胡維娜,何廣位,李福霞,胡瓊波
(華南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,廣州510642)
?
綠僵菌素A對(duì)家蠶cecropin B和gloverin 4基因表達(dá)的影響
胡維娜,何廣位,李福霞,胡瓊波*
(華南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,廣州510642)
綠僵菌素A(DA)是由金龜子綠僵菌Metarhiziumanisopliae產(chǎn)生的一種環(huán)縮羧肽類次生化合物,具有抗昆蟲(chóng)免疫作用,但是人們對(duì)其影響免疫相關(guān)基因調(diào)控的機(jī)理缺乏了解。本實(shí)驗(yàn)以家蠶Bm12細(xì)胞為材料,采用RNAi技術(shù)沉默相關(guān)轉(zhuǎn)錄因子,結(jié)合熒光定量PCR(qPCR)技術(shù),明確DA處理或沉默TOLL和IMD信號(hào)通路相關(guān)轉(zhuǎn)錄因子后抗菌肽cecropin B和gloverin 4基因表達(dá)的變化。實(shí)驗(yàn)發(fā)現(xiàn),DA能引起抗菌肽cecropin B基因表達(dá)上調(diào)和gloverin 4基因表達(dá)下調(diào)。利用特異性siRNA分別沉默轉(zhuǎn)錄因子BmRelish1、BmRelish2、BmRel、BmFOXg1后,發(fā)現(xiàn)只有沉默轉(zhuǎn)錄因子BmRelish時(shí),cecropin B和gloverin 4基因表達(dá)才下調(diào),說(shuō)明這兩種抗菌肽的合成均通過(guò)IMD信號(hào)通路調(diào)控。當(dāng)沉默 BmRelish1或 BmRel基因及DA處理聯(lián)合作用時(shí),cecropin B基因顯著下調(diào),說(shuō)明在抑制cecropin B合成時(shí),DA與轉(zhuǎn)錄因子BmRelish1或者BmRel之間存在密切的協(xié)同效應(yīng);同樣,在促進(jìn)gloverin 4合成時(shí),DA與轉(zhuǎn)錄因子BmRelish2之間也存在著協(xié)同效應(yīng)。
綠僵菌素A; Bm12 細(xì)胞; cecropin; gloverin
綠僵菌素(destruxins)是由金龜子綠僵菌Metarhiziumanisopliae產(chǎn)生的一類環(huán)縮羧肽類次生代謝物質(zhì),具有殺蟲(chóng)活性,也是綠僵菌的關(guān)鍵致病因子(Kershawetal., 1999; Pedrasetal., 2002)。目前已經(jīng)發(fā)現(xiàn)39種綠僵菌素同系物,其中綠僵菌素A和B(DA和DB)是最常見(jiàn)的同系物種類(Liu and Tzeng, 2012)。研究表明,綠僵菌素破壞昆蟲(chóng)的先天性免疫系統(tǒng),影響血細(xì)胞中的鈣離子與氫離子平衡(Chenetal., 2014),影響血細(xì)胞的吞噬與囊胞化功能(Veyetal., 2002),抑制果蠅抗菌肽合成(Paletal., 2007),而且綠僵菌素A對(duì)家蠶漿血細(xì)胞與粒血細(xì)胞具有毒性(Chenetal., 2014; Fanetal., 2014)。但是,目前對(duì)綠僵菌素作用的分子機(jī)理并不清楚。
一般認(rèn)為,Rel/NF-κB信號(hào)通路在昆蟲(chóng)免疫中發(fā)揮著重要作用,Toll和Imd兩條通路均屬于Rel/NF-κB信號(hào)通路。昆蟲(chóng)對(duì)真菌與革蘭氏陽(yáng)性細(xì)菌的免疫響應(yīng)通過(guò)TOLL信號(hào)通道激活,而革蘭氏陰性細(xì)菌則是通過(guò)激活I(lǐng)MD信號(hào)通路引起免疫響應(yīng)。Rel蛋白是Toll通路中的下游的轉(zhuǎn)錄因子,它被激活后即進(jìn)入細(xì)胞核,啟動(dòng)抗菌肽等靶標(biāo)基因的轉(zhuǎn)錄,Dorsal是Rel家族蛋白的重要代表,能高效調(diào)節(jié)抗菌肽的合成(張明明等, 2012;初源等, 2013)。