• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LiMnPO4/graphene nanocomposites with high electrochemical performance for lithium-ion batteries

    2016-11-18 03:09:41ZHAOBingWANGZhixuanCHENLuYANGYaqingCHENFangGAOYangJIANGYong
    化工學報 2016年11期
    關鍵詞:丙基硅烷鋰離子

    ZHAO Bing, WANG Zhixuan, CHEN Lu, YANG Yaqing, CHEN Fang, GAO Yang, JIANG Yong

    ?

    LiMnPO4/graphene nanocomposites with high electrochemical performance for lithium-ion batteries

    ZHAO Bing, WANG Zhixuan, CHEN Lu, YANG Yaqing, CHEN Fang, GAO Yang, JIANG Yong

    (Institute of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China)

    A high performance LiMnPO4/graphene nanocomposite as cathode material for lithium-ion batteries was preparedsurface modification of 3-aminopropyltrimethoxysilane (APS) on LiMnPO4nanoparticles and electrostatic self-assembly of positively charged APS-LiMnPO4nanoparticles and negatively charged graphene oxide. Successful APS modification on LiMnPO4was demonstrated by the existence of 3-aminopropyl and SiOC groups in FTIR spectra. LiMnPO4nanoparticles (. 25 nm) were found uniformly distributed on the surface of graphene sheets. The intimate contact of LiMnPO4nanoparticles with graphene conductive network allows achieving fast electron transfer between the active material and charge collector and accommodating volume expansion/contraction of LiMnPO4nanoparticles during electric discharge/charge process. The nanocomposite cathode material could deliver an initial capacity of 142.2 mA·h·g-1at 0.05 C and maintain 90.5% capacity after 50 cycles, which were significant better than no APS-modified counterpart.

    lithium manganese phosphate; aminopropyltrimethoxysilane modification; nanomaterials; composites; electrochemistry

    Introduction

    Interest in lithium-ion batteries is driven by increased market demand for portable electronics, transportation and energy storage. Research efforts have been focused on developing new cathode materials to replace current LiCoO2, which constitutes nearly half the cost of a Li-ion cell.

    Since the pioneer work of Goodenough’s group[1], olivine structured lithium transition-metal phosphates LiMPO4(MFe, Mn, Co, Ni, V) have been received much attention as promising cathode materials for next generation of lithium-ion batteries due to their large theoretical capacities as well as chemical and thermal stability[2]. Among them, LiCoPO4and LiNiPO4are more challenging for developing stable electrolytes, because of their higher voltage (4.8 and 5.1 V)Li/Li+[3]. LiFePO4is now considered as a practical cathode material for its excellent rate capability achieved through particle size control and a coating of conductive layer[4-5]. Compared to other positive electrode materials, LiFePO4has a lower working voltage with the Fe2+/Fe3+redox reaction at 3.4 VLi/Li+. LiMnPO4has been proposed as a candidate material for positive electrode because high redox potential (4.1 VLi/Li+), nearly0.65 V higher than LiFePO4, makes theoretical energy density of LiMnPO4(701 W·h·kg-1) about 1.2 times larger than that of LiFePO4(586 W·h·kg-1). Theoretical energy density is defined as the maximum energy density practically achievable within stability window of carbonate ester-based electrolytes[6]. Unfortunately, poor electrochemical performance is most often observed on LiMnPO4because of slow lithium diffusion within crystals and very low intrinsic electronic conductivity which is about five orders of magnitude lower than that of LiFePO4[7-8]. Other debatable rate limiting factors may include passivation phenomenon upon delithiation, Jahn-Teller anisotropic lattice distortion in Mn3+, interface strain by large volume change between LiMnPO4and MnPO4, and metastable nature of delithiated MnPO4phase.

    Considerable effort has been made in recent years to enhance electrochemical properties of LiMnPO4by particle size reduction[9-11], cation doping[12-15], carbon coating[9,16-19]or synthesis of LiMnPO4/C composites[7,11-15,20-25]. Among them, particle size reduction and carbon coating are main pathways. Despite of those tremendous efforts, the electrochemicalperformances are not sufficient for commercial application. Large charging polarization seems significant for achieving reasonable rate, besides crystallinity and particle size of LiMnPO4. The general liquid-phase routes for nanomaterial synthesis, which avoid grain growth and agglomeration, may lead to Mn2+disorder on Li+sites in LiMnPO4and thus limit electrochemical activity. Additionally, a high sintering temperature is required to form thermodynamically stable materials for high-potential cathode. It is of great interest to create a relatively low-temperature route to prepare well-dispersed uniform nanoparticles for crystalline LiMnPO4.

    Graphene is a promising material in Li ion battery application, because of the high conductivity and structural flexibility. Graphene modified materials were reported to have improvement on specific capacity and cycling stability of LiMPO4(MFe, V, Mn) and as metal oxide anode materials[26-28]. Graphene- modified LiFePO4and Li3V2(PO4)3composites were successfully prepared by spray-drying process in our laboratory[29-30]. Olivine primary nanoparticles with sizes of 20—50 nm were wrapped loosely by multilayergraphene films, which could supply a three-dimensional conductive framework in the composites, and facilitate electron migration and Li+diffusion throughout micron-sized spherical secondary particles. Compared to pyrolytic carbon based composites, these composites had some improvement in electrochemical properties. Good dispersion and uniform chemical bonding between components were difficult to achieve for these transition metal phosphates/graphene composites. The non-intimate contact between graphene layers and active nanoparticles lead to aggregation of transition metal phosphate nanoparticles during cycle processes, which in turn caused low discharge capacity and rapid capacity decay in most cases.

    Self-assembly of charged nanomaterialselectrostatic interactions in liquid phase environment is a controllable route for synthesis of stable hybrid materials that could be promising to design and synthesize robust electrode materials. In this work, a novel fabrication strategy for LiMnPO4/graphene nanocomposite was developed by co-assembly of positively charged APS-modified LiMnPO4and negatively charged graphite oxide, in which flexible graphene and LiMnPO4primary nanoparticles contactedstrongly and interlaced closely with each other. Compared to LiMnPO4/graphene without surface modification, the APS-LiMnPO4/graphene nanocomposite showed higher specific capacity and better cycling stability.

    1 Experimental

    1.1 Materials and chemicals

    All chemicals were analytical grade (Sinopharm Chemical Reagent Co., Ltd.) and used as received without any purification. Graphite oxide (GO) sheets were prepared from natural graphite powdera modified Hummer’s method as described elsewhere[31-32].

