• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Relationship between the Winter Eurasian Teleconnection Pattern and the Following Summer Precipitation over China

    2016-11-14 05:56:08JunhuZHAOLiuYANGBohuiGUJieYANGandGuolinFENG
    Advances in Atmospheric Sciences 2016年6期

    Junhu ZHAO,Liu YANG,Bohui GU,Jie YANG,and Guolin FENG,,3

    1Laboratory for Climate Studies,National Climate Center,China Meteorological Administration,Beijing 100081

    2Department of Physical Science and Technology,Yangzhou University,Yangzhou 225002

    3College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000

    4Jiangsu Provincial Climate Center,Nanjing 210008

    On the Relationship between the Winter Eurasian Teleconnection Pattern and the Following Summer Precipitation over China

    Junhu ZHAO1,Liu YANG2,Bohui GU*3,Jie YANG4,and Guolin FENG1,2,3

    1Laboratory for Climate Studies,National Climate Center,China Meteorological Administration,Beijing 100081

    2Department of Physical Science and Technology,Yangzhou University,Yangzhou 225002

    3College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000

    4Jiangsu Provincial Climate Center,Nanjing 210008

    The Eurasian teleconnection pattern(EU)is an important low-frequency pattern with well-known impacts on climate anomalies in Eurasia.The difference of low-level v-winds in several regions in the Eurasian mid–high latitudes is defined as the EU index(EUIV).In this study,the relationship between the winter EUIVand precipitation in the following summer over China is investigated.Results show that there is a significant positive(negative)correlation between the winter EUIVand the following summer precipitation over North China(the Yangtze River–Huaihe River basins).Meanwhile,an interdecadal variability exists in the interannual relationship,and the correlation has become significantly enhanced since the early 1980s. Thus,the proposed EUIVmay have implications for the prediction of summer precipitation anomalies over China.In positive winter EUIVyears,three cyclonic circulation anomalies are observed—over the Ural Mountains,the Okhotsk Sea,and the subtropical western North Pacific.That is,the Ural blocking and Okhotsk blocking are inactive,zonal circulation prevails in the mid–high latitudes,and the western Pacific subtropical high tends to be weaker and locates to the north of its normal position in the following summer.This leads to above-normal moisture penetrating into the northern part of East China,and significant positive(negative)precipitation anomalies over North China(the Yangtze River–Huaihe River basins),and vice versa.Further examination shows that the SST anomalies over the Northwest Pacific and subtropical central North Pacific may both contribute to the formation of EUIV-related circulation anomalies over the western North Pacific.

    Eurasian teleconnection,summer precipitation,North China,Yangtze River–Huaihe River basins

    1.Introduction

    Many studies have been conducted regarding the influences of monsoon circulation on the weather and climate of East Asia andChinasincethe 20thcentury(Guo,1983;Ding, 1994;Shi and Zhu,1996;Wang,2001;Li and Zeng,2002; Zhang et al.,2003;Zhang and Guo,2005).However,the weatherandclimateofChina arenotonlyaffectedbytropical andsubtropicalsystems,but arealso closelyrelated to the extratropicalatmosphericcirculationintheNH(ZhangandTao, 1998).The East Asian summer monsoon system clearly reveals the locations and intensities of the interactions between the cold air activities from the mid–high latitude systems and the warm and moist air flows brought by the subtropical system(Tao and Chen,1987),which are the main reasons for the location and intensity variation of the summer rain belt inChina.

    In fact,in an early study of the mid–high latitude circulations in the NH by Wallace and Gutzler(1981),it was suggested that there are five significant teleconnection patterns in the 500 hPa geopotential height field in the NH winter: the Pacific–North American(PNA)pattern,the eastern Atlantic pattern,the western Atlantic pattern,the western Pacific pattern,and the Eurasian(EU)pattern.Barnston and Livezey(1987)furtherconfirmedthe existenceofthe EU pattern based on rotated EOF analysis(REOF)of the monthly mean 700 hPa geopotential height field.Hoskins and Karoly (1981)demonstrated the great-circle theory to interpret the dynamics mechanism of the teleconnection patterns.