家蠶BmRel基因通過(guò)選擇性剪切為 BmRelA和BmRelB兩個(gè)轉(zhuǎn)錄本,分別編碼Dorsal isoform A和Dorsal isoform B兩種蛋白(Tanakaetal., 2008;Suetsuguetal., 2013)。參與IMD信號(hào)轉(zhuǎn)導(dǎo)通路的Rel蛋白是Relish,家蠶的Relish1和Relish2基因分別編碼NF-κB p110 subunit isoform 1和NF-κB p110 subunit isoform 2兩種蛋白質(zhì)(Tanakaetal., 2008;Suetsuguetal., 2013),它們能調(diào)控抗菌肽基因的轉(zhuǎn)錄。另一個(gè)轉(zhuǎn)錄因子FOXg1,在細(xì)菌刺激后表達(dá)量會(huì)顯著變化,可能與免疫相關(guān)(Tanakaetal., 2010)。
DA處理家蠶血細(xì)胞后,影響B(tài)m_nscaf3098_42和Bm_nscaf1071_17基因表達(dá),表達(dá)譜分析表明基因Bm_nscaf3098_42編碼葛佬素4前體(gloverin 4 precursor),而基因Bm_nscaf1071_17編碼家蠶抗菌肽B前體(cecropin-B precursor)(Gongetal., 2014)。家蠶的葛佬素(gloverin)是一種富含甘氨酸的抗菌肽,具有熱穩(wěn)定性,對(duì)大腸桿菌、革蘭氏陽(yáng)性細(xì)菌、真菌和病毒有生物活性,家蠶有4種Gloverin(Kanekoetal., 2007; Kawaokaetal., 2008; Yietal., 2013)。Cecropin-B屬于cecropins家族,對(duì)革蘭氏陽(yáng)性與陰性細(xì)菌都有效,其肽鏈中堿性氨基酸主要分布在N-端,疏水基團(tuán)主要分布在其C-端,在許多特定位置有較保守的殘基,如2位的色氨酸(Trp),6、7位具一對(duì)賴氨酸(Lys),4位具天冬酰胺(Asn),6位具精氨(Arg),不含半胱氨酸(Cys)和二硫橋;但在第8位為苯丙氨酸(Phe),有別于其它的抗菌肽(陳玉清等, 2006; 周啟升等, 2011)。
因此,本研究以家蠶Bm12 細(xì)胞為材料,采用RNAi方法分別敲除BmRel、BmRelish1、BmRelish2、BmFOXg1等轉(zhuǎn)錄因子,考察綠僵菌素A對(duì)抗菌肽gloverin基因Bm_nscaf3098_42和cecropin基因Bm_nscaf1071_17表達(dá)的影響,增進(jìn)對(duì)綠僵菌素作用機(jī)理的認(rèn)識(shí)。
1.1 細(xì)胞與培養(yǎng)
供試細(xì)胞系:家蠶BombyxmoriBm12細(xì)胞由華南農(nóng)業(yè)大學(xué)動(dòng)科學(xué)院曹陽(yáng)教授饋贈(zèng),采用TNM-FH培養(yǎng)基(Hyclone公司)加入10%胎牛血清(Gibco公司),在27℃下恒溫培養(yǎng)傳代,每隔2-4 d傳代1次,取對(duì)數(shù)期細(xì)胞用于實(shí)驗(yàn)。
1.2 綠僵菌素
綠僵菌素A(DA)由本實(shí)驗(yàn)室從金龜子綠僵菌金龜子變種Metarhiziumanisopliaevar.anisopliae菌株MaQ10中分離純化(Huetal., 2006)。取DA 1 mg,加入100 μL二甲基亞砜(DMSO,Sigma公司)溶解,制成10000 μg/mL的綠僵菌素貯備液,-80℃保存?zhèn)溆谩?/p>
1.3 處理方法
小干涉RNA(siRNA)制備:根據(jù)目標(biāo)基因的核苷酸序列,選擇3′端相鄰的核苷酸作為侯選的siRNA靶點(diǎn),合成用于RNAi的小干涉RNA(siRNA)(上海英駿生物技術(shù)有限公司設(shè)計(jì)并合成),包括針對(duì)轉(zhuǎn)錄因子BmRel、BmRelish1、BmRelish2和BmFOXg1的siRNA(表1)。
