• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I(COI) gene

    2016-11-15 11:36:13XiuFengLIChongHANCaiRongZHONGJunQiuXUJianRongHUANG
    Zoological Research 2016年5期

    Xiu-Feng LI, Chong HAN, Cai-Rong ZHONG, Jun-Qiu XU, Jian-Rong HUANG,*

    1School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China

    2Management Bureau of Dongzhaigang Mangrove Natural Reserve, Haikou 571129, China

    Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I(COI) gene

    Xiu-Feng LI1, Chong HAN1, Cai-Rong ZHONG2, Jun-Qiu XU1, Jian-Rong HUANG1,*

    1School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China

    2Management Bureau of Dongzhaigang Mangrove Natural Reserve, Haikou 571129, China

    Sphaeroma terebrans, a wood-boring isopoda, is distributed worldwide in tropical and subtropical mangroves. The taxonomy of S. terebrans is usually based on morphological characteristics, with its molecular identification still poorly understood. The number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod are considered as the major morphological characteristics in S. terebrans, which can cause difficulty in regards to accurate identification. In this study, we identified S. terebrans via molecular and morphological data. Furthermore, the validity of the mitochondrial cytochrome c oxidase subunit I (COI) gene as a DNA barcode for the identification of genus Sphaeroma, including species S. terebrans, S. retrolaeve, and S. serratum, was examined. The mitochondrial COI gene sequences of all specimens were sequenced and analysed. The interspecific Kimura 2-parameter distances were higher than intraspecific distances and no intraspecificinterspecific distance overlaps were observed. In addition, genetic distance and nucleotide diversity (π)exhibited no differences within S. terebrans. Our results revealed that the mitochondrial COI gene can serve as a valid DNA barcode for the identification of S. terebrans. Furthermore, the number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod were found to be unreliable taxonomic characteristics for S. terebrans.

    Sphaeroma terebrans; DNA barcode;COI gene; Molecular identification

    lNTRODUCTlON

    Mangroves are biologically and globally important ecosystems(Giri et al., 2011). Their aerial roots provide an important substrate in which many species of animals live and reproduce(Nagelkerken et al., 2008). Sphaeroma terebrans, a woodboring isopoda, is found worldwide in tropical and subtropical mangroves (Estevez, 1978), where it preferentially burrows into the aerial roots for shelter and reproductive habitat (Harrison & Holdich, 1984; John, 1970). In recent years, substantial S. terebrans outbreaks have seriously affected mangrove stands in China, especially in Hainan island (Fan et al., 2014).1

    The effects of S. terebrans on mangroves have been studied by many researchers (Estevez & Simon, 1975; Estevez, 1978;Jones & Icely 1981; Kensley & Schotte, 1999; Perry, 1988;Rehm & Humm, 1973); however, the taxonomic standards of S. terebrans remain poorly understood. Due to some minor morphological differences, including the number and arrangement of the tubercles on the pereonite, the structure of the pereopod, and the presence of tubercles furnished with bristle-like hairs on the abdomen, S. terebrans was previously named as S. vastator (Bate, 1866) and S. destructor(Richardson, 1897). Based on morphological identification,Estevez & Simon (1975) concluded that S. vastator and S. destructor were synonyms of S. terebrans.

    The classic use of morphological characteristics for species delimitation can result in under- or over-estimation of biodiversity due to factors such as phenotypic plasticity(Knowlton, 1993). DNA barcode, which can supplement taxonomic datasets in the process of species delimitation(Schindel & Miller, 2005), is a practical tool that can be used for the identification of various species within a known taxonomic framework and for linking different biological life stages of the same species (Feng et al., 2011; Puillandre et al., 2009;Schindel & Miller, 2005). The mitochondrial COI gene has been proposed as a universal barcode, and has been successfully applied in the identification of Portunidae, fish, bivalve molluscs,and hoverflies (Blair et al., 2006; Hebert et al., 2003; Ma et al.,2012; Persis et al., 2009; St?hls et al., 2009). The COI gene sequences of S. terebrans have been analysed in America and Africa (Baratti et al., 2005, 2011), with results suggesting that cosmopolitan S. terebrans is comprised of more than one species. Therefore, its taxonomic status needs to be revaluated.

    The aim of the present study was to provide a reliable and valid way to delimit S. terebrans. In this study, the validity of the mitochondrial COI gene as a DNA barcode marker for the identification of three species of Sphaeroma, namely, S. terebrans, S. retrolaeve, and S. serratum, was examined. To detect if there was any cryptic species in S. terebrans, the COI gene sequences of individuals with morphological differences were analysed. Our study should be useful in the identification of the genus Sphaeroma and for further research on S. terebrans.