    Among these five significant patterns,the EU pattern is an important low-frequency pattern with well-known impacts on the atmospheric circulation and climate anomalies in the Eurasian region(Hsu and Wallace,1985;Barnston and Livezey,1987).Li and Chou(1990)demonstrated that the EU pattern is a major factor influencing the winter precipita-tion over the middle and lower reaches of the Yangtze River. In a study on the relationship between the Arctic Oscillation and the East Asian winter monsoon(EAWM)(Gong et al., 2001),it was determined that the EU pattern makes a significant contribution to the EAWM system,and its contribution to the Siberian high was found to be 36%.In addition,it was also pointed out that when the EU index is positive,the East Asian air temperatureis lower.Shi andZhu(1996)foundthat in cases of strong EAWM,China tends to be cold and dry in winter,and the atmospheric circulation is characterized by a strong western Pacific pattern and weak EU pattern.Several studies have pointed out that the daily variation of the EU pattern is responsible for climate anomalies over China and Korea,where abnormal cold/warm events are often dependent on the different phases of the EU pattern(Sung et al.,2009;Liu and Chen,2012;Zuo and Xiao,2013;Wang and Zhang,2015).Positive EU phases are accompanied by strong northerly wind and a sudden descent of temperaturein South China and Korea,while the probability distribution of cold/warmeventsis dependenton the phaseof the EU pattern (Sung et al.,2009).Wang et al.(2010)confirmed that the atmospheric circulation anomalies related to the Ural blocking (UB)are associated with the Eurasian wave train from west to east,and exhibit an enhancing influence on the East Asian winter climate anomalies.

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    Moreover,the pre-winter EU pattern also has great impactsonthefollowingsummerclimateanomaliesoverChina. Sun and He(2004)used the SVD method to reveal the influencesofpre-winterEurasiancirculationanomaliesonthefollowing summer precipitation over China.The pre-winter circulationof the Eurasian mid–highlatitudes bears a veryclose coupling relationship with the following summer precipitation over China.It was also determined that the pre-winter circulation anomalies may influence the Eurasian summer circulation,as well as the precipitationanomaliesoverChina, through a half-year rhythm relationship.Recently,when the“Conceptual Prediction Model for the Three Rainfall Patterns”in the summer of eastern China was reconstructed by Zhao and Feng(2014),the winter EU index(EUIV)was defined according to the difference of the 850 hPa v-wind anomalies in several key regions over the Eurasian mid–high latitudes.It was found that EUIVcan be used effectively to judge whether or not the main following summer rainbelt would locate in northern China;namely,a north rainbelt pattern.However,the relationship between the winter EU pattern and the following summer precipitation has not been comprehensively examined.In addition,obvious interdecadal variability took place in the global oceans and atmospheric circulations in the late 1970s with global warming(Wang,1995;Guilderson and Schrag,1998;Li et al., 2004;IPCC,2013),and the relationship between regional climates and their major factors of influence has changed (Wang,2002;Gao et al.,2006;Wang and He,2012).So, has the relationship between the winter EU pattern and the following summer precipitation undergone change?

    Understanding the impact of the EU pattern on climate anomalies over East Asia is important both for accurate weather forecasts and short-term climate forecasts.As mentioned above,the winter EU pattern can impact upon the concurrent weather and climate in East Asia.Plus,it also has“climate effects”on the subsequent climate over China. However,the relationship between the winter EU pattern and precipitation in the following summer over China is still not clear.The primary objectives of this study,therefore,are to discuss the relationship between the winter EU pattern and the following summer precipitation over China.

    The remainder of this paper is organized as follows:Section 2 describes the data and methods used in this study.The calculation,temporalevolutionofdifferentdefinedEUIs,and vertical structure of the EU pattern are shown in section 3. The relationship between the winter EUIVand the following summer precipitation over China is illustrated in section 4, followed in section 5 by a discussion of the summer atmospheric circulation and SST associated with the winter EUIV. A summary and conclusions are given in section 6.

    2.Data and methodology

    The main datasets employed in this study are:(1) monthly average precipitation data of 160 stations from the China Meteorological Administration for the period 1968–2013,and monthly global precipitation data—gridded at a resolution of 2.5°×2.5°—from the GPCP for the period 1979–2013(Huffman et al.,1997;Adler et al.,2003);(2) monthly mean circulation data,gridded at a resolution of 2.5°×2.5°,fromthe NCEP–NCAR reanalysis(Kalnayet al., 1996)[note,however,that because the quality of the NCEP–NCAR reanalysis data over Asia may be low prior to 1968 (Yang et al.,2002;Wu et al.,2005),only the information since 1968 is analyzedin this study];(3)SST data,griddedat a resolution of 2°×2°,from ERSST.v3b(Smith et al.,2008); (4)the Ni?o3.4 SST index from the CPC.

    The time period analyzed in this study is 46 winters from 1967/1968 to 2012/2013.Wintertime means are constructed from the monthly means by averagingthe data of December–January–February(DJF).Here,the winter of 1968 refers to the 1967/1968 winter.Springtime means are constructed from the monthly means by averaging the data of March–April–May(MAM),and summertime means are constructed from the monthly means by averaging the data of June–July–August(JJA).

    Correlation analysis,composite analysis,and linear regression are used to investigate the relationship between the winter EU pattern and the following summer precipitation over China.

    3.Definition and climate characteristics of the EU index

    In previous studies,the definitions and calculation methods of the EUI are different.In brief,they include two types. The first method uses the differences of the 500 hPa geopotential height anomaly field at a few key points(Wallace and

    whereZ*representsthe normalizedseasonal average500hPa geopotential height anomaly.