    1.2 Sample preparation

    (1) Synthesis of pristine LiMnPO4

    0.06 mol manganese acetate tetrahydrate (Mn(CH3COO)2·4H2O) dissolved in 30 ml deionized water was poured into a three-neck round-bottom flask containing 200 ml diethylene glycol (DEG). This vigorously stirred solution was heated to 100℃ and kept for 1 h. 30 ml of 2 mol·L-1lithium dihydrogen phosphate (LiH2PO4) aqueous solution was added dropwise at a speed of 1 ml·min-1. After kept for more than 4 h at this temperature and cooled down to room temperature, LiMnPO4precipitates were separated by centrifuge and washed three times with ethanol to remove DEG residual and other organic remnants. The obtained material was dried in oven at 120℃ overnight.

    (2) Synthesis of LiMnPO4/graphene composite

    As illustrated in Fig.1, surface of pristine LiMnPO4nanoparticles was modified by reacting with NH2groups of APS. Pristine LiMnPO4(0.25 g), APS (0.5 ml), and toluene (80 ml) were added successively into a 250 ml round-bottom flask. The reaction mixture was stirred and refluxed at 100℃ under N2for 12 h. Then APS-LiMnPO4nanoparticles were collected after ethanol washing and drying at 60℃.

    Fig.1 Illustration of preparation process and microscale structure of APS-LiMnPO4/graphene nanocomposite (APS=(HC3O)3Si(CH2)2NH2)

    Self-assembly of APS-LiMnPO4and GO was carried out by mixing 30 ml of APS-LiMnPO4nanoparticle dispersion (3.33 mg·ml-1) with 30 ml of GO dispersion (1.5 mg·ml-1) under mild magnetic stirring. The pH of suspension mixture was adjusted to around 3.0 by dropwise adding phosphoric acid (1 mol·L-1). After stirred continuously at room temperature for 1 h, the mixture was spray-dried at 200℃ to form a solid APS-LiMnPO4/graphite oxide nanocomposite, which was heated at a rate of 5℃·min-1at 200℃ for 2 h and then at 550℃ for another 4 h under N2atmosphere.

    As a comparison, a mixture of 0.1 g pristine LiMnPO4in 30 ml of deionized water and 30 ml of GO dispersion (1.5 mg·ml-1) was spray-dried and exposed to the same thermal treatment as that of APS-LiMnPO4/graphene composite. This material without APS was denoted as LiMnPO4/graphene. Both composites contained about 12.5% (mass) graphene in the final cathode material.

    1.3 Structural characterization

    Morphology and microscopic structure of the nanocomposites were characterized by X-ray power diffraction (XRD, Rigaku D/max-2500, CuKαradiation,0.150405 nm), field-emission scanning electron microscopy (FE-SEM, JEOL JSM-6700F) and transmission electron microscopy (TEM, JEOL 200CX). Fourier transform infrared spectroscopy (FTIR) measurements on LiMnPO4nanoparticles were performed with a Bio-Rad, FTS 165 spectrometer. Carbon contents in the nanocomposites were determined by Carbon & Sulfur Determinator (C S444LSc).

    1.4 Electrochemical measurements

    Electrochemical study was carried out in 2016 coin-type cells. Working electrodes were prepared by mixing 85% (mass) active materials, 10% (mass) acetylene black and 5% (mass) polytetrafluoroethylene (PTFE). The anode was lithium metal foil and the electrolyte was a solution of 1 mol·L-1LiPF6in dimethyl carbonate (DMC) and ethylene carbonate (EC) (1:1 by mass). The coin-cells were assembled in argon-filled glove box. Galvanostatic charge and discharge in the voltage range of 2.5—4.4 V was performed on a LAND CT2001A cell test system with various current densities at room temperature.

    2 Results and discussion

    2.1 FTIR analysis for APS modification

    Fig.2 showed FTIR spectra of APS-LiMnPO4and pristine LiMnPO4. Pristine LiMnPO4had weak bands at 1150—900 cm-1by PO stretching vibrations and bands at 628, 547 and 445 cm-1, which was assigned to(POMn),(PO4), and(MnOP), respectively[33-35]. Besides these bands, APS-LiMnPO4exhibited several additional peaks. The peak around 3350 cm-1was assigned to the NH stretching and small peaks at about 2930 and 2860 cm-1were assigned to asymmetric and symmetricCH2stretching. The absorption band from 1450 to 1600 cm-1was enhanced due to overlapping ofCH2bending and NH bending, indicating presence of 3-aminopropyl group in APS. Several strong SiO stretching adsorptions from 900—1100 cm-1were observed in spectrum b, which two peaks at 1070 and 963 cm-1were characteristic to SiOC in APS. These results suggested that silane-coupling reaction on nanoparticle surface created chemical bonding between APS molecule and surface of LiMnPO4nanoparticles.

    Fig.2 FTIR spectra of pristine LiMnPO4 (a) and APS-modified LiMnPO4 (b)

    This modification rendered positively charged LiMnPO4which could then assemble with negatively charged GO by electrostatic interactions. The oxygen containing functional groups and surface defects of GO were anchor sites for homogeneous distribution of LiMnPO4nanoparticles on curly surface of GO nanosheet. Under optimal condition (pH3.0), almost all GO and APS-LiMnPO4nanoparticles co-assembled into a stable suspension.

    2.2 XRD

    XRD patterns of pristine LiMnPO4, LiMnPO4/ graphene and APS-LiMnPO4/graphene composites were shown in Fig.3 with all diffraction peaks indexed to olivine LiMnPO4phase with space group of(JCPDS No.: 01-072-7844). No featured peaks of other possible impurities such as Li3PO4, Mn2P2O7or Mn2P were observed as result of low calcination temperature (550℃). No evidence of graphene diffraction peaks in LiMnPO4/graphene or APS-LiMnPO4/graphene nanocomposite indicated that regular lamellar graphene was broken and exfoliated graphene monolayer was formed[14]. Thedomain size calculated by Scherer’s formula was 25 nm for APS-LiMnPO4/graphene, much lower than that of LiMnPO4/graphene (41 nm). Thesmallparticle size was caused by efficient self-assembly between the positively charged LiMnPO4nanoparticles and negatively charged GO that confined crystal growth by chemical bonding and close contact.