siRNA-lipo2000混合液的準(zhǔn)備:將lipofectimine2000(Bio-Rad公司)輕輕搖勻,然后取2 μL,再用無(wú)血清TNM-FH培養(yǎng)基200 μL稀釋,輕輕混合,室溫孵育5 min;另取2 μL siRNA,用無(wú)血清TNM-FH培養(yǎng)基200 μL稀釋,輕輕混合;將孵育好的lipofectimine 2000與稀釋好的siRNA輕輕混合,室溫孵育20 min,形成siRNA-lipofectimine 2000混合液供細(xì)胞轉(zhuǎn)染實(shí)驗(yàn)。
表1 用于沉默目標(biāo)基因的小干涉RNA(siRNA)
細(xì)胞轉(zhuǎn)染:取對(duì)數(shù)生長(zhǎng)期Bm12細(xì)胞接種至12孔板(美國(guó)Corning Incorporated 公司),培養(yǎng)24 h 后,將培養(yǎng)液吸出,再加入無(wú)血清TNM-FH培養(yǎng)基100 μL,輕輕搖勻讓培養(yǎng)基鋪滿底部;取siRNA-lipofectimine 2000混合液400 μL,緩慢加入12孔板中,非轉(zhuǎn)染組則將200 μL孵育好的lipofectimine 2000與200 μL無(wú)血清TNM-FH培養(yǎng)基混勻,緩慢加入12孔板中,27℃下培養(yǎng)4 h,吸去上清液,終止轉(zhuǎn)染,更換新鮮的含血清TNM-FH培養(yǎng)基繼續(xù)培養(yǎng)20 h;再加入DA貯備液使培養(yǎng)液中DA的終濃度達(dá)到200 μg/mL,非DA處理組則加二甲基亞砜(DMSO,Sigma公司)對(duì)照使其終濃度達(dá)到0.1%,處理8 h后,提取細(xì)胞總RNA(RNA提取試劑盒:Omega公司)。RNA的純度與濃度采用SimpliNano微量分光光度計(jì)(GE Healthcare Life Science)進(jìn)行檢測(cè)。
1.4 基因表達(dá)量分析
siRNA或DA處理的細(xì)胞作為實(shí)驗(yàn)組,未經(jīng)轉(zhuǎn)染和DA處理的細(xì)胞作為對(duì)照,提取總RNA,實(shí)驗(yàn)重復(fù)3次;qPCR方法參照Livak文獻(xiàn)(Livak and Schmittgen, 2001),反應(yīng)液體系為反轉(zhuǎn)錄的cDNA 1 μL,上下游引物各1 μL(表2),SYBR Premix Ex TaqTM(Bioscenece公司)10 μL,ddH2O 7 μL;反應(yīng)程序?yàn)?5℃預(yù)變性3 min,95℃變性10 s,60℃退火10 s,72℃延伸30 s,39個(gè)循環(huán)后95℃ 10 s,65℃至95℃ 5 s。
1.5 數(shù)據(jù)處理
qPCR數(shù)據(jù)采用2-ΔΔCt法(Pfaffl, 2001)進(jìn)行數(shù)據(jù)分析處理,利用家蠶GAPDH基因作為內(nèi)參,具體計(jì)算公式:ΔΔCt = (Ct目標(biāo)基因-Ct持家基因)實(shí)驗(yàn)組-(Ct目標(biāo)基因-Ct持家基因)對(duì)照組,實(shí)驗(yàn)處理組中目標(biāo)基因的相對(duì)表達(dá)量(Q)計(jì)算公式:Q = 2-ΔΔCt,實(shí)驗(yàn)結(jié)果采用SPSS軟件(IBM,美國(guó))分析基因相對(duì)表達(dá)量。
表2 內(nèi)參基因GAPDH(甘油醛-3-磷酸脫氫酶)和家蠶待檢測(cè)基因引物
2.1 對(duì)轉(zhuǎn)錄因子的干擾效率
Bm12細(xì)胞被siRNA轉(zhuǎn)染24 h后,經(jīng)qPCR檢測(cè) BmRel、 BmRelish1、 BmRelish2和 BmFOXg1基因顯著下調(diào),干擾效率大于70%(圖1)。
圖1 siRNA對(duì)轉(zhuǎn)錄因子的干擾效率Fig. 1 siRNA to interference efficiency of transcription factors
2.2 綠僵菌素A與轉(zhuǎn)錄因子對(duì)cecropin B基因表達(dá)的影響