    MATERlALS AND METHODS

    Sampling and scoring of morphological characteristics

    The S. terebrans specimens were collected from three localities in China (Figure 1). Prior to DNA extraction, all specimens were examined under an anatomical lens and assigned to groups according to comparison with previous morphological descriptions (Harrison & Holdich, 1984). The morphological differences of S. terebrans were then photographed by a TM3030Plus tabletop microscope. The S. terebrans individuals were sorted according to the following morphological characteristics: the number and arrangement of tubercles on the pereonite, number of teeth on the uropodal exopod, shape of the pleotelson, setae distribution, and length of the second and seventh pereopods. These are considered to be major characteristics for the diagnosis of S. terebrans within Sphaeroma (Harrison & Holdich, 1984). The S. retrolaeve specimens were collected from Hainan and Beihai mangroves. All samples were preserved in 95% alcohol.

    Figure 1 Sample collection sites of S. terebransHK: Haikou, Hainan, WC: Wenchang, Hainan, BH: Beihai, Guangxi,ZJ: Zhanjiang, Guangdong

    DNA extraction, PCR amplification, and sequencing

    The genomic DNA of S. terebrans and S. retrolaeve were obtained from the pereopods. DNA extractions were performed using a TaKaRa MiniBEST Universal Genomic DNA Extraction Kit Ver.5.0 following the manufacturer's protocols. The primers mtd10 5'-TTGATTTTTTGGTCATCCAGAAGT-3' (Roehrdan. 1993) and Florence 5'-CCTAAAAAATGTTGAGGGAA-3' were used for amplification of the mitochondrial COI gene (Baratti et al., 2005). We followed PCR protocols as per Baratti et al.(2005). The PCR products were electrophoresed using 1% agarose gel and sequenced by Shanghai Majorbio Bio-Pharm Technology Co., Ltd.

    Data analysis

    All sequences were aligned using ClustalW (Thompson et al.,1997). Interspecific and intraspecific sequence divergences were calculated using the Kimura 2-parameter (K2P) model with the pairwise deletion option in MEGA 5.0 (Kimura, 1980). Haplotypes were identified and analysed using DNA SP version 4.1 (Librado & Rozas, 2009). Nucleotide diversity (π) and haplotype diversity(h) were calculated according to Nei (1987)using DNA SP version 4.1 (Rozas & Rozas, 1999). Based on the K2P model, neighbor joining (NJ) and maximum likelihood(ML) trees were constructed using MEGA 5.0 (Kimura, 1980;Tamura et al., 2011), with the Cymodoce fuscina voucher from the NCBI (GenBank Accession No. KJ410468) used as an outgroup. Node supports for the two approaches (NJ and ML)were inferred with bootstrap analysis (1 000 replicates).

    RESULTS

    Prior to DNA extraction, we assigned S. terebrans specimens into A1-A5 and B morphotypes (Figure 2). The number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod varied within S. terebrans, which were assigned into seven groups (Table 1).

    Partially aligned COI sequences 498 bp in length were obtained from 70 S. terebrans individuals and 10 S. retrolaeve individuals. The COI sequences of S. serratum and C. fuscina voucher were downloaded from the NCBI. Details of these sequences are shown in Table 2. There were fifteen haplotypes for S. terebrans and two for S. retrolaeve. Haplotype sequences were deposited in the NCBI under accession numbers KU558703-KU558719.

    All haplotype sequences were aligned and edited, and no insertion or deletion sites were found in any of the sequences. The intraspecific distances in S. terebrans ranged from 0.001 to 0.013 (Table 3). The maximum interspecific distance (1.394)was between S. serratum and C. fuscina voucher, while the minimum interspecific distance (0.24) was between S. serratum and S. retrolaeve. No overlaps between interspecific and intraspecific distances were found, suggesting the existence of a distinct barcoding gap. The NJ phylogenetic tree is shown inFigure 3. Distinct clusters corresponding to species were found with high bootstrap support.

    Figure 2 Diagnostic morphological characteristics of S. terebransA1-A5 are uropodal exopods with different numbers of teeth. B is the seventh pereopod with different propodus length.

    The S. terebrans individuals were sorted into seven groups according to their morphological traits, and partial COI sequences of S. terebrans were aligned and compiled. The intraspecific distances ranged from 0.001 to 0.003 within the SS,SW, WW, WL, and LL groups. The intraspecific distance between PL and PS was 0.001 (Table 4). The mean haplotype diversity (h) was 0.555%, and ranged from 0.200% (PL group)to 0.866% (WW group) (Table 5). The highest nucleotide diversity (π) was found in the WW group (0.004), while the lowest was found in the PL group (0.000) (Table 5). Results suggested that there were no mitochondrial genetic variations within S. terebrans.

    Phylogenetic analysis of genus Sphaeroma was performed using NJ and ML methods, which yielded similar results. The NJ tree revealed that the three species of Sphaeroma and one species of Cymodoce formed monophyletic clusters (Figure 3). The nearest relationship was observed between S. retrolaeve and S. serratum, while the most distant relationship was found between S. terebrans and C. fuscina voucher.

