女视频| 毛片女人毛片| 亚洲成人精品中文字幕电影| 观看免费一级毛片| 最近视频中文字幕2019在线8| 黄色配什么色好看| 精品一区二区三区视频在线| av国产免费在线观看| 男女那种视频在线观看| 免费大片18禁| 九九在线视频观看精品| 在线看三级毛片| 国产蜜桃级精品一区二区三区| 国产精品野战在线观看| 免费人成视频x8x8入口观看| 国产爱豆传媒在线观看| 人妻久久中文字幕网| 欧美黑人欧美精品刺激| 色5月婷婷丁香| www.www免费av| 好男人电影高清在线观看| 成人亚洲精品av一区二区| 国产欧美日韩精品亚洲av| 国产免费男女视频| 午夜精品在线福利| 深夜a级毛片| 亚洲人成网站高清观看| 欧美日韩乱码在线| 国内精品美女久久久久久| 又爽又黄无遮挡网站| 亚洲av.av天堂| 亚洲国产日韩欧美精品在线观看| 亚洲精华国产精华精| 嫩草影视91久久| 欧洲精品卡2卡3卡4卡5卡区| a级毛片免费高清观看在线播放| 网址你懂的国产日韩在线| 能在线免费观看的黄片| 国产主播在线观看一区二区| 国产精品一区二区免费欧美| 午夜亚洲福利在线播放| av天堂中文字幕网| 亚洲中文字幕日韩| 久久久久精品国产欧美久久久| 他把我摸到了高潮在线观看| 国产淫片久久久久久久久 | 亚洲最大成人av| 在线观看舔阴道视频| 午夜老司机福利剧场| 不卡一级毛片| 亚洲七黄色美女视频| 一级黄色大片毛片| xxxwww97欧美| 亚洲美女视频黄频| 国产精品人妻久久久久久| 一个人免费在线观看电影| 动漫黄色视频在线观看| 别揉我奶头~嗯~啊~动态视频| 最新中文字幕久久久久| 国产成人a区在线观看| 最近中文字幕高清免费大全6 | 欧美最新免费一区二区三区 | 国产精品一区二区三区四区免费观看 | 少妇高潮的动态图| 在线观看美女被高潮喷水网站 | 亚洲自偷自拍三级| 看免费av毛片| or卡值多少钱| 国产在线男女| 亚洲性夜色夜夜综合| 窝窝影院91人妻| 一进一出好大好爽视频| 亚洲天堂国产精品一区在线| 亚洲国产精品sss在线观看| 亚洲五月婷婷丁香| 国内精品美女久久久久久| 99久久无色码亚洲精品果冻| 国产精品不卡视频一区二区 | 黄色一级大片看看| 欧美xxxx性猛交bbbb| 村上凉子中文字幕在线| 在线国产一区二区在线| 亚洲av第一区精品v没综合| ponron亚洲| 欧美中文日本在线观看视频| 99在线人妻在线中文字幕| 久久久久久久久中文| 桃红色精品国产亚洲av| 91午夜精品亚洲一区二区三区 | 99久久九九国产精品国产免费| 免费人成视频x8x8入口观看| 神马国产精品三级电影在线观看| 一级av片app| 亚洲精品粉嫩美女一区| 99久久99久久久精品蜜桃| 嫩草影院入口| 一进一出抽搐gif免费好疼| 免费在线观看亚洲国产| 国产高清视频在线观看网站| 国产伦一二天堂av在线观看| av女优亚洲男人天堂| 色在线成人网| 午夜精品一区二区三区免费看| 一个人观看的视频www高清免费观看| 成年女人看的毛片在线观看| 欧美日韩亚洲国产一区二区在线观看| 深夜精品福利| 国产乱人伦免费视频| 好男人在线观看高清免费视频| 久久精品国产自在天天线| 十八禁国产超污无遮挡网站| 欧美在线一区亚洲| 国产精品久久久久久亚洲av鲁大| 亚洲美女搞黄在线观看 | 久久香蕉精品热| 首页视频小说图片口味搜索| 国产一区二区在线观看日韩| 成人精品一区二区免费| 男女视频在线观看网站免费| 色在线成人网| 老女人水多毛片| 免费人成视频x8x8入口观看|