    The EUI is defined by Zhao and Feng(2014)according to the significant area of the anomalies in the 850 hPa v-wind anomalyfield in a north-typerain year overChina.In Eq.(2), V′represents the 850 hPa v-wind anomaly: Gutzler,1981;Sung et al.,2009).The second method uses the corresponding time coefficients after the REOF on the Eurasian mainlandheightfield of the NH troposphere(Horel, 1981;Hsu and Wallace,1985;Barnston and Livezey,1987). In addition,the difference of low-level(850 hPa)v-winds in several regions in the Eurasian mid–high latitudes is defined as the EU index(EUIV)by Zhao and Feng(2014).In order to compare the research results,the three types of definition methods proposed by Wallace and Gutzler(1981),Barnston and Livezey(1987)and Zhao and Feng(2014)are adopted to calculate the winter EUI from 1968 to 2013,and these calculation methods are shown as follows:

    The definitionof the EUI introducedby Wallace and Gutzler(1981)is shown in Eq.(1),and denoted as EUIWG:

    A REOF decomposition was carried out by Barnston and Livezey(1987)on the 700 hPa geopotential height anomaly field in the extratropical NH(20°–90°N,0°–360°).For unification,the seasonal average 500 hPa geopotential height anomaly fields are used here for the REOF decomposition, and the time coefficient corresponding to the sixth mode is defined as the EUI(denoted as EUIBL).The variance contribution of the sixth mode was 6.1%,and the accumulative variance contribution of the leading six modes reached 76.3%.The spatial distribution types of the leading five modes are similar to the PNA,North Atlantic Oscillation, and other teleconnection patterns.The mode with the first east–west wave trains is the sixth mode over Eurasia,which is similar to the EU pattern defined by Wallace and Gutzler (1981).

    Figure 1 shows the temporal evolution of the three winter EUIs during 1968–2013.The interannual variability of the three indices is relatively consistent.The correlation coefficient between EUIWGand EUIBLis 0.77,that between EUIWGand EUIVis 0.76,and that between EUIBLand EUIVis 0.72,all abovethe 99.9%confidencelevel.Throughpower spectrum analysis of the three indices(figure not presented), it is found that the quasi-three-year interannual variation period only exists in EUIBL,while the interdecadal variation period is not significant in the three indices.

    From the spatial distribution of the correlation coefficient between the three winter EUIs and the simultaneous 500 hPa geopotential height field(Fig.2),it can be seen that all three indicesshowan obviouszonalteleconnectionpatternofwave trains over Eurasia,of which the 500 hPa geopotential height anomaly fields in Western Europe,the Urals,and the coast of East Asia present significant negative–positive–negative correlation areas.The three activity centers of the winter EU pattern defined by Wallace and Gutzler(1981)are located at(55°N,20°E),(55°N,75°E)and(40°N,145°E),respectively.The three activity centers are all located in the centers of the three high correlation regions in the EUIWG’s correlation diagram(Fig.2a).Moreover,there are another two positive correlation centers in eastern North America and the northern North Atlantic.In the EUIBLcorrelation diagram (Fig.2b),there are two larger positive correlation areas in eastern North America and the northern North Atlantic,of which the positive correlation is very significant.However, the negative correlation area is smaller in Western Europe, where the significance of the negative correlation is weaker than the EUIWG.In the EUIVcorrelation diagram(Fig.2c),therearetwo largerpositivecorrelationareasin easternNorth America and the northern North Atlantic,of which the positive correlation is very significant.The negative correlation area in Western Europeis largerand more significantthan the EUIBL.The spatiotemporalcharacteristics of the three winter EUIs are highly consistent,and the EUIVshows the best relationship with the following summer precipitation over China among the three indexes from our calculation and analysis. Therefore,we choose the EUIVto analyze the relationship betweenthewinterEUpatternandthefollowingsummerprecipitation over China.

    Fig.1.The winter EUI(bars)and cumulative index(lines)from 1968 to 2013: (a)EUIWG;(b)EUIBL;(c)EUIV.

    Fig.2.Correlation between the EUI and 500 hPa height field (20°–90°N,0°–360°)in winter(DJF-averaged)from 1968 to 2013:(a)EUIWG;(b)EUIBL;(c)EUIV.The shading from light to dark exceed the 95%,99%and 99.9%confidence level,respectively.The contour interval is 0.2.The black dots are the three activity centers of the EU teleconnection pattern defined by Wallace and Gutzler(1981).