DA處理細(xì)胞8 h后,抗菌肽cecropin B基因Bm_nscaf1071_17表達(dá)量明顯上調(diào)(圖2)。沉默基因 BmRelish2后,cecropin基因Bm_nscaf1071_17顯著下調(diào);而沉默基因 BmRelish1、 BmRel和BmFOXg1,cecropin基因表達(dá)量基本不變(圖2)。在敲除轉(zhuǎn)錄因子與DA聯(lián)合處理實(shí)驗(yàn)中發(fā)現(xiàn),先沉默 BmRelish1或 BmRel基因再用DA處理8 h(圖2中BmRelish1+DA和BmRel+DA)時(shí),cecropin基因的表達(dá)水平顯著低于 BmRelish1、BmRel或DA各自單獨(dú)處理時(shí)的水平;而先沉默其他基因再用DA處理(圖2中BmRelish2+DA和BmFOXg1+DA),cecropin基因的表達(dá)水平相較于轉(zhuǎn)錄因子或DA單獨(dú)處理時(shí)的水平未發(fā)生顯著上調(diào)或者下調(diào)現(xiàn)象(圖2)。
2.3 綠僵菌素A與轉(zhuǎn)錄因子對(duì)gloverin 4基因表達(dá)的影響
DA處理細(xì)胞8 h后,gloverin基因Bm_nscaf3098_42顯著下調(diào)(圖3)。沉默基因 BmRelish2后,gloverin 4基因Bm_nscaf3098_42顯著下調(diào),而沉默基因 BmRelish1、 BmRel和 BmFOXg1后,基因顯著上調(diào)(圖3)。在敲除轉(zhuǎn)錄因子與DA聯(lián)合處理實(shí)驗(yàn)中發(fā)現(xiàn),先沉默 BmRelish2基因再用DA處理8 h(圖3中BmRelish2+DA)時(shí),gloverin 4基因的表達(dá)水平顯著上調(diào),顯著高于 BmRelish2或DA單獨(dú)處理時(shí)的水平;而先沉默其他基因再用DA處理(圖3中BmRelish1+DA、BmRel+DA、BmFOXg1+DA),gloverin基因的表達(dá)水平總是介乎于轉(zhuǎn)錄因子或DA單獨(dú)處理時(shí)的水平之間(圖3)。
圖2 綠僵菌素A與轉(zhuǎn)錄因子對(duì)cecropin-B基因Bm_nscaf1071_17的表達(dá)量的影響Fig.2 Effect of destruxin A and transcription factors on Bm_nscaf1071_17 gene expression of cecropin B
圖3 綠僵菌素A與轉(zhuǎn)錄因子對(duì)抗菌肽gloverin基因Bm_nscaf3098_42表達(dá)量的影響Fig. 3 Effect of destruxin A and transcription factors on Bm_nscaf3098_42 gene expression of gloverin 4
實(shí)驗(yàn)表明,DA處理Bm12細(xì)胞后,cecropin B基因顯著上調(diào)表達(dá),而gloverin 4基因顯著下調(diào)表達(dá)。家蠶的cecropin 的抗菌譜較廣,對(duì)革蘭氏陰性細(xì)菌、陽(yáng)性細(xì)菌及真菌均有活性(孫偉等, 2009; Yangetal., 2011),DA又是蟲(chóng)生真菌-綠僵菌產(chǎn)生的毒素,所以家蠶在DA刺激下,可能激發(fā)cecropin B的合成,有利于家蠶抵御蟲(chóng)生真菌的侵染,而gloverin 只對(duì)革蘭氏陰性細(xì)菌具有活性,因此家蠶在DA刺激下不會(huì)激發(fā)gloverin 4的合成。