    DlSCUSSlON

    The rapid and effective identification of closely related woodborer Sphaeroma species is important for the research andrestoration of eroded mangroves. Identification of S. terebrans based on morphological characteristics alone is weak and, to some extent, ambiguous. Based on morphological characteristics,Some individuals of S. terebrans were previously named S. vastator (Bate, 1866) and S. destructor (Richardson, 1897). In this study, clear evidence was provided for the identification of S. terebrans individuals, which exhibited differences in morphological characteristics. The validity of using the mitochondrial COI gene sequence as a DNA barcode for the identification of genus Sphaeroma was examined, and included three Sphaeroma species, namely, S. terebrans, S. retrolaeve and S. serratum,with C. fuscina voucher (Sphaeromatidae) used as an outgroup. A distinct barcoding gap was found between the intraspecific and interspecific distances in each species. The NJ phylogenetic tree consisted of four distinct clusters, each containing individuals from one species only. These results indicate that the partial mitochondrial COI gene is an effective DNA barcode for the identification of the genus Sphaeroma.

    Table 1 List of sampling localities and morphological differences of S. terebrans

    Table 2 List of COl sequences, GenBank accession numbers, and geographic sources of samples

    Table 3 Pairwise genetic distances (Kimura 2-parameter) of three Sphaeroma species and one Cymodoce species based on COl sequences

    Figure 3 Neighbor-joining phylogenetic tree of individual haplotypes of three species of Sphaeroma and one species of Cymodoce

    Table 4 lntraspecific genetic distances (Kimura 2-parameter) of S. terebrans with morphological differences based on COl sequences

    Table 5 Number of haplotypes, haplotype diversity(h), and nucleotide diversity(π) of different groups

    Individuals of S. terebrans had different numbers of teeth on the uropodal exopod and different lengths of the propodus of the seventh pereopod. These individuals were sorted into seven groups, with each group containing 10 individuals. The genetic distance and nucleotide divergence showed no variation among the different groups. Therefore, these results revealed that the COI gene sequences of individuals with morphological differences were almost no difference. Although Harrison & Holdich (1984) determined that the propodus of the seventh pereopod of subadult males is relatively short, Our investigations showed that the length of the pereopodal propodus in S. terebrans was not necessarily linked with gender. Previous research concluded that cosmopolitan S. terebrans was comprised of more than one species (Baratti et al., 2011,2005), but morphological taxonomic details of S. terebrans were not mentioned. In our research, specimens in China were carefully checked according to morphological characteristics and were assigned into different groups, with molecular methods used for further identification. This combination of morphological taxonomy and molecular divergence should provide results of greater reliable.

    CONCLUSlONS

    In this study, the mitochondrial COI gene was found to be an effective DNA barcode for the identification of Sphaeroma species, whereas the number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod were found to be invalid taxonomic characteristics. The phylogenetic relationships determined in this study will be of use for studying the species composition of Sphaeroma in eroded mangroves in China and for establishing a good foundation for the restoration of mangrove ecosystems.

    Baratti M, Goti E, Messana G. 2005. High level of genetic differentiation in the marine isopod Sphaeroma terebrans (Crustacea Isopoda Sphaeromatidae) as inferred by mitochondrial DNA analysis. Journal of Experimental Marine Biology and Ecology, 315(2): 225-234.

    Baratti M, Filippelli M, Messana G. 2011. Complex genetic patterns in the mangrove wood-borer Sphaeroma terebrans Bate, 1866 (Isopoda,Crustacea, Sphaeromatidae) generated by shoreline topography and rafting dispersal. Journal of Experimental Marine Biology and Ecology, 398(1-2):73-82.

    Bate CS. 1866. II.-Carcinological Gleanings.-No. II. Annals and Magazineof Natural History, 17(97): 24-31.

    Blair D, Waycott M, Byrne L, Dunshea G, Smith-Keune C, Neil KM. 2006. Molecular discrimination of Perna (Mollusca: Bivalvia) species using the polymerase chain reaction and species-specific mitochondrial primers. Marine Biotechnology, 8(4): 380-385.

    Estevez ED. 1978. Ecology of Sphaeroma terebrans Bate, a wood boring isopod, in a Florida mangrove forest. Ph. D. thesis, University of South Florida, Tampa, 1-154.

    Estevez ED, Simon JL. 1975. Systematics and ecology of Sphaeroma(Crustacea: Isopoda) in the mangrove habitats of Florida. In: Proceedings of the International Symposium on Biology and Management of Mangroves. Gainesville: Institute of Food and Agricultural Sciences, University of Florida.

    Fan HQ, Liu WA, Zhong CR, Ni X. 2014. Analytic study on the damages of wood-boring isopod, Sphaeroma, to China mangroves. Guangxi Sciences,21(2): 140-146, 152. (in Chinese)

    Feng YW, Li Q, Kong LF, Zheng XD. 2011. DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genes. Molecular Biology Reports, 38(1):291-299.

    Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1):154-159.

    Harrison K, Holdich DM. 1984. Hemibranchiate sphaeromatids (Crustacea:Isopoda) from Queensland, Australia, with a world-wide review of the genera discussed. Zoological Journal of the Linnean Society, 81(4): 275-387.