    4.Winter EU pattern and summer precipitation over China

    Figure 3 shows the distributions of the correlation coefficient between the EUIVand the following summer precipitation over China.There is a positive correlation in North ChinaandanegativecorrelationintheYangtzeRiver–Huaihe River basins during 1968–2013(Fig.3a).Plus,the areas and stationsabovethe95%confidencelevelincreasesignificantly during 1981–2013(Fig.3b)compared with during 1968–2013.According to Fig.3b,two areas with a high density of stations above the 95%confidencelevel are selected.They are:eastern Xinjiang–western North China[hereinafter referred to simply as“North China”;(37°–47°N,85°–110°E); 14 stations],and the Yangtze River–Huaihe River basins [(30°–34°N,110°–125°E);15 stations].The area-averaged summer precipitation of the above two regions is represented by RNCand RYH,respectively.EUIVhas a weak positive correlation(correlation coefficient of 0.18)with RNC,and a weak negativecorrelation(-0.10)with RYHduring1968–81. Whereas,EUIVhas a significant positive correlation(0.42, exceeding the 99%confidence level)with RNC,and a significant negative correlation(-0.56,exceeding the 99.9%confidence level)with RYHduring 1981–2013.To further confirm that the relationshipbetween EUIVand summer precipitation has changed,Fig.4 shows the 21-year moving correlation between the RNC,RYH,and EUIV.The EUIVand RNCshow positive correlation,with the correlation slowly weakening after the mid-1980s,and strengthening recently(Fig.4a). The correlation coefficient between the EUIVand RYHis relatively weak before the early 1980s,but it increases significantly after the mid-1980s(Fig.4b).

    In the early 1980s,Liao et al.(1981)classified the summer rain-belt of eastern China into three patterns(“Three Rainfall Patterns”),which are respectively described as follows:Pattern I is the northern pattern,of which the main rain-beltis locatedin the YellowRiver basinandthe regionto the north;Pattern II is the central pattern,of which the main rain-belt is located between the Yellow River and Yangtze River;and Pattern III is the southern pattern,of which the main rain-beltis locatedin the YangtzeRiverbasin or regions south of the Yangtze River.Figure 5 shows the relationship between the winter EUIVand the“Three Rainfall Patterns”in the summer of eastern China during 1981–2013.There arenine years in which the EUIVis greater than 2.With the exception of 2000 and 2002,all of the other seven years belong to Pattern I.Also,there are 17 years with an EUIVless than 0,and only one year belongs to Pattern I(1994).There are nine years for which the EUIVis less than-2,all of which are PatternII or III,andnoneis Pattern I.Generallyspeaking, the EUIVcould be used to effectively predict Pattern I years. The years for which the EUIVis greater than 2(1981,1985, 1988,1992,1995,2000,2002,2004,2012)and less than-2 (1982,1989,1991,1996,1997,1998,2003,2007,2008)are selected for composite analysis.

    Fig.3.Correlation between the winter EUIVand the following summer(JJA-averaged)precipitation over China during (a)1968–2013 and(b)1981–2013.The black dots indicate the 95%confidence level.

    Fig.4.21-year moving correlation between the EUIVand(a)RNCand(b)RJH.The solid(dotted)line in(b)indicates the 95%(90%)confidence level.

    Fig.5.The winter EUIVand“Three Rainfall Patterns”in the summer of eastern China from 1981 to 2013.The black(green)dotted line indicates EUIVgreater than 2(lesser than-2).

    Figure 6 shows the composite anomalies of precipitation insummerfor+EUIVand-EUIVyears,andtheirdifference. For the+EUIVcomposite,a“plus–minus–plus–minus–plus”anomaly wave train is apparent from eastern Kazakhstan–western Xinjiang,northeastern Xinjiang–western Mongolia,and North China and the Yangtze River–Huaihe River basins to the Philippine Sea basin,of which the anomaly is significantly positive in North China,but significantly negative in the Yangtze-Huaihe River basin(Fig.6a).For the-EUIVcomposite,a“minus–plus–minus–plus–minus”anomaly wave train is apparent from eastern Kazakhstan–western Xinjiang,western Inner Mongolia,and North China and the Yangtze River–Huaihe River basins to the Philippine Sea basin.Significantly positive anomalies are present in the Yangtze–Huaihe River basin(Fig.6b).From the difference distribution between+EUIVand-EUIVyears,the differences among the above five areas are very significant.Therefore,the winter EU pattern has an extra-seasonal connection withthe followingsummerprecipitationinChinaandthesurrounding areas.

    5.Summer atmospheric circulation and SST anomalies in association with the winter EUIV

    To explain the above-mentioned relationships between the winter EUIVand the following summer precipitation anomalies,we first show theanomaliesofgeopotentialheight at 500 hPa and winds at 850 hPa in the summer,obtained as regression upon the winter EUIV(Fig.7).Significantly negative geopotential height(Fig.7a)and cyclonic circulation (Fig.7b)anomalies exist over the Ural Mountains,Okhotsk Sea and the subtropical western North Pacific in the following summer.That is,in positive winter EUIVyears,the UB and Okhotsk blocking(OB)are inactive,zonal circulation prevails in the mid–high latitudes,and the western Pacific subtropical high(WPSH)tends to be weaker and locates to the north of its normal position in the following summer. This leads to above-normal moisture penetrating into the northern part of East China.As a result,there are significant positive(negative)precipitation anomalies over North China (the Yangtze River–Huaihe River basins).In negative winter EUIVyears,theUB andOB are active,meridionalcirculation prevails in the mid–high latitudes,and the WPSH tends to be stronger and locates to the south of its normal position in the following summer.As a result,there are significant positive precipitationanomaliesoverthe YangtzeRiver–HuaiheRiver basins.Theseresultsareapparentviacompositeanomaliesof 500 hPa geopotential height and 850 hPa wind in summer for winter+EUIVand-EUIVyears,and their differences(figure not presented).