    Fig.3 XRD patterns of pristine LiMnPO4, LiMnPO4/graphene and APS-LiMnPO4/graphene

    2.3 SEM

    Fig.4 showed SEM photos of pristine LiMnPO4,LiMnPO4/graphene and APS-LiMnPO4/graphene composites. Pristine LiMnPO4possesses a platelet structure with width of 0.5—1 μm and thickness of 20—30 nm (Fig.4(a)). The platelet structure of LiMnPO4diminished slightly and interweaved with flexible graphene sheets (Fig.4(b)), generating a novel LiMnPO4/graphene composite with particles of ~1 μm wide. By contrast, the APS-LiMnPO4/graphene nanocomposites consisted of randomly aggregated, thin graphene sheets which crumpled closely and formed quasi-spherical microparticles with size of 3—4 μm (Fig.4(c)). Multilayer wrapping graphenes might be formed by stacking or folding of flexible GO sheets during spray-drying. SEM image under higher magnification (Fig.4(d)) showed that spherical LiMnPO4nanoparticles were uniformly distributed on curly graphene nanosheets. The small particle size of LiMnPO4, comparable to the value obtained from XRD calculation, was most likely due to confining effect of disordered graphene nanosheets.

    Fig.4 SEM photos of pristine LiMnPO4 (a), LiMnPO4/graphene (b) and APS-LiMnPO4/graphene composites [(c), (d)]

    2.4 TEM

    The TEM images in Fig.5(a) further showed a platelet structure of LiMnPO4particles in LiMnPO4/graphene composite. Some platelets were stacked together without contact to graphene while other platelets were shattered outside graphene. The crinkled and rough texture in Fig.5(b) was observed for APS-LiMnPO4/graphene nanocomposite, which was associated to strong electrostatic interactions between LiMnPO4and graphene. Bright LiMnPO4nanoparticles were probably covered by a voile-like graphene sheet. LiMnPO4nanoparticles appeared on both sides of graphene nanosheets that some located above it while others lay on back of it. The interaction between LiMnPO4and graphene formed by self-assembly was so strong that the components were firmly attached even after ultrasonication used to disperse nanocomposites for TEM characterization.

    Fig.5 TEM photos of LiMnPO4/graphene (a) and APS-LiMnPO4/graphene composites (b)

    2.5 Electrochemical properties

    Fig.6 showed initial charge-discharge curves of LiMnPO4/graphene and APS-LiMnPO4/graphene composites at 0.05 C (1 C171 mA·h·g-1) in voltage range of 2.5—4.4 V. Both composites exhibited a reversible plateau around 4.1 VLi/Li+corresponding totheredoxofMn3+/Mn2+thatwasaccompaniedby lithium ion extraction and insertion in LiMnPO4. The voltage difference between charge and discharge plateaus for APS-LiMnPO4/graphene was smaller than that of LiMnPO4/graphene, indicating less polarizationin APS-LiMnPO4/graphene. A much flattened dischargecurve meant more effective energy use in APS-LiMnPO4/ graphene composite[36]. The initial discharge specific capacity ofAPS-LiMnPO4/graphene was 142.2 mA·h·g-1with Coulombic efficiency of about 92.4%, which were higher than those obtained on LiMnPO4/graphene composite at 91.4 mA·h·g-1and 82.6%, respectively.

    Fig.6 Initial charge-discharge curves of LiMnPO4/graphene and APS-LiMnPO4/graphene composites

    As shown in Fig.7 for rate capabilities of LiMnPO4/graphene and APS-LiMnPO4/graphene composites at different charge/discharge rate, the specific capacities decreased gradually with the increase of discharge rate from 0.05 C to 1 C, which could be ascribed to limit control of Li+diffusion at interface between LiMnPO4and MnPO4[36]. APS-LiMnPO4/ graphene composite had rather good rate capability withadischargecapacityof126.4mA·h·g-1at0.1 C and 75.6 mA·h·g-1at 1 C, respectively, whereas LiMnPO4/graphene composite had limited charge capacities of 79.4 and 42.4 mA·h·g-1at 0.1 C and 1 C, respectively. Apparently, the rate performance and charge-discharge efficiency of APS-LiMnPO4/ graphene increased dramatically in comparison with those of LiMnPO4/graphene.

    Fig.7 Charge-discharge curves of LiMnPO4/graphene and APS-LiMnPO4/graphene composites at different discharge rate

    Fig.8 exhibited cycle performances of LiMnPO4/graphene and APS-LiMnPO4/graphene composites at 0.05 C in voltage range of 2.5—4.4 V.For LiMnPO4/graphene, the discharge specific capacity faded gradually down to 70.7 mA·h·g-1after 50 cycleswith only 75.5% capacity retention. Contrarily,APS-LiMnPO4/graphene showed much better cycling stability with a discharge capacity of 128.7 mA·h·g-1and capacity retention of 90.5% after 50 cycles.

    Fig.8 Cycling performances of LiMnPO4/graphene and APS-LiMnPO4/graphene composites at 0.05 C rate

    The intimate contact between LiMnPO4particles and graphene sheetselectrostatic interactions and the confinement of flexible graphene sheets obviously played an important role on such performance enhancement. When APS-modified LiMnPO4nanoparticle dispersion was added into negatively charged GO solution, abundant oxygen containing functional groups on GO could act as anchoring sites for LiMnPO4and consequently created uniform distribution of LiMnPO4nanoparticles on the surface and defects of GO, allowing small size of particles and intimate contact. LiMnPO4nanoparticles with high surface area could decrease transport length of Li ions and electrons as well as might ease strain associated with two phases of LiMnPO4and MnPO4. After calcination, graphene nanosheets acted as conducting routes between LiMnPO4nanoparticles and contact resistance of the whole electrode was reduced[14,19]. Moreover, graphene could accommodate strain induced by volume change of LiMnPO4and maintain electrode integrity during charge/discharge process, which is responsible for the good cycling stability and rate capability.

    Electrochemical impedance was measured to understand electrochemical performance of APS-LiMnPO4/graphene composite for lithium storage (Fig.9). The charge transfer resistance (ct) and surface film resistance (f) of APS-LiMnPO4/ graphene electrode were 23.91 and 118.8 Ω, respectively, which were significantly lower than those of LiMnPO4/graphene electrode (81.41 and 165.38 Ω). Therefore, the close contact between flexible graphene and LiMnPO4primary nanoparticles in APS-LiMnPO4/ graphene composite was confirmed by increase in electrical conductivity and electron transfer.