    Hebert PDN, Ratnasingham S, de Waard JR. 2003. Barcoding animal life:cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270(S1): S96-S99. John PA. 1970. Observations on the boring activity of Sphaeroma terebrans Spence Bate, a wood boring isopod. Zoologischer Anzeiger, 185(5-6): 379-387.

    Jones DA, Icely JD. 1981. Excirolana bowmani, a new mangrove-boring isopod from Kenya (Isopoda, Cirolanidae). Crustaceana, 40(3): 266-271.

    Kensley B, Schotte M. 1999. New records of isopods from the Indian River Lagoon, Florida (Crustacea: Peracarida). Proceedings of the Biological Society of Washington, 112(4): 695-713.

    Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2): 111-120.

    Knowlton N. 1993. Sibling species in the sea. Annual Review of Ecology and Systematics, 24(1): 189-216.

    Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451-1452.

    Ma HY, Ma CY, Ma LB. 2012. Molecular identification of genus Scylla(Decapoda: Portunidae) based on DNA barcoding and polymerase chain reaction. Biochemical Systematics and Ecology, 41: 41-47.

    Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M, Kirton LG,Meynecke JO, Pawlik J, Penrose HM, Sasekumar A, Somerfield PJ. 2008. The habitat function of mangroves for terrestrial and marine fauna: a review. Aquatic Botany, 89(2): 155-185.

    Nei M. 1987. Molecular Evolutionary Genetics. Columbia: Columbia University Press.

    Perry DM. 1988. Effects of associated fauna on growth and productivity in the red mangrove. Ecology, 69(4): 1064-1075.

    Persis M, Reddy ACS, Rao LM, Khedkar GD, Ravinder K, Nasruddin K. 2009. COI (cytochrome oxidase-I) sequence based studies of Carangid fishes from Kakinada coast, India. Molecular Biology Reports, 36(7): 1733-1740.

    Puillandre N, Strong EE, Bouchet P, Boisselier MC, Couloux A, Samadi S. 2009. Identifying gastropod spawn from DNA barcodes: possible but not yet practicable. Molecular Ecology Resources, 9(5): 1311-1321.

    Rehm A, Humm HJ. 1973. Sphaeroma terebrans: a threat to the mangroves of southwestern Florida. Science, 182(4108): 173-174.

    Richardson H. 1897. Description of a new species of Sphaeroma. Proceedings of the Biological Society of Washington, 11: 105-107.

    Roehrdanz RL. 1993. An improved primer for PCR amplification of mitochondrial DNA in a variety of insect species. Insect Molecular Biology,2(2): 89-91.

    Rozas J, Rozas R. 1999. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics, 15(2): 174-175.

    Schindel DE, Miller SE. 2005. DNA barcoding a useful tool for taxonomists. Nature, 435(7038): 17.

    St?hls G, Vujic A, Pérez-Ba?on C, Radenkovic S, Rojo S, Petanidou T. 2009. COI barcodes for identification of Merodon hoverflies (Diptera,Syrphidae) of Lesvos Island, Greece. Molecular Ecology Resources, 9(6):1431-1438.

    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10): 2731-2739.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24): 4876-4882.

    15 July 2016; Accepted: 08 September 2016

    s: This project was funded by the GEF China Wetlands System Project, Science and Technology Foundation of Macao (045/2010/A) and Special Fund for Marine-Scientific Research in the Public Interest (201305021)