沉默轉(zhuǎn)錄因子基因BmRelish2后,cecropin B基因Bm_nscaf1071_17顯著下調(diào),而沉默 BmRelish1、BmRel和 BmFOXg1轉(zhuǎn)錄因子基因后,該基因表達(dá)量基本不變。這一結(jié)果說(shuō)明cecropin B的生物合成是通過(guò)IMD信號(hào)通路調(diào)控的,轉(zhuǎn)錄因子BmRelish2在發(fā)揮著關(guān)鍵作用,而轉(zhuǎn)錄因子BmRelish1為什么對(duì)cecropin B基因表達(dá)影響不顯著,也許是因?yàn)樵摶蛭磪⑴c供試細(xì)胞Bm12細(xì)胞的IMD信號(hào)通路,抑或是其他更復(fù)雜的原因。然而,在進(jìn)一步的轉(zhuǎn)錄因子沉默與DA處理聯(lián)合實(shí)驗(yàn)中,先沉默 BmRelish1或 BmRel基因再用DA處理(圖2中BmRelish1+DA和BmRel+DA)時(shí),cecropin B基因的表達(dá)水平顯著低于 BmRelish1、BmRel或DA各自單獨(dú)處理時(shí)的水平,這個(gè)結(jié)果暗示DA與轉(zhuǎn)錄因子BmRelish1或者BmRel之間存在強(qiáng)烈的直接或間接的相互作用,從而強(qiáng)烈抑制cecropin B的合成。毫無(wú)疑問(wèn),DA與轉(zhuǎn)錄因子BmRelish1或者BmRel之間的關(guān)系值得進(jìn)一步深入研究。
已有研究表明,gloverin也是通過(guò)TOLL信號(hào)通路調(diào)控的,因?yàn)樾奔y夜蛾Spodopteraexigua的Toll基因SeToll被沉默后,gloverin的合成被抑制(Park and Kim, 2012)。但是,本研究發(fā)現(xiàn),轉(zhuǎn)錄因子BmRelish2被沉默后,gloverin 4基因顯著下調(diào),而沉默轉(zhuǎn)錄因子BmRelish1、BmRel和BmFOXg1后,該基因又顯著上調(diào),這個(gè)結(jié)果說(shuō)明gloverin 4的合成是通過(guò)IMD信號(hào)通路調(diào)控,但TOLL信號(hào)通路可能也發(fā)揮某些作用,可見(jiàn)抗菌肽合成的調(diào)控機(jī)理是相當(dāng)復(fù)雜的。先沉默 BmRelish2基因再用DA處理后,gloverin 4基因的表達(dá)水平顯著高于 BmRelish2或DA單獨(dú)處理時(shí)的水平,這個(gè)結(jié)果表明,在調(diào)控gloverin 4的合成時(shí),DA與轉(zhuǎn)錄因子BmRelish2之間存在強(qiáng)烈的直接或間接的相互作用。
總之,本實(shí)驗(yàn)發(fā)現(xiàn),綠僵菌素A處理后,引起家蠶Bm12細(xì)胞抗菌肽cecropin B基因表達(dá)上調(diào)和gloverin 4基因表達(dá)下調(diào),家蠶細(xì)胞在DA刺激后,能夠啟動(dòng)cecropin B基因表達(dá),增強(qiáng)其體內(nèi)的抗真菌能力。沉默轉(zhuǎn)錄因子 BmRelish2基因后,cecropin B和gloverin 4基因均下調(diào)表達(dá),說(shuō)明這兩種抗菌肽的合成均通過(guò)IMD信號(hào)通路調(diào)控。沉默 BmRelish1或 BmRel基因及DA處理聯(lián)合作用時(shí),cecropin B基因顯著下調(diào),說(shuō)明在抑制cecropin B的合成時(shí),DA與轉(zhuǎn)錄因子BmRelish1或者BmRel之間存在密切的協(xié)同效應(yīng)。同樣,在促進(jìn)gloverin 4的合成時(shí),DA與轉(zhuǎn)錄因子BmRelish2之間也存在著協(xié)同效應(yīng)。揭示DA與這些轉(zhuǎn)錄因子之間相互作用調(diào)控家蠶抗菌肽cecropin B和gloverin 4的合成的機(jī)理,將有助于解析綠僵菌素的作用機(jī)制及綠僵菌的致病機(jī)理,從而有助于真菌生物防治劑的開(kāi)發(fā)與應(yīng)用。
致謝:感謝華南農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)學(xué)院曹陽(yáng)教授饋贈(zèng)Bm12細(xì)胞。
References)
Chen XR, Hu QB, Yu XQ,etal. Effects of destruxins on free calcium and hydrogen ions in insect hemocytes[J].InsectSci., 2014, 21(1): 31-38.