    Fig.6.Composite of the following summer(JJA-averaged)precipitation anomaly percentage in East Asia under the(a)positive and(b)negative winter EUIV,and the(c)composite difference between(a)and(b).The black dots indicate the 95% confidence level.

    Fig.7.Anomalies of the following summer(JJA-averaged)(a)500 hPa geopotential height (gpm)and(b)850 hPa winds(m s-1)regressed upon the winter EUIV.The dark and light shading in(a)indicates that the anomalies are significantly different from zero at the 5% and 10%level,respectively.The dark and light shading in(b)indicates that the u-wind anomalies are significant at the 95%and 90%confidence level,respectively.The contour interval in(a)is 2 gpm.

    To help explain the summer circulation anomalies in association with the winter EUIV,the correlations between the winter EUIVand SST are shown in Fig.8.There are significant negative(weak positive)correlations in the western North Pacific and subtropical central North Pacific(western Pacific)between the DJF EUIVand DJF SST(Fig.8a).Furthermore,the correlation distribution is very much like a La Ni?a pattern.The correlation between the DJF EUIVand MAM SST(Fig.8b)is similar to that of Fig.8a,but there is a significant positive correlation in the western Pacific warm pool(WPWP)region,and the negative correlations in the western North Pacific become more significant.We define the SST anomaly(SSTA)difference in the MAM WPWP region(5°–20°N,115°–130°E)and northwestern North Pacific (45°–55°N,150°E–165°W)as the West Pacific SST zonal difference index(WPZDI).The correlation coefficient between the EUIVand WPZDI is 0.55,exceeding the 99%confidence level,and the correlation between the DJF EUIVand JJA SST(Fig.8c)is insignificant.

    We further discuss the atmospheric circulation anomalies in association with the MAM SSTA.Figure 9 displays the JJA 850 hPa wind anomalies obtained by regression on the MAM Ni?o3.4(multiplied by-1.0)(Fig.9a)and WPZDI (Fig.9b).A significantly cyclonic circulation anomaly is observed to control the subtropical western North Pacific,and an anticyclonic circulation anomaly exists over the Japanese islands and surrounding ocean(Fig.9a).That is,in negative MAM Ni?o3.4 years(like La Ni?a years),the WPSH tends to be weaker and locates to the north of its normal position in the following summer.From the MAM WPZDI-related circulation anomalies(Fig.9b),a cyclonic circulation anomaly is also observed to control the subtropical western North Pacific,and an anticyclonic circulation anomaly exists over the Japanese islands and surrounding ocean.Also,these circulation anomalies are very similar to the EUIV-related circulation anomalies(Fig.7b).Therefore,SSTAs over the north-western Pacific and subtropical central North Pacific may both contribute to the formation of EUIV-related circulation anomalies over the western North Pacific.

    Fig.8.Correlation between the DJF EUIVand(a)DJF SST,(b)MAM SST,and (c)JJA SST during 1981–2013.The dark and light shading indicates the 95% and 90%confidence level,respectively.And the solid(dotted)lines indicate the positive(negative)values.The contour interval is 0.1.

    6.Discussion and conclusion

    This paper examines the relationship between the winter EU pattern and the following summer precipitation over China using NCEP–NCAR,GPCP,and Chinese 160-station data for the period 1968–2013.The difference of low-level (850 hPa)v-winds in several regions in the Eurasian mid–high latitudes is defined as the EUIVby Zhao and Feng (2014).The results show that there is a significant positive (negative)correlation between the winter EUIVand the following summer precipitation over North China(the Yangtze River–Huaihe River basins).Meanwhile,an interdecadal variability exists in the interannual relationship,and the correlation has become significantly enhanced since the early 1980s.Thus,the proposed EUIVmay have implications for thepredictionofsummerprecipitationanomaliesintheabove regions.