    , E-mail: lsshjr@mail.sysu.edu.cn

    10.13918/j.issn.2095-8137.2016.5.307

    国产精品三级大全| 少妇高潮的动态图| 久久99热6这里只有精品| 成年人黄色毛片网站| 欧美成人a在线观看| 男女视频在线观看网站免费| 久久天躁狠狠躁夜夜2o2o| 色精品久久人妻99蜜桃| 亚洲av熟女| 男插女下体视频免费在线播放| 乱系列少妇在线播放| 国产精品嫩草影院av在线观看 | 淫秽高清视频在线观看| 美女大奶头视频| 一级a爱片免费观看的视频| av在线观看视频网站免费| 亚洲av中文字字幕乱码综合| 韩国av在线不卡| 亚洲最大成人手机在线| 给我免费播放毛片高清在线观看| 日本 欧美在线| 天美传媒精品一区二区| 免费大片18禁| 露出奶头的视频| 搡老妇女老女人老熟妇| 亚洲最大成人手机在线| 亚洲一区高清亚洲精品| 欧美日韩亚洲国产一区二区在线观看| 国产高清三级在线| 亚洲精品乱码久久久v下载方式| 国产欧美日韩一区二区精品| 亚洲国产高清在线一区二区三| 男人舔奶头视频| 88av欧美| 成人特级av手机在线观看| 性色avwww在线观看| x7x7x7水蜜桃| 国产 一区 欧美 日韩| 免费人成在线观看视频色| 尾随美女入室| av女优亚洲男人天堂| 欧美zozozo另类| 国产av不卡久久| 国产精品日韩av在线免费观看| 精品一区二区免费观看| 日本 av在线| 国产蜜桃级精品一区二区三区| 久久亚洲精品不卡| 一a级毛片在线观看| 久久这里只有精品中国| 九九久久精品国产亚洲av麻豆| 国产男人的电影天堂91| 国产蜜桃级精品一区二区三区| 特级一级黄色大片| 国产综合懂色| 日韩欧美国产在线观看| 日本三级黄在线观看| 一级av片app| 人妻久久中文字幕网| 日韩欧美在线二视频| av专区在线播放| 1000部很黄的大片| 久久久久久大精品| 成人二区视频| 变态另类成人亚洲欧美熟女| 国产高清视频在线观看网站| 麻豆成人午夜福利视频| 尾随美女入室| 热99在线观看视频| 嫁个100分男人电影在线观看| 午夜久久久久精精品| 小说图片视频综合网站| 波多野结衣高清作品| 1024手机看黄色片| 波多野结衣巨乳人妻| 男人舔奶头视频| 国产精品精品国产色婷婷| 成年免费大片在线观看| 免费看光身美女| 亚洲成人中文字幕在线播放| 亚洲欧美日韩卡通动漫| 国产 一区 欧美 日韩| 午夜福利在线观看免费完整高清在 | 亚洲人与动物交配视频| 日日摸夜夜添夜夜添av毛片 | 人妻久久中文字幕网| 亚洲色图av天堂| 99热网站在线观看| 男插女下体视频免费在线播放| 淫妇啪啪啪对白视频| 三级国产精品欧美在线观看| 国产黄a三级三级三级人| 国产精品一区www在线观看 | 少妇猛男粗大的猛烈进出视频 | 欧美色视频一区免费| 美女被艹到高潮喷水动态| 中文字幕av成人在线电影| 国国产精品蜜臀av免费| 男人狂女人下面高潮的视频| 一个人看的www免费观看视频| 高清日韩中文字幕在线| 国产精品一区www在线观看 | 色精品久久人妻99蜜桃| 亚洲三级黄色毛片| 精品久久久久久,| 嫩草影院新地址| 一卡2卡三卡四卡精品乱码亚洲| 国产黄片美女视频| 国产高清视频在线观看网站| 97超级碰碰碰精品色视频在线观看| 欧美激情国产日韩精品一区| 一区福利在线观看| 成年人黄色毛片网站| 国产欧美日韩精品一区二区| av中文乱码字幕在线| 日韩欧美免费精品| 天堂影院成人在线观看| 日本免费一区二区三区高清不卡| 国产精品精品国产色婷婷| 婷婷丁香在线五月| 国产精品久久久久久久电影| 国产一区二区亚洲精品在线观看| 日本黄色片子视频| 日日夜夜操网爽| 国产精品久久久久久亚洲av鲁大| 午夜亚洲福利在线播放| 亚洲天堂国产精品一区在线| 久久精品人妻少妇| 国产高清有码在线观看视频| 久久人妻av系列| 亚洲一区二区三区色噜噜| 亚洲精品粉嫩美女一区| 男人狂女人下面高潮的视频| 在线观看免费视频日本深夜| 久久久精品欧美日韩精品| 久久精品国产99精品国产亚洲性色| 91狼人影院| 欧美日韩精品成人综合77777| 一边摸一边抽搐一进一小说| 赤兔流量卡办理| 无遮挡黄片免费观看| 亚洲精华国产精华精| 精品久久久久久久久久免费视频| 亚洲自拍偷在线| 免费人成视频x8x8入口观看| 日本一本二区三区精品| 亚洲精品在线观看二区| 久久午夜福利片| 亚洲久久久久久中文字幕| 