    Fig.9 Nyquist plot of LiMnPO4/graphene and APS-LiMnPO4/graphene electrodes at the fifth cycle(Inset was an equivalent circuit model of electrode)

    3 Conclusions

    APS-LiMnPO4/graphene nanocomposite was successfully prepared by co-assembly of negatively charged graphite oxide and positively charged LiMnPO4nanoparticles. The close contact and interlace of flexible graphene and LiMnPO4primary nanoparticles facilitated fast electron migration and Li+diffusion throughout the quasi-spherical microparticles. Compared to none surface-modified LiMnPO4/graphene, the APS-LiMnPO4/graphene composite showed higher specific capacity and more excellent cycling stability.

    References:

    [1] PADHI A K, NAJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society, 1997, 144 (4): 1188-1194.

    [2] YAMADA A, KUDO Y, LIU K Y. Reaction mechanism of the olivine-type Li(Mn0.6Fe0.4)PO4(0≤x≤1) [J]. Journal of the Electrochemical Society, 2001, 148 (7): 747-754.

    [3] DELACOUT C, LAFFONT L, BOUCHET R,. Toward understanding of electrical limitations (electronic, ionic) in LiMPO4(M = Fe, Mn) electrode materials [J]. Journal of the Electrochemical Society, 2005, 152 (5): 913-921.

    [4] KANG B, CEDER G. Battery materials for ultrafast charging and discharging [J]. Nature, 2009, 458 (7235): 190-193.

    [5] ZHAO B, JIANG Y, ZHANG H,. Morphology and electrical properties of carbon coated LiFePO4cathode materials [J]. Journal of Power Sources, 2009, 189 (1): 462-466.

    [6] ZHOU F, COCOCCIONI M, KANG K,. The Li intercalation potential of LiMPO4and LiMSiO4olivines with MFe, Mn, Co, Ni [J]. Electrochemistry Communications, 2004, 6 (11): 1144-1148.

    [7] YONEMURA M, YAMADA A, TAKEI Y,. Comparative kinetic study of olivine LiMPO4(MFe, Mn) [J]. Journal of the Electrochemical Society, 2004, 151 (9): 1352-1356.

    [8] K?NTJE M, MEMM M, AXMANN P,. Substituted transition metal phospho olivines LiMM’PO4(MMn, M’Fe, Co, Mg): optimisation routes for LiMnPO4[J]. Journal of Solid State Chemistry, 2014, 42 (4): 106-117.

    [9] HONG Y, TANG Z, ZHANG Z. Enhanced electrochemical properties of LiMnPO4/C composites by tailoring polydopamine-derived carbon coating [J]. Electrochimica Acta, 2015, 176: 369-377.

    [10] DELACOURT C, POIZOT P, MORCRETTE M,. One-step low-temperature route for the preparation of electrochemically active LiMnPO4powders [J]. Chemistry of Materials, 2004, 16 (1): 93-99.

    [11] KWON N H, FROMNM K M. Enhanced electrochemical performance of <30 nm thin LiMnPO4nanorods with a reduced amount of carbon as a cathode for lithium ion batteries [J]. Electrochimica Acta, 2012, 69: 38-44.

    [12] KOU L, CHEN F, TAO F,. High rate capability and cycle performance of Ce-doped LiMnPO4/Can efficient solvothermal synthesis in water/diethylene glycol system [J]. Electrochimica Acta, 2015, 173: 721-727.

    [13] WANG C, BI Y, LIU Y,. Investigation of (1)LiMnPO4·Li3V2(PO4)3/C: phase composition and electrochemical performance [J]. Journal of Power Sources, 2014, 263 (1): 332-337.

    [14] WANG H L, YANG Y, LIANG Y Y,. LiMn1-FePO4nanorods grown on graphene sheets for ultrahigh-rate- performance lithium ion batteries [J]. Angewandte Chemie International Edition, 2011, 50 (32): 7364-7368.

    [15] WANG D, OUYANG C, DREZEN T I,. Improving the electrochemical activity of LiMnPO4Mn-site substitution [J]. Journal of the Electrochemical Society, 2010, 157 (2): 225-229.

    [16] YANG X, MI Y, ZHANG W,. Enhanced electrochemical performance of LiFe0.6Mn0.4PO4/C cathode material prepared by ferrocene-assisted calcination process [J]. Journal of Power Sources, 2015, 275 (1): 823-830.

    [17] SU J, LIU Z, LONG Y,. Enhanced electrochemical performance of LiMnPO4/C prepared by microwave-assisted solvothermal method [J]. Electrochimica Acta, 2015, 173 (10): 559-565.

    [18] MURUGAN A V, MURALIGANTH T, MANTHIRAM A. One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4(M = Mn, Fe, and Co) cathodes [J]. Journal of the Electrochemical Society, 2009, 156 (2): 79-83.

    [19] QIN Z, ZHOU X, XIA Y,. Morphology controlled synthesis and modification of high-performance LiMnPO4cathode materials for Li-ion batteries [J]. Journal of Materials Chemistry, 2012, 22: 21144-21153.

    [20] DUAN J, CAO Y, JIANG J,. Novel efficient synthesis of nanosized carbon coated LiMnPO4composite for lithium ion batteries and its electrochemical performance [J]. Journal of Power Sources, 2014, 268 (5): 146-152.

    [21] GU Y, WANG H, ZHU Y,. Hydrothermal synthesis of 3D-hierarchical hemoglobin-like LiMnPO4microspheres as cathode materials for lithium ion batteries [J]. Solid State Ionics, 2015, 274: 106-110.

    [22] ZHANG W, SHAN Z, ZHU K.. LiMnPO4nanoplates growna facile surfactant-mediated solvothermal reaction for high-performance Li-ion batteries [J]. Electrochimica Acta, 2015, 153 (20): 385-392.

    [23] LIU T, XIA Q, LU W,. A novel method of preparing LiMPO4-C nano particles with organic P source [J]. Electrochimica Acta, 2015, 174 (20): 120-126.

    [24] WANG Y, YANG Y, YANG Y,. Enhanced electrochemical performance of unique morphological LiMnPO4cathode material prepared by solvothermal method [J]. Solid State Communications, 2010, 150 (1/2): 81-85.

    [25] ZHENG J, NI L, LU Y,. High-performance, nanostructure LiMnPO4/C composites synthesizedone-step solid state reaction [J]. Journal of Power Sources, 2015, 282 (15): 444-451.

    [26] LIU Y, LIU P, WU D,. Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage [J]. Chemistry A European Journal, 2015, 21 (14): 5617-5622.

    [27] HAN S, ZHAO Y, TANG Y,. Ternary MoS2/SiO2/graphene hybrids for high-performance lithium storage [J]. Carbon, 2015, 81: 203-209.