    In positive winter EUIVyears,the UB and OB are inactive,zonal circulation prevails in the mid–high latitudes, and the WPSH tends to be weaker and locates to the north of its normal position in the following summer.This leads to above-normal moisture penetrating into the northern part of East China.As a result,there are significant positive(negative)precipitation anomalies over North China(the Yangtze River–Huaihe River basins),and vice versa.Our present study shows that the winter EU pattern bears a close association with the following summer precipitation over China via key components of the East Asian summer monsoon system,such as the UB,OB and WPSH.Previous studies have demonstrated that atmospheric internal dynamic processes, including the Pacific–Japan or East Asia–Pacific wave train from the tropics(Nitta,1987;Huang and Sun,1992)and the“silk road”wave train from the mid–high latitudes in the NH (Enomoto et al.,2003;Enomoto,2004),can exert substantial influence the interannualvariability of WPSH.Further examination shows that the SSTA over the northwestern Pacific and subtropical central North Pacific may both contribute to the formation of EUIV-related circulation anomalies over the western North Pacific.Hence,the EUIVcould be usedas an effective predictor of summer precipitation anomalies in North China and the Yangtze River–Huaihe River basins. However,the extra-seasonal mechanism of influence of the winter EU on the following summer precipitation over China requires further study.

    Fig.9.Anomalies of the following summer 850 hPa winds(m s-1)regressed upon the MAM(a)-1.0×Ni?o3.4 and(b)West Pacific SSTzonal difference index(WPZDI)during 1981–2013.The dark and light shading indicates that the u-wind anomalies are significant at the 95%and 90%confidence level,respectively.

    Acknowledgements.We thank the two anonymous reviewers for their valuable comments and suggestions,which helped to improve the paper.This study was jointly supported by the National Natural Science Foundation of China(Grant Nos.41505061, 41530531 and 41405092)and the National Basic Research Program of China(Grant Nos.2012CB955902 and 2013CB430204)

    REFERENCES

    Adler,R.F.,and Coauthors,2003:The Version-2 Global Precipitation Climatology Project(GPCP)monthly precipitation analysis(1979–present).J.Hydrometeor.,4,1147–1167.

    Barnston,A.G.,and R.E.Livezey,1987:Classification,seasonality and persistence of low-frequency atmospheric circulation patterns.Mon.Wea.Rev.,115,1083–1126.

    Ding,Y.H.,1994:Summer monsoon rainfall and its regional characteristics in China.Asian Monsoon.China Meteorological Press,76–83.(in Chinese)

    Enomoto,T.,2004:Interannual variability of the Bonin high associated with the propagation of Rossby waves along the Asian jet.J.Meteor.Soc.Japan,82,1019–1034.

    Enomoto,T.,B.J.Hoskins,and Y.Matsuda,2003:The formation mechanism of the Bonin high in August.Quart.J.Roy. Meteor.Soc.,129,157–178.

    Gao,H.,Y.G.Wang,and J.H.He,2006:Weakening significance of ENSO as a predictor of summer precipitation in China. Geophys.Res.Lett.,33,L09807.

    Gong,D.Y.,S.W.Wang,and J.H.Zhu,2001:East Asian winter monsoon and Arctic oscillation.Geophys.Res.Lett.,28, 2073–2076.

    Guilderson,T.P.,D.P.Schrag,1998:Abrupt shift in subsurface temperatures in the tropical Pacific associated with changesin El Ni?o.Science,281,240–243.

    Guo,Q.Y.,1983:The summer monsoon intensity index in East Asia and its variation.Acta Geographica Sinica,3,207–217. (in Chinese)

    Horel,J.D.,1981:A rotated principal component analysis of the interannual variability of the northern hemisphere 500 mb height field.Mon.Wea.Rev.,109,2080–2092.

    Hoskins,B.J.,and D.J.Karoly,1981:The steady linear response of a spherical atmosphere to thermal and orographic forcing. J.Atmos.Sci.,38,1179–1196.

    Hsu,H.H.,and J.M.Wallace,1985:Vertical structure of wintertime teleconnection patterns.J.Atmos.Sci.,42,1693–1710.

    Huang,R.H.,and F.Y.Sun,1992:Impacts of the tropical Western Pacific on the East Asian summer monsoon.J.Meteor.Soc. Japan,70,243–256.

    Huffman,G.J.,and Coauthors,1997:The Global Precipitation Climatology Project(GPCP)combined precipitation dataset. Bull.Amer.Meteor.Soc.,78,5–20.

    IPCC,2013:Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Boschung et al.,Eds.,Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA,1535 pp.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77,437–471.

    Li,C.Y.,J.H.He,and J.H.Zhu,2004:A review of decadal/interdecadal climate variation studies in China.Adv. Atmos.Sci.,21,425–436,doi:10.1007/BF02915569.

    Li,J.P.,and Q.C.Zeng,2002:A unified monsoon index.Geophys. Res.Lett.,29,115-1–115-4,doi:10.1029/2001GL013874.