日韩一区二区视频免费看| 最新在线观看一区二区三区| 国产欧美日韩精品一区二区| 日本五十路高清| 九九热线精品视视频播放| 在线免费观看不下载黄p国产 | 日韩欧美国产一区二区入口| 露出奶头的视频| 欧美一区二区国产精品久久精品| 国产精品三级大全| 在现免费观看毛片| aaaaa片日本免费| 久久久久久久久久久丰满 | 内地一区二区视频在线| 日韩欧美国产在线观看| 波多野结衣巨乳人妻| 色综合色国产| 久久久午夜欧美精品| 久久国产乱子免费精品| 国产成人福利小说| 成人午夜高清在线视频| 成年人黄色毛片网站| 成人亚洲精品av一区二区| 国产成人a区在线观看| 伊人久久精品亚洲午夜| 欧美区成人在线视频| 欧美bdsm另类| 日本免费a在线| 日本在线视频免费播放| 男女啪啪激烈高潮av片| 天天躁日日操中文字幕| 亚洲国产日韩欧美精品在线观看| avwww免费| 久久午夜亚洲精品久久| 成年版毛片免费区| 国产精品日韩av在线免费观看| 色av中文字幕| 97碰自拍视频| 国产精华一区二区三区| 久久精品国产亚洲av涩爱 | 婷婷精品国产亚洲av在线| 亚洲aⅴ乱码一区二区在线播放| 日本一本二区三区精品| 精品久久久久久久久亚洲 | 日本与韩国留学比较| 久久天躁狠狠躁夜夜2o2o| 日日摸夜夜添夜夜添小说| 五月伊人婷婷丁香| 国产人妻一区二区三区在| 中国美白少妇内射xxxbb| 黄色女人牲交| 成人二区视频| 日韩人妻高清精品专区| 日本 欧美在线| 小蜜桃在线观看免费完整版高清| 男女做爰动态图高潮gif福利片| 亚洲国产色片| 在线观看免费视频日本深夜| 欧美性猛交黑人性爽| 九九爱精品视频在线观看| 在线观看av片永久免费下载| 欧美成人性av电影在线观看| 国产探花在线观看一区二区| 精品一区二区免费观看| 麻豆精品久久久久久蜜桃| 女同久久另类99精品国产91| 亚洲狠狠婷婷综合久久图片| 老师上课跳d突然被开到最大视频| 人人妻,人人澡人人爽秒播| 日韩欧美精品免费久久| 国产探花极品一区二区| 国产亚洲91精品色在线| 在线播放国产精品三级| 日本色播在线视频| 精品无人区乱码1区二区| 国产高清不卡午夜福利| 观看美女的网站| 观看免费一级毛片| 久久精品久久久久久噜噜老黄 | 精品人妻1区二区| 午夜老司机福利剧场| 色5月婷婷丁香| 99热只有精品国产| 蜜桃久久精品国产亚洲av| 久久精品人妻少妇| 精品欧美国产一区二区三| 不卡视频在线观看欧美| 丰满乱子伦码专区| 久久久久久久亚洲中文字幕| 亚洲成人中文字幕在线播放| 无人区码免费观看不卡| 午夜福利在线观看免费完整高清在 | 精品一区二区三区视频在线观看免费| 一夜夜www| 中文字幕久久专区| 日日撸夜夜添| 亚洲一区高清亚洲精品| 麻豆久久精品国产亚洲av| 免费人成视频x8x8入口观看| 亚洲国产日韩欧美精品在线观看| 亚洲国产欧洲综合997久久,| 午夜福利成人在线免费观看| 日本五十路高清| 亚洲最大成人手机在线| 变态另类成人亚洲欧美熟女| 欧美zozozo另类| 看黄色毛片网站| 久久久久久久久大av| 少妇人妻精品综合一区二区 | 岛国在线免费视频观看| 国产精品久久电影中文字幕| 又紧又爽又黄一区二区| 国产精品无大码| 露出奶头的视频| 18禁黄网站禁片午夜丰满| 中文字幕人妻熟人妻熟丝袜美| 内射极品少妇av片p| av天堂在线播放| 国国产精品蜜臀av免费| 亚洲av免费高清在线观看| 亚洲国产精品久久男人天堂| 亚洲国产精品合色在线| 少妇丰满av| 一区二区三区四区激情视频 | 欧美绝顶高潮抽搐喷水| 亚洲av免费在线观看| 美女高潮的动态| 日本黄色视频三级网站网址| 搡老妇女老女人老熟妇| 国产在线男女| 久久久成人免费电影| bbb黄色大片| 婷婷精品国产亚洲av| 成年女人永久免费观看视频| 国产精品永久免费网站| 日韩欧美精品v在线| 国内精品宾馆在线| 国产精品1区2区在线观看.