    [28] FATHOLLAHI F, JAVANBAKHT M, OMIDVAR H,. LiFePO4/C composite cathodeCuO modified graphene nanosheets with enhanced electrochemical performance [J]. Journal of Alloys and Compounds, 2015, 643 (15): 40-48.

    [29] JIANG Y, XU W, CHEN D,. Graphene modified Li3V2(PO4)3as a high-performance cathode material for lithium ion batteries [J]. Electrochimica Acta, 2012, 85 (15): 377-383.

    [30] JIANG Y, LIU R, XU W,. A novel graphene modified LiMnPO4as a performance-improved cathode material for lithium-ion batteries [J]. Journal of Materials Research, 2013, 28 (18): 2584-2589.

    [31] JIANG Y, LU M, LING X,. One-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals for lithium-sulfur batteries [J]. Journal of Alloys and Compounds, 2015, 645 (5), 509-516.

    [32] ZHAO B, LIU R, CAI X,. Nanorod-like Fe2O3/graphene composite as a high-performance anode material for lithium ion batteries [J]. Journal of Applied Electrochemistry, 2014, 44 (1): 53-60.

    [33] ZHU J, HE J. Facile synthesis of graphene-wrapped honeycomb MnO2nanospheres and their application in supercapacitors [J]. ACS Applied Materials & Interfaces, 2012, 4 (3): 1770-1776.

    [34] ZHANG Y, LIU Y, FU S,. Hydrothermally controlled growth of MnPO4·H2O single-crystal rods [J]. Bulletin of the Chemical Society of Japan, 2006, 79: 270-275.

    [35] LIU C, WU X, WU W,. Preparation of nanocrystalline LiMnPO4a simple and novel method and its isothermal kinetics of crystallization [J]. Journal of Materials Science, 2011, 46 (8): 2474-2478.

    [36] DING Y, JIANG Y, XU F,. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method [J]. Electrochemistry Communications, 2010, 12 (1): 10-13.

    利用表面改性制備磷酸錳鋰/石墨烯鋰離子電池復合材料

    趙兵,王志軒,陳盧,楊雅晴,陳芳,高陽,蔣永

    (上海大學環(huán)境與化學工程學院,上海 200444)

    3-氨丙基三甲氧硅烷(APS)改性的磷酸錳鋰納米片與氧化石墨烯通過靜電自組裝,經(jīng)噴霧干燥和高溫煅燒,得到磷酸錳鋰/石墨烯復合材料。APS修飾后的磷酸錳鋰帶正電荷,并可通過紅外光譜中3-氨丙基和SiOC官能團的存在證明磷酸錳鋰成功被APS修飾,使得其與帶負電荷的氧化石墨烯自組裝形成磷酸錳鋰/石墨烯復合材料。測試結(jié)果表明約25 nm的磷酸錳鋰納米顆粒均勻負載在石墨烯表面,石墨烯片層充當導電網(wǎng)絡,提高了材料的電子電導率和鋰離子擴散速率,緩解了LiMnPO4在充放電過程中的體積變化。電性能測試發(fā)現(xiàn),該材料的首次放電比容量為142.2 mA·h·g-1,50個循環(huán)后容量保持率達到90.5%,較未經(jīng)APS修飾的磷酸錳鋰/石墨烯材料有大幅提高。

    磷酸錳鋰;3-氨丙基三甲氧硅烷改性;納米材料;復合材料;電化學

    O 646

    A

    0438—1157(2016)11—4779—08

    趙兵(1971—),男,博士,研究員。

    國家自然科學基金項目(21501119, 11575105);上海市科委技術標準項目(15DZ0501402)。

    10.11949/j.issn.0438-1157.20160651

    2016-05-11.

    JIANG Yong, jiangyong@shu.edu.cn

    supported by the National Natural Science Foundation of China (21501119, 11575105) and the Science and Technology Committee of Shanghai (15DZ0501402).