Chen YQ, Li BC, Wu X,etal. The purification and identification of the antibacterial peptides cecropin D and lysozyme from silkworm larave,Bombyxmori[J].JournalofNanjingNormalUniversity(Natural Science), 2006, 29(3): 103-107. [陳玉清, 李保存, 吳希,等. 家蠶抗菌蛋白Cecropin D和Lysozyme的分離純化及性質(zhì)鑒定[J]. 南京師大學(xué)報(bào) (自然科學(xué)版), 2006, 29(3): 103-107]
Chu Y, Zhou F, Zhang MM,etal. Frontiers of research on the innate immune response in insects[J].ChineseJournalofAppliedEntomology, 2013, 50(2): 311-320. [初源, 周帆, 張明明,等. 昆蟲(chóng)天然免疫反應(yīng)研究前沿[J]. 應(yīng)用昆蟲(chóng)學(xué)報(bào), 2013, 50(2): 311-320]
Fan JQ, Han PF, Chen XR,etal. Comparative proteomic analysis ofBombyxmorihemocytes treated with destruxin A[J].ArchivesofInsectBiochemistryandPhysiology, 2014, 86(1): 33-45.
Gong L, Chen XR, Liu CL,etal. Gene expression profile ofBombyxmorihemocyte under the stress of destruxin A[J].PLoSONE, 2014, 9(5).
Hu QB, Ren SX, Wu JH,etal. Investigation of destruxin A and B from 80 metarhizium starins in China, and the optimization of cultural conditions for the strain MaQ10[J].Toxicon, 2006, 48: 491-498.
Kaneko Y, Furukawa S, Tanaka H,etal. Expression of antimicrobial peptide genes encoding enbocin and gloverin isoforms in the silkworm,Bombyxmori[J].BioscienceBiotechnologyandBiochemistry, 2007, 71(9): 2233-2241.
Kawaoka S, Katsuma S, Daimon T,etal. Functional analysis of four gloverin-like genes in the silkworm,Bombyxmori[J].ArchivesofInsectBiochemistryandPhysiology, 2008, 67(2): 87-96.
Kershaw MJ, Moorhouse ER, Bateman R,etal. The role of destruxins in the pathogenicity ofMetarhiziumanisopliaefor three species of insect[J].JournalofInvertebratePathology, 1999, 74(3): 213-223.
Liu BL, Tzeng YM. Development and applications of destruxins:A review[J].BiotechnologyAdvances, 2012, 30(6): 1242-1254.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DELTADELTACT method[J].Methods, 2001, 25(4): 402-408.
Pal S, Leger RJS, Wu LP. Fungal peptide destruxin a plays a specific role in suppressing the innate immune response inDrosophilamelanogaster[J].JournalofBiologicalChemistry, 2007, 282(12): 8969-8977.
Park JA, Kim Y. Eicosanoid biosynthesis is activated via Toll, but not Imd signal pathway in response to fungal infection[J].JournalofInvertebratePathology, 2012, 110(3): 382-388.
Pedras MSC, Zaharia LI, Ward DE. The destruxins:Synthesis, biosynthesis, biotransformation, and biological activity[J].Phytochemistry, 2002, 59(6): 579-596.
Pfaffl MW. A new mathematical model for ralative quantification in real-time RT-PCR[J].NucleicAcidsResearch, 2001, 29: 2002-2007.
Suetsugu Y, Futahashi R, Kanamori H,etal. Large scale full-length cDNA sequencing reveals a unique genomic landscape in a lepidopteran model insect,Bombyxmori[J].G3-GenesGenomsGenetics, 2013, 3(9): 1481-1492.