| 国产精品精品国产色婷婷| 国产综合懂色| 亚洲国产精品sss在线观看| 国产欧美日韩一区二区精品| 黄色日韩在线| 午夜亚洲福利在线播放| 小蜜桃在线观看免费完整版高清| 精品午夜福利在线看| 91精品国产九色| 悠悠久久av| 天天躁日日操中文字幕| netflix在线观看网站| 美女黄网站色视频| 一卡2卡三卡四卡精品乱码亚洲| 国产爱豆传媒在线观看| 久久午夜亚洲精品久久| 女同久久另类99精品国产91| 尤物成人国产欧美一区二区三区| 神马国产精品三级电影在线观看| 可以在线观看的亚洲视频| 动漫黄色视频在线观看| 国产亚洲精品久久久com| 亚洲精品一卡2卡三卡4卡5卡| 国产伦人伦偷精品视频| 伊人久久精品亚洲午夜| 最近中文字幕高清免费大全6 | 99久久中文字幕三级久久日本| 校园春色视频在线观看| 欧美三级亚洲精品| 久久中文看片网| eeuss影院久久| 99国产精品一区二区蜜桃av| 日本在线视频免费播放| 欧美一区二区精品小视频在线| 美女xxoo啪啪120秒动态图| 中文字幕免费在线视频6| 久久精品91蜜桃| 俄罗斯特黄特色一大片| 欧美日韩亚洲国产一区二区在线观看| 国产精品国产高清国产av| 日韩中字成人| videossex国产| 一本精品99久久精品77| 国产高潮美女av| 91久久精品国产一区二区三区| 国产中年淑女户外野战色| 国产精品99久久久久久久久| 91av网一区二区| 夜夜爽天天搞| 真实男女啪啪啪动态图| 老熟妇乱子伦视频在线观看| 少妇丰满av| 高清毛片免费观看视频网站| 精品国内亚洲2022精品成人| 午夜福利18| 午夜福利视频1000在线观看| 欧美最新免费一区二区三区| 欧美成人a在线观看| 成人国产综合亚洲| 亚洲aⅴ乱码一区二区在线播放| 国产探花极品一区二区| 日日干狠狠操夜夜爽| 一个人看视频在线观看www免费| 噜噜噜噜噜久久久久久91| 99久久精品一区二区三区| 九色成人免费人妻av| 国产成人a区在线观看| 97超视频在线观看视频| 亚洲在线自拍视频| 国产亚洲91精品色在线| 日韩一区二区视频免费看| 国产黄a三级三级三级人| 免费观看精品视频网站| 有码 亚洲区| 人妻丰满熟妇av一区二区三区| 日本精品一区二区三区蜜桃| 淫妇啪啪啪对白视频| 国产精品人妻久久久影院| 国产精品一区二区免费欧美| 波多野结衣高清作品| 久久久精品大字幕| 色哟哟·www| 看片在线看免费视频| 亚洲国产欧美人成| 18+在线观看网站| 亚洲av日韩精品久久久久久密| 国产av麻豆久久久久久久| 麻豆国产97在线/欧美| 啦啦啦观看免费观看视频高清| 97超视频在线观看视频| 啦啦啦韩国在线观看视频| 亚洲熟妇熟女久久| 麻豆一二三区av精品| 久久久久久久午夜电影| 亚洲午夜理论影院| 免费大片18禁| 国产精品国产高清国产av| 丝袜美腿在线中文| 麻豆成人av在线观看| 久久天躁狠狠躁夜夜2o2o| 麻豆成人av在线观看| www.www免费av| 国产精品亚洲一级av第二区| 精品欧美国产一区二区三| 免费在线观看影片大全网站| 国产成人av教育| 亚洲精品亚洲一区二区| 性欧美人与动物交配| 国产 一区精品| 亚洲精品456在线播放app | 成人av在线播放网站| 亚洲成人久久性| 人妻少妇偷人精品九色| 亚洲av中文av极速乱 | 一区福利在线观看| 亚洲天堂国产精品一区在线| 亚洲熟妇中文字幕五十中出| 成人欧美大片| 极品教师在线免费播放| 国产毛片a区久久久久| 欧美成人a在线观看| 欧美日韩综合久久久久久 | 日韩国内少妇激情av| 欧美zozozo另类| 亚洲经典国产精华液单| 亚洲最大成人手机在线| 嫩草影视91久久| 久久精品国产亚洲网站| 少妇被粗大猛烈的视频| 亚洲天堂国产精品一区在线| 亚洲熟妇熟女久久| 韩国av一区二区三区四区| 搡老妇女老女人老熟妇| 在线a可以看的网站| 亚洲va在线va天堂va国产| 男人舔奶头视频| x7x7x7水蜜桃| eeuss影院久久| 国内久久婷婷六月综合欲色啪| 国产精品国产三级国产av玫瑰| 亚洲三级黄色毛片| 国产精品自产拍在线观看55亚洲| 伊人久久精品亚洲午夜| 午夜老司机福利剧场| 色哟哟哟哟哟哟| 国产成人av教育| 亚洲自拍偷在线| 国产精品久久电影中文字幕| 88av欧美| 精品国内亚洲2022精品成人| 俄罗斯特黄特色一大片| 成年版毛片免费区| 久久午夜亚洲精品久久| 午夜免费成人在线视频| 99热这里只有精品一区| 深夜精品福利| 日韩欧美在线乱码| 欧美激情在线99| 九九在线视频观看精品| 日韩 亚洲 欧美在线| 无遮挡黄片免费观看| 日韩欧美在线二视频| 美女高潮喷水抽搐中文字幕| 看片在线看免费视频| 少妇裸体淫交视频免费看高清| 欧美激情久久久久久爽电影| 久久国内精品自在自线图片| 成人国产一区最新在线观看| 欧美成人免费av一区二区三区| 婷婷六月久久综合丁香| 成人综合一区亚洲| 免费看美女性在线毛片视频| 国产黄片美女视频| 天堂av国产一区二区熟女人妻| 