    Li,W.J.,and J.F.Chou,1990:Relation between monthly mean circulation in the Northern Hemisphere and the summer precipitation in the middle and lower reaches of Changjiang River.Scientia Meteorologica Sinica,10,139–146.(in Chinese)

    Liao,Q.S.,G.Y.Chen,and G.Z.Chen,1981:Collection of Long Time Weather Forecast.China Meteorological Press,103–114.(in Chinese)

    Liu,Y.Y.,and W.Chen,2012:Variability of the Eurasian teleconnection pattern in the northern hemisphere winter and its influences on the climate in China.Chinese J.Atmos.Sci.,36, 423–432.(in Chinese)

    Nitta,T.,1987:Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation.J.Meteor.Soc.Japan.,65,373–390.

    Shi.,N.,and Q.G.Zhu,1996:An abrupt change in the intensity of the east Asian summer monsoon index and its relationship with temperature and precipitation over east China.Int.J.Climatol.,16,757–764.

    Smith,T.M.,R.W.Reynolds,T.C.Peterson,and J.Lawrimore,2008:Improvements to NOAA’s historical merged land-ocean surface temperature analysis(1880–2006).J.Climate,21,2283–2297,doi:10.1175/2007JCLI2100.1.

    Sun,L.H.,and M.He,2004:The relationship between summer precipitation in China and circulation anomaly in Euroasia and its application in precipitation prediction.Acta Meteorologica Sinica,62,355–364.(in Chinese)

    Sung,M.K.,G.H.Lim,W.T.Kwon,K.O.Boo,and J.S.Kug, 2009:Short-term variation of Eurasian pattern and its relation to winter weather over East Asia.Int.J.Climatol.,29, 771–775.

    Tao,S.Y.,and L.X.Chen,1987:A review of recent research on the East Asian summer monsoon in China.Review of Monsoon Meteorology,C.P.Chang and T.N.Krishnamurti,Eds., Oxford University Press,353 pp.

    Wallace,J.M.,and D.S.Gutzler,1981:Teleconnections in the geopotential height field during the Northern Hemisphere winter.Mon.Wea.Rev.,109,784–812.

    Wang,B.,1995:Interdecadal changes in El Ni?o onset in the last four decades.J Climate,8,267–285.

    Wang,H.J.,2001:The weakening of the Asian monsoon circulation after the end of 1970’s.Adv.Atmos.Sci.,18,376–386, doi:10.1007/BF02919316.

    Wang,H.J.,2002:The instability of the East Asian summer monsoon–ENSO relations.Adv.Atmos.Sci.,19,1–11,doi: 10.1007/s00376-002-0029-5.

    Wang,H.J.,and S.P.He,2012:Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s.Chinese Science Bulletin,57,3535–3540.

    Wang,L.,W.Chen,W.Zhou,J.C.L.Chan,D.Barriopedro,and R.H.Huang,2010:Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate.Int.J.Climatol.,30,153–158.

    Wang,N.,and Y.C.Zhang,2015:Evolution of Eurasian teleconnection pattern and its relationship to climate anomalies in China.Climate Dyn.,44,1017–1208,doi:10.1007/s00382-014-2171-z.

    Wu,R.G.,J.L.Kinter III,and B.P.Kirtman,2005:Discrepancy of interdecadal changes in the Asian region among the NCEP–NCAR reanalysis,objective analyses,and observations.J.Climate,18,3048–3067.doi:10.1175/JCLI3465.1.

    Yang,S.,K.-M.Lau,and K.-M.Kim,2002:Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies.J.Climate,15,306–325.

    Zhang,Q.Y.,and S.Y.Tao,1998:Influence of Asian mid-high latitude circulation on East Asian summer rainfall.Acta Meteorologica Sinica,56,199–211.(in Chinese)

    Zhang,Q.Y.,S.Y.Tao,and L.T.Chen,2003:The inter-annual variability of East Asian summer monsoon indices and its association with the pattern of general circulation over East Asia.Acta Meteorologica Sinica,61,559–568.(in Chinese)

    Zhang,Y.C.,and L.L.Guo,2005:Relationship between the simulated East Asian westerly jet biases and seasonal evolution of rainbelt over eastern China.Chinese Science Bulletin,50, 1503–1508.

    Zhao,J.H.,and G.L.Feng,2014:Reconstruction of conceptual prediction model for the three rainfall patterns in the summer of eastern China under global warming.Science China:Earth Sciences,57,3047–3061,doi:10.1007/s11430-014-4930-4.

    Zuo,X.,and Z.N.Xiao,2013:Abnormal characteristics of Eurasian teleconnection in winter at pentad time scale and its impact on the weather in China.Meteorological Monthly,39, 1096–1102.(in Chinese)

    Zhao,J.H.,L.Yang,B.H.Gu,J.Yang,and G.L.Feng,2016:On the relationship between the winter Eurasian teleconnection patternand the following summer precipitation overChina.Adv.Atmos.Sci.,33(6),743–752,

    10.1007/s00376-015-5195-3.