    2016-05-11收到初稿,2016-07-21收到修改稿。

    聯(lián)系人:蔣永。

    猜你喜歡
    丙基硅烷鋰離子
    超支化聚碳硅烷結(jié)構(gòu)、交聯(lián)方法及其應用研究進展
    陶瓷學報(2020年5期)2020-11-09 09:22:48
    高能鋰離子電池的“前世”與“今生”
    科學(2020年1期)2020-08-24 08:07:56
    硅烷包覆膨脹型阻燃劑共混改性粘膠纖維的研究
    石榴鞣花酸-羥丙基-β-環(huán)糊精包合物的制備
    中成藥(2018年6期)2018-07-11 03:01:28
    N-丁氧基丙基-S-[2-(肟基)丙基]二硫代氨基甲酸酯浮選孔雀石的疏水機理
    魚腥草揮發(fā)油羥丙基-β環(huán)糊精包合物的制備
    中成藥(2017年5期)2017-06-13 13:01:12
    3-疊氮基丙基-β-D-吡喃半乳糖苷的合成工藝改進
    合成化學(2015年9期)2016-01-17 08:57:14
    鋰離子動力電池的不同充電方式
    電源技術(2015年9期)2015-06-05 09:36:04
    硅烷交聯(lián)聚乙烯催化劑的研究進展
    上海塑料(2015年3期)2015-02-28 14:52:05
    鋰離子電池組不一致性及其彌補措施
    汽車電器(2014年5期)2014-02-28 12:14:15
    国内精品一区二区在线观看| 老司机深夜福利视频在线观看| 精品国产三级普通话版| 免费高清视频大片| 亚洲欧美一区二区三区黑人| 免费观看的影片在线观看| 在线观看免费午夜福利视频| 久久人妻av系列| 成人一区二区视频在线观看| 欧美色欧美亚洲另类二区| 精品99又大又爽又粗少妇毛片 | 日本 欧美在线| 国模一区二区三区四区视频 | 香蕉久久夜色| 黑人巨大精品欧美一区二区mp4| 大型黄色视频在线免费观看| 他把我摸到了高潮在线观看| 国产黄色小视频在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲欧美精品综合久久99| 男女那种视频在线观看| 香蕉久久夜色| 亚洲精品在线观看二区| 神马国产精品三级电影在线观看| 国产欧美日韩一区二区三| 欧美性猛交黑人性爽| 男女之事视频高清在线观看| 黄片大片在线免费观看| 成人三级做爰电影| 国产精品 欧美亚洲| 免费观看精品视频网站| 色老头精品视频在线观看| 亚洲专区国产一区二区| 亚洲国产精品999在线| 日韩欧美三级三区| 狠狠狠狠99中文字幕| 麻豆av在线久日| 久久这里只有精品19| 校园春色视频在线观看| 91九色精品人成在线观看| 在线观看免费视频日本深夜| 国语自产精品视频在线第100页| 老熟妇仑乱视频hdxx| 91av网一区二区| 一本一本综合久久| 欧美国产日韩亚洲一区| 不卡av一区二区三区| 全区人妻精品视频| 久久这里只有精品中国| 精品免费久久久久久久清纯| 国产成人aa在线观看| 午夜久久久久精精品| 国产精品1区2区在线观看.| 国产不卡一卡二| 亚洲七黄色美女视频| 国产97色在线日韩免费| 国产午夜精品论理片| 精品人妻1区二区| 久久久国产精品麻豆| 熟女人妻精品中文字幕| 国产伦精品一区二区三区四那| 日本黄大片高清| 深夜精品福利| 亚洲人与动物交配视频| 99久久99久久久精品蜜桃| 欧美+亚洲+日韩+国产| 麻豆国产97在线/欧美| 久9热在线精品视频| 精品一区二区三区av网在线观看| 999精品在线视频| 波多野结衣高清作品| 麻豆成人午夜福利视频| 91在线观看av| 啦啦啦免费观看视频1| 日本免费a在线| 久久久国产成人精品二区| 成人永久免费在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久精品吃奶| 国产综合懂色| 三级国产精品欧美在线观看 | 美女被艹到高潮喷水动态| 亚洲成人久久性| 亚洲精品美女久久av网站| 午夜精品久久久久久毛片777| 中文字幕久久专区| av中文乱码字幕在线| 成在线人永久免费视频| 精品久久久久久成人av| 亚洲 欧美 日韩 在线 免费| 国产成年人精品一区二区| 一级作爱视频免费观看| 超碰成人久久| 欧美午夜高清在线| 国产美女午夜福利| 99热精品在线国产| 18禁黄网站禁片免费观看直播| 精品免费久久久久久久清纯| 日韩欧美在线二视频| 变态另类成人亚洲欧美熟女| 哪里可以看免费的av片| 成年免费大片在线观看| 麻豆成人av在线观看| 波多野结衣高清作品| 亚洲成人久久爱视频| 看黄色毛片网站| av天堂中文字幕网| 亚洲美女黄片视频| 欧美日韩乱码在线| 桃色一区二区三区在线观看| 黑人操中国人逼视频| 老汉色∧v一级毛片| 久久久久久人人人人人| 90打野战视频偷拍视频| x7x7x7水蜜桃| 91在线观看av| 国产野战对白在线观看| 一个人免费在线观看电影 | 国内精品一区二区在线观看| 免费看a级黄色片| 床上黄色一级片| 香蕉国产在线看| 一卡2卡三卡四卡精品乱码亚洲| 91在线观看av| 91字幕亚洲| 长腿黑丝高跟| 国产淫片久久久久久久久 | 国产精品一区二区三区四区免费观看 | 成人av在线播放网站| 欧美极品一区二区三区四区| 国产精品乱码一区二三区的特点| 亚洲国产看品久久| 免费看美女性在线毛片视频| 欧美中文日本在线观看视频| 手机成人av网站| 国产精品1区2区在线观看.| 国产av在哪里看| 天堂√8在线中文| 一个人观看的视频www高清免费观看 | 国产午夜精品久久久久久| 俺也久久电影网| 高清在线国产一区| 日韩中文字幕欧美一区二区| 深夜精品福利| 亚洲人成电影免费在线| 黑人欧美特级aaaaaa片| 一个人看视频在线观看www免费 | 国产乱人视频| 床上黄色一级片| 最近在线观看免费完整版| 桃色一区二区三区在线观看| 国产精品久久久久久久电影 | 免费高清视频大片| 午夜福利成人在线免费观看| 久久久久久九九精品二区国产| 亚洲专区字幕在线| 国产精品免费一区二区三区在线| 国产精品美女特级片免费视频播放器 | 国产精品久久久久久精品电影| 久久性视频一级片| 亚洲欧美日韩东京热| 久久精品国产清高在天天线| 热99re8久久精品国产| 中文字幕高清在线视频| 日韩欧美 国产精品| 国产亚洲欧美在线一区二区| 国产日本99.