Sun W, Shen YH, Xiang ZH,etal. Advances in antimicrobial peptide genes in the silkworm,Bombyxmori[J].ScienceofSericulture, 2009, 35(1): 196-203. [孫偉, 沈以紅, 向仲懷,等. 家蠶抗菌肽基因研究進(jìn)展[J]. 蠶業(yè)科學(xué), 2009, 35(1): 196-203]
Tanaka H, Ishibashi J, Fujita K,etal. A genome-wide analysis of genes and gene families involved in innate immunity ofBombyxmori[J].InsectBiochemistryandMolecularBiology, 2008, 38(12): 1087-1110.
Tanaka H, Suzuki N, Nakajima Y,etal. Expression profiling of novel bacteria-induced genes from the silkworm,Bombyxmori[J].ArchivesofInsectBiochemistryandPhysiology, 2010, 73(3): 148-162.
Vey A, Matha V, Dumas C. Effects of the peptide mycotoxin destruxin E on insect haemocytes and on dynamics and efficiency of the multicellular immune reaction[J].JournalofInvertebratePathology, 2002, 80(3): 177-187.
Yang WY, Cheng TC, Ye MQ,etal. Functional divergence among silkworm antimicrobial peptide paralogs by the activities of recombinant proteins and the induced expression profiles[J].PLoSONE, 2011, 6(3).
Yi HY, Deng XJ, Yang WY. Gloverins of the silkwormBombyxmori: Structural and binding properties and activities[J].InsectBiochemistryandMolecularBiology, 2013, 43(7): 612-625.
Zhang MM, Chu Y, Zhao ZW,etal. Progress in the mechanisms of the innate immune responses in insects[J].ActaEntomologicaSinica, 2012, 55(10): 1221-1229. [張明明, 初源, 趙章武,等. 昆蟲(chóng)天然免疫反應(yīng)分子機(jī)制研究進(jìn)展[J]. 昆蟲(chóng)學(xué)報(bào), 2012, 55(10): 1221-1229]
Zhou QS, Yu Q, Liu QX. Progress and application prospect of transgenic silkworm[J].ActaEntomologicaSinica, 2011, 54(2): 197-210. [周啟升, 于奇, 劉慶信. 轉(zhuǎn)基因家蠶的研究進(jìn)展及應(yīng)用前景[J]. 昆蟲(chóng)學(xué)報(bào), 2011, 54(2): 197-210]
Effect of destruxin A on expression of cecropin B and gloverin 4 genes of silkworm
HU Wei-Na, HE Guang-Wei, LI Fu-Xia, HU Qiong-Bo*
(College of Agriculture, South China Agricultural University, Guangzhou 510642, China)
Destruxin A (DA), a cyclodepsipeptidic mycotoxin isolated from entomopathogenic fungus,Metarhiziumanisopliae, has anti-immunity activity against insects, but the mechanism of immune regulation is not clear yet. In the current experiment, by means fluorescence quantitative PCR (qPCR), the silkworm cell line Bm12 was used to survey the expression level of antimicrobial peptides cecropin B and gloverin 4 genes after the cells treated with DA or silence of transcription factors in TOLL and IMD signal pathways. The results indicated that the cecropin B gene was up-regulated and gloverin 4 gene was down-regulated after the DA treatment. Respectively silencing transcription factors BmRelish1, BmRelish2, BmRel, BmFOXg1 with specific siRNA, found that after only the transcription factorsBmRelish2 gene was silenced, cecropin B and gloverin 4 genes were all down-regulated. This illustrated that the two antimicrobial peptides were biosynthesized through IMD signal pathway. Furthermore, when the silence of transcription factorsBmRelish1 orBmRelgenes and DA treatment were combined, cecropin B gene was significantly down-regulated, which suggested that there were some synergism between DA and transcription factors BmRelish1 or BmRel to inhibit the biosynthesis of cecropin B. Similarly, there were close synergistic relations between DA and transcription factors BmRelish2 to promote the biosynthesis of gloverin 4.
Destruxins A; Bm12 cell; cecropin; gloverin
1674-0858(2016)05-0984-06
國(guó)家自然科學(xué)基金面上項(xiàng)目(31272057)
胡維娜,女,1990年生,河南周口人,碩士生,研究方向?yàn)槔ハx(chóng)毒力,E-mail: hwn688094@163.com
*通訊作者Author for correspondence, E-mail: hqbscau@scau.edu.cn
Received: 2015-11-11; 接受日期 Accepted: 2016-03-14
Q965;S476
A