国产一区二区亚洲精品在线观看| 久久精品国产亚洲av涩爱 | 亚洲最大成人av| 亚洲欧美日韩东京热| 97热精品久久久久久| 人妻夜夜爽99麻豆av| 韩国av在线不卡| 国产不卡一卡二| 国产aⅴ精品一区二区三区波| 国产一区二区激情短视频| 亚洲,欧美,日韩| 性插视频无遮挡在线免费观看| 亚洲国产高清在线一区二区三| 国产麻豆成人av免费视频| 亚洲欧美日韩无卡精品| 国产又黄又爽又无遮挡在线| 色综合站精品国产| 婷婷亚洲欧美| 最近在线观看免费完整版| 久久久午夜欧美精品| 熟妇人妻不卡中文字幕| 高清av免费在线| 欧美人与善性xxx| 97热精品久久久久久| 欧美精品人与动牲交sv欧美| 久久久久久久大尺度免费视频| 七月丁香在线播放| 免费看不卡的av| 精品国产一区二区三区久久久樱花 | 亚洲精品国产av蜜桃| 各种免费的搞黄视频| 国产精品人妻久久久久久| 91在线精品国自产拍蜜月| 国产精品久久久久久久电影| 麻豆精品久久久久久蜜桃| 国产精品av视频在线免费观看| 精品久久久噜噜| 国产精品女同一区二区软件| 国产av码专区亚洲av| 国产中年淑女户外野战色| 国内揄拍国产精品人妻在线| h视频一区二区三区| 久久久久久久精品精品| 成年美女黄网站色视频大全免费 | 一区二区三区乱码不卡18| 在线观看av片永久免费下载| 国产91av在线免费观看| 少妇的逼好多水| 日韩,欧美,国产一区二区三区| 毛片女人毛片| 国产精品福利在线免费观看| av黄色大香蕉| 我要看日韩黄色一级片| 国产男女超爽视频在线观看| 秋霞在线观看毛片| 亚洲国产精品专区欧美| 少妇的逼水好多| 男男h啪啪无遮挡| 国产永久视频网站| 久久久久久人妻| 国产精品免费大片| 国产精品一区二区三区四区免费观看| 亚洲国产精品成人久久小说| 精品国产乱码久久久久久小说| 青春草视频在线免费观看| 亚洲精品久久午夜乱码| 亚洲av日韩在线播放| 美女视频免费永久观看网站| 国产亚洲91精品色在线| 亚洲在久久综合| 99久国产av精品国产电影| 亚洲欧美日韩无卡精品| 黄色欧美视频在线观看| 日韩成人av中文字幕在线观看| 午夜福利在线观看免费完整高清在| 妹子高潮喷水视频| 国产精品一及| 国产成人一区二区在线| 国产亚洲精品久久久com| 亚洲欧美日韩无卡精品| 国产色婷婷99| 国精品久久久久久国模美| 欧美精品一区二区大全| 内地一区二区视频在线| 男女国产视频网站| 99精国产麻豆久久婷婷| 成年免费大片在线观看| 日韩中文字幕视频在线看片 | 性色avwww在线观看| 只有这里有精品99| 国产 一区 欧美 日韩| 一级毛片久久久久久久久女| 肉色欧美久久久久久久蜜桃| 婷婷色av中文字幕| 大片电影免费在线观看免费| 伦理电影大哥的女人| 狂野欧美白嫩少妇大欣赏| 精品一区二区免费观看| 国产伦理片在线播放av一区| 2021少妇久久久久久久久久久| 91aial.com中文字幕在线观看| 成人美女网站在线观看视频| 亚洲精品久久午夜乱码| 欧美精品一区二区大全| 久久精品国产a三级三级三级| 舔av片在线| 免费观看在线日韩| 国产精品蜜桃在线观看| 97在线视频观看| 免费av不卡在线播放| 亚洲精品成人av观看孕妇| 十分钟在线观看高清视频www | 成人亚洲精品一区在线观看 | 午夜福利在线观看免费完整高清在| 国产精品久久久久久久久免| 色哟哟·www| 久久久久久久久久人人人人人人| 99热全是精品| 国产欧美另类精品又又久久亚洲欧美| 免费大片黄手机在线观看| 欧美xxxx性猛交bbbb| av免费在线看不卡| 伊人久久精品亚洲午夜| 国产美女午夜福利| 久久久成人免费电影| 国产伦在线观看视频一区| 大香蕉97超碰在线| 少妇丰满av| 亚洲欧美成人精品一区二区| 99久国产av精品国产电影| 99热国产这里只有精品6| 久久久欧美国产精品| 免费观看的影片在线观看| 国产一区二区在线观看日韩| 久久久欧美国产精品| 大香蕉97超碰在线| 日韩精品有码人妻一区| 欧美老熟妇乱子伦牲交| 日韩亚洲欧美综合| 草草在线视频免费看| 国产毛片在线视频| 国产精品嫩草影院av在线观看| 视频区图区小说| 久久av网站| 亚洲欧美中文字幕日韩二区| 99热网站在线观看| 欧美激情国产日韩精品一区| 精品人妻熟女av久视频| 十分钟在线观看高清视频www | 一级毛片黄色毛片免费观看视频| 国产精品蜜桃在线观看| 日韩强制内射视频| 国产成人精品久久久久久| 久久久久久人妻|