免费观看| 夜夜躁狠狠躁天天躁| 亚洲精品一区av在线观看| 亚洲国产精品成人综合色| 国产综合懂色| av国产免费在线观看| 久久久久九九精品影院| 亚洲无线观看免费| 亚洲精品色激情综合| 国产成人一区二区三区免费视频网站| 一二三四在线观看免费中文在| 一进一出好大好爽视频| 国产视频内射| 麻豆久久精品国产亚洲av| 国产精品av久久久久免费| 蜜桃久久精品国产亚洲av| av在线蜜桃| 久久中文字幕人妻熟女| 黄色丝袜av网址大全| 12—13女人毛片做爰片一| 99国产综合亚洲精品| 黄色丝袜av网址大全| 嫩草影视91久久| 99久久无色码亚洲精品果冻| 看黄色毛片网站| 草草在线视频免费看| 久久久国产成人免费| 免费看光身美女| 国产私拍福利视频在线观看| 亚洲一区高清亚洲精品| 亚洲一区二区三区色噜噜| av在线天堂中文字幕| 亚洲欧洲精品一区二区精品久久久| 老熟妇仑乱视频hdxx| av视频在线观看入口| 午夜精品一区二区三区免费看| 亚洲自拍偷在线| 欧美成人一区二区免费高清观看 | а√天堂www在线а√下载| 国产人伦9x9x在线观看| 亚洲成人中文字幕在线播放| 亚洲欧美日韩高清专用| 成年版毛片免费区| 嫩草影院精品99| 国产精品 欧美亚洲| 好男人电影高清在线观看| 最近最新中文字幕大全免费视频| 国产1区2区3区精品| 亚洲片人在线观看| 国内精品久久久久久久电影| 亚洲电影在线观看av| 免费观看人在逋| xxx96com| 日韩成人在线观看一区二区三区| 黄色片一级片一级黄色片| 久久久久国产精品人妻aⅴ院| 久久久久久久久久黄片| 欧美另类亚洲清纯唯美| av天堂在线播放| 成人无遮挡网站| 亚洲av片天天在线观看| 五月玫瑰六月丁香| 国产久久久一区二区三区| 男人舔奶头视频| 俺也久久电影网| 熟妇人妻久久中文字幕3abv| 国产成人福利小说| 制服人妻中文乱码| 色在线成人网| 一进一出抽搐动态| 日本黄色视频三级网站网址| 亚洲五月天丁香| 久久久久久久久中文| 久久精品国产清高在天天线| 99热这里只有精品一区 | 国产亚洲精品久久久com| 成人永久免费在线观看视频| 色综合站精品国产| 久久久久精品国产欧美久久久| 神马国产精品三级电影在线观看| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区三区四区免费观看 | 日本免费a在线| 日韩大尺度精品在线看网址| 国产一区在线观看成人免费| 亚洲人成伊人成综合网2020| 欧美一区二区精品小视频在线| 日本 欧美在线| 搡老熟女国产l中国老女人| 丰满人妻一区二区三区视频av | 国产aⅴ精品一区二区三区波| 亚洲成人精品中文字幕电影| 欧美日韩一级在线毛片| 久久香蕉精品热| 香蕉丝袜av| 国产精品电影一区二区三区| 五月玫瑰六月丁香| 观看免费一级毛片| 国产主播在线观看一区二区| 成熟少妇高潮喷水视频| 国产精品久久久av美女十八| av片东京热男人的天堂| 波多野结衣高清无吗| a在线观看视频网站| 欧美精品啪啪一区二区三区| 黄色视频,在线免费观看| 国产精品一区二区免费欧美| 国产蜜桃级精品一区二区三区| 欧美3d第一页| 2021天堂中文幕一二区在线观| 成年人黄色毛片网站| 亚洲色图av天堂| or卡值多少钱| 国产av麻豆久久久久久久| 九九久久精品国产亚洲av麻豆 | 亚洲 国产 在线| 国产精华一区二区三区| av天堂中文字幕网| 国产精品 国内视频| 搞女人的毛片| 极品教师在线免费播放| 亚洲成av人片在线播放无| 99精品欧美一区二区三区四区| 亚洲欧美激情综合另类| 精品电影一区二区在线| 午夜福利视频1000在线观看| 午夜两性在线视频| a在线观看视频网站| 亚洲av成人一区二区三| 成年女人永久免费观看视频| 日韩大尺度精品在线看网址| 十八禁网站免费在线| 亚洲国产精品久久男人天堂| 亚洲片人在线观看| 亚洲国产中文字幕在线视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲一区高清亚洲精品| 久久久国产欧美日韩av| aaaaa片日本免费| 三级国产精品欧美在线观看 | 97碰自拍视频| 亚洲欧美日韩高清专用| 国产精品久久久久久久电影 | 国产高清videossex| 97人妻精品一区二区三区麻豆| 一进一出抽搐动态| 成人国产一区最新在线观看| 精品乱码久久久久久99久播| 国产精品 欧美亚洲| 五月伊人婷婷丁香| 三级毛片av免费| 亚洲成人久久性| 桃红色精品国产亚洲av| 99视频精品全部免费 在线 | av天堂在线播放| 日韩有码中文字幕| 男人舔女人的私密视频| 午夜激情福利司机影院| 色哟哟哟哟哟哟| 亚洲精品久久国产高清桃花| 黄色成人免费大全| 久久久久国内视频| 夜夜看夜夜爽夜夜摸| 免费人成视频x8x8入口观看| 日韩精品中文字幕看吧| 岛国在线免费视频观看| 日韩精品中文字幕看吧| 夜夜爽天天搞| 亚洲欧美日韩东京热| 国产精品自产拍在线观看55亚洲| 在线国产一区二区在线| 黄色视频,在线免费观看| 天堂av国产一区二区熟女人妻| 老汉色av国产亚洲站长工具| 真实男女啪啪啪动态图| 日韩欧美三级三区| 久久人妻av系列| 色噜噜av男人的天堂激情| 99久国产av精品| 亚洲国产精品999在线| 99久久国产精品久久久| 日本黄大片高清| 午夜免费激情av| 757午夜福利合集在线观看| 变态另类丝袜制服| 一级毛片精品| 成年女人永久免费观看视频| 欧美高清成人免费视频www| 亚洲精品粉嫩美女一区| 久久久久久久久中文| 欧美性猛交黑人性爽| 麻豆一二三区av精品| 国产成年人精品一区二区| 真实男女啪啪啪动态图| 天堂√8在线中文| 看免费av毛片| 视频区欧美日本亚洲| 日日夜夜操网爽| 变态另类丝袜制服| 在线国产一区二区在线| 叶爱在线成人免费视频播放| 亚洲专区字幕在线| 69av精品久久久久久| 日本熟妇午夜| 91久久精品国产一区二区成人 | 国产极品精品免费视频能看的| 桃红色精品国产亚洲av| 两个人的视频大全免费| 无人区码免费观看不卡| 国产三级在线视频| 色综合欧美亚洲国产小说| 国产一区在线观看成人免费| 日本在线视频免费播放| 香蕉av资源在线| 国产av一区在线观看免费| 精品国产美女av久久久久小说| 级片在线观看| 十八禁网站免费在线| 99热精品在线国产| 噜噜噜噜噜久久久久久91| 亚洲中文日韩欧美视频| 久久久精品欧美日韩精品| 看黄色毛片网站| 成在线人永久免费视频| 成人高潮视频无遮挡免费网站| 国产伦人伦偷精品视频| 日韩国内少妇激情av| 欧美zozozo另类| 婷婷精品国产亚洲av| 国产精品 国内视频| 黑人巨大精品欧美一区二区mp4| 高清毛片免费观看视频网站| 不卡一级毛片| 在线免费观看不下载黄p国产 | 国产精品 欧美亚洲| 欧美午夜高清在线| 免费在线观看日本一区| 久久久精品欧美日韩精品| 国产伦一二天堂av在线观看| 色播亚洲综合网| 国产乱人伦免费视频| 制服丝袜大香蕉在线| 亚洲国产日韩欧美精品在线观看 | 久久精品综合一区二区三区| 国产高清有码在线观看视频| 在线观看免费午夜福利视频| 免费av不卡在线播放| 夜夜爽天天搞| 国内精品一区二区在线观看| 亚洲自拍偷在线| 可以在线观看的亚洲视频| 国产午夜精品论理片| 国产精品一及| 老司机福利观看| av中文乱码字幕在线| 男人和女人高潮做爰伦理| 三级男女做爰猛烈吃奶摸视频| 91在线精品国自产拍蜜月 | 两个人看的免费小视频| 欧美黄色片欧美黄色片| 99热这里只有是精品50| 亚洲av免费在线观看| 精品99又大又爽又粗少妇毛片 | 日本与韩国留学比较| 国产亚洲av嫩草精品影院| 亚洲专区字幕在线| АⅤ资源中文在线天堂| 日本在线视频免费播放| 日韩欧美精品v在线| 国产淫片久久久久久久久 | 母亲3免费完整高清在线观看| 午夜日韩欧美国产| 一二三四社区在线视频社区8| 成熟少妇高潮喷水视频| 午夜福利在线在线| 久久性视频一级片| 亚洲精品一卡2卡三卡4卡5卡| 最近视频中文字幕2019在线8| 国产探花在线观看一区二区| 国产高清激情床上av| 狂野欧美白嫩少妇大欣赏| 亚洲一区二区三区色噜噜| 国产精华一区二区三区| 又粗又爽又猛毛片免费看| 97超级碰碰碰精品色视频在线观看| 巨乳人妻的诱惑在线观看| 午夜成年电影在线免费观看| 老汉色av国产亚洲站长工具| 欧美日韩国产亚洲二区| 久久亚洲真实| 国内精品美女久久久久久| 国产麻豆成人av免费视频| 少妇人妻一区二区三区视频| 国内毛片毛片毛片毛片毛片| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久末码| 老熟妇仑乱视频hdxx| 美女高潮的动态| 少妇丰满av| 亚洲av成人精品一区久久| 国产三级黄色录像| 国内精品一区二区在线观看| 亚洲成av人片免费观看| 日韩欧美国产一区二区入口| 婷婷丁香在线五月| 日本精品一区二区三区蜜桃| 亚洲av成人一区二区三| 国产精品 国内视频| 黄色 视频免费看| 国产亚洲欧美98| 国产精品香港三级国产av潘金莲| 国产成人av激情在线播放| 欧美日韩中文字幕国产精品一区二区三区| 国产精品99久久久久久久久| 麻豆av在线久日| 亚洲五月天丁香| 亚洲 欧美 日韩 在线 免费| 免费在线观看亚洲国产| 久久99热这里只有精品18| 国产激情欧美一区二区| 性色av乱码一区二区三区2| 国产亚洲av高清不卡| bbb黄色大片| 美女午夜性视频免费| 一本精品99久久精品77| 中文字幕熟女人妻在线| 亚洲色图av天堂| 久久久国产成人免费| 日韩欧美精品v在线| 一本精品99久久精品77| 久久久精品欧美日韩精品| h日本视频在线播放| 久久久国产成人免费| 成人三级黄色视频| 国产aⅴ精品一区二区三区波| 久久久久久大精品| 黄色成人免费大全| 美女 人体艺术 gogo| 国产真人三级小视频在线观看| 亚洲av成人精品一区久久| 国产精品精品国产色婷婷| 精品福利观看| 国产麻豆成人av免费视频| avwww免费| 国内精品久久久久精免费| 一个人免费在线观看电影 | 国产日本99.免费观看| 国产精品av视频在线免费观看| 一级毛片女人18水好多| 午夜亚洲福利在线播放| 亚洲熟女毛片儿| 中文字幕精品亚洲无线码一区| 美女午夜性视频免费| 脱女人内裤的视频| 亚洲av第一区精品v没综合| 国产99白浆流出| 两人在一起打扑克的视频| 少妇丰满av| 国产av麻豆久久久久久久| 欧美在线一区亚洲| 精品电影一区二区在线| 亚洲国产精品久久男人天堂| 欧美性猛交黑人性爽| 国产黄片美女视频| 操出白浆在线播放| 男女做爰动态图高潮gif福利片| 真人做人爱边吃奶动态| cao死你这个sao货| 91字幕亚洲| 欧美国产日韩亚洲一区| 波多野结衣高清作品| 搞女人的毛片| 1024手机看黄色片| 天天躁狠狠躁夜夜躁狠狠躁| 国产av一区在线观看免费| 精品久久久久久久毛片微露脸| h日本视频在线播放| 非洲黑人性xxxx精品又粗又长| 国产主播在线观看一区二区| 国产成人精品久久二区二区免费| 成人无遮挡网站| 亚洲精品一区av在线观看| 九色国产91popny在线| 欧美性猛交黑人性爽| 国产精品一区二区精品视频观看| 欧美色视频一区免费| 搡老岳熟女国产| 日日夜夜操网爽| 母亲3免费完整高清在线观看| www.自偷自拍.com| 丰满人妻熟妇乱又伦精品不卡| 噜噜噜噜噜久久久久久91| 全区人妻精品视频| 亚洲第一欧美日韩一区二区三区| 床上黄色一级片| 国产精品99久久99久久久不卡| 国产美女午夜福利| 国产精品久久久久久精品电影| 中文资源天堂在线| 久久午夜亚洲精品久久| 少妇丰满av| 人人妻人人看人人澡| 国产成人影院久久av| 2021天堂中文幕一二区在线观| 精品久久久久久久久久免费视频| av视频在线观看入口| 亚洲 国产 在线| 国产综合懂色| 日日干狠狠操夜夜爽| 日韩欧美 国产精品| 国产精品永久免费网站| 久久久精品欧美日韩精品| 成年女人看的毛片在线观看| 午夜福利成人在线免费观看| 午夜福利免费观看在线| 亚洲电影在线观看av| 特大巨黑吊av在线直播| 久久久久久大精品| 精品国产亚洲在线| 亚洲avbb在线观看| 最近视频中文字幕2019在线8| 国产极品精品免费视频能看的| 久久久久国产一级毛片高清牌| 亚洲国产欧美人成| 在线a可以看的网站| 久久精品国产99精品国产亚洲性色| 十八禁网站免费在线| 国产精品一区二区精品视频观看| 色视频www国产| 十八禁网站免费在线| 国产精品1区2区在线观看.| 最新在线观看一区二区三区| 中文字幕人妻丝袜一区二区| 亚洲国产精品合色在线| 亚洲人成伊人成综合网2020| 美女高潮喷水抽搐中文字幕| www日本在线高清视频| 可以在线观看的亚洲视频| 18禁国产床啪视频网站| 岛国在线观看网站| 国产成人av教育| 99精品欧美一区二区三区四区| 亚洲av五月六月丁香网| 亚洲人成伊人成综合网2020| 波多野结衣高清作品| av福利片在线观看| 精品久久蜜臀av无| 综合色av麻豆| av在线蜜桃|