    2 September 2015;revised 23 November 2015;accepted 13 December 2015)

    Bohui GU

    Email:gubohui@mail2.sysu.edu.cn

    正在播放国产对白刺激| 色婷婷久久久亚洲欧美| 国产精品 欧美亚洲| 高清毛片免费观看视频网站| 最好的美女福利视频网| 黄色 视频免费看| 在线观看66精品国产| 91在线观看av| 波多野结衣巨乳人妻| 午夜激情福利司机影院| 中国美女看黄片| 午夜亚洲福利在线播放| 一进一出好大好爽视频| 国产一区二区三区视频了| 欧美精品亚洲一区二区| 黄色成人免费大全| 曰老女人黄片| 日本熟妇午夜| 丁香六月欧美| 成人18禁高潮啪啪吃奶动态图| 中出人妻视频一区二区| x7x7x7水蜜桃| 成年免费大片在线观看| 三级毛片av免费| 久久久国产成人免费| 十八禁人妻一区二区| 久久天躁狠狠躁夜夜2o2o| 日韩欧美免费精品| 视频区欧美日本亚洲| 波多野结衣高清作品| 18禁国产床啪视频网站| 国产高清激情床上av| 国产高清激情床上av| 久久久久久久久久黄片| 久久精品影院6| 在线天堂中文资源库| 99精品欧美一区二区三区四区| 国产亚洲精品一区二区www| 亚洲一区二区三区不卡视频| 免费观看精品视频网站| 国产精品 欧美亚洲| 国产精品 欧美亚洲| 亚洲天堂国产精品一区在线| 黄色丝袜av网址大全| 观看免费一级毛片| 亚洲男人的天堂狠狠| 国产日本99.免费观看| 国产麻豆成人av免费视频| 99热6这里只有精品| 热99re8久久精品国产| av福利片在线| 18禁美女被吸乳视频| 国产精品久久久久久人妻精品电影| 久久中文字幕一级| 国产精品av久久久久免费| 丝袜美腿诱惑在线| 听说在线观看完整版免费高清| 亚洲性夜色夜夜综合| 极品教师在线免费播放| 少妇裸体淫交视频免费看高清 | 手机成人av网站| 精品不卡国产一区二区三区| 丝袜在线中文字幕| 亚洲国产精品999在线| 欧美在线黄色| 丰满的人妻完整版| 国产一区二区激情短视频| 欧美日韩亚洲综合一区二区三区_| 欧美zozozo另类| 欧美成人一区二区免费高清观看 | 99国产极品粉嫩在线观看| 亚洲美女黄片视频| 男女下面进入的视频免费午夜 | 久久久久久久精品吃奶| а√天堂www在线а√下载| 色播亚洲综合网| 又大又爽又粗| 久99久视频精品免费| 国产成人一区二区三区免费视频网站| 国产午夜精品久久久久久| 免费在线观看完整版高清| 国产成年人精品一区二区| 国产欧美日韩一区二区三| www.999成人在线观看| 19禁男女啪啪无遮挡网站| 欧美日韩中文字幕国产精品一区二区三区| 91成年电影在线观看| 日韩欧美免费精品| 亚洲五月天丁香| 青草久久国产| 久久这里只有精品19| 91麻豆av在线| 国产视频内射| 精品久久久久久成人av| 国内精品久久久久精免费| 国产伦在线观看视频一区| 白带黄色成豆腐渣| 精品国产亚洲在线| 日本五十路高清| 国产又爽黄色视频| 岛国视频午夜一区免费看| 欧美日韩亚洲综合一区二区三区_| 俺也久久电影网| 很黄的视频免费| 亚洲精品国产一区二区精华液| 亚洲av中文字字幕乱码综合 | 亚洲精品美女久久av网站| 琪琪午夜伦伦电影理论片6080| 国内毛片毛片毛片毛片毛片| 亚洲国产精品成人综合色| 欧美日韩福利视频一区二区| 女警被强在线播放| 狂野欧美激情性xxxx| 我的亚洲天堂| www日本在线高清视频| 一区二区三区高清视频在线| 国产一区在线观看成人免费| 亚洲,欧美精品.| 亚洲精品粉嫩美女一区| 欧美日韩乱码在线| 十八禁人妻一区二区| 国产成人av教育| 91麻豆av在线| 午夜久久久久精精品| 国产在线精品亚洲第一网站| 欧美不卡视频在线免费观看 | 国产精品野战在线观看| 成人永久免费在线观看视频| 国产精品免费视频内射| 91字幕亚洲| 免费av毛片视频| 国产精品自产拍在线观看55亚洲| 1024视频免费在线观看| 日韩有码中文字幕| 亚洲av电影不卡..在线观看| 黄片播放在线免费| 国产亚洲精品av在线| 麻豆一二三区av精品| 看黄色毛片网站| 日本成人三级电影网站| 97碰自拍视频| 国产蜜桃级精品一区二区三区| 长腿黑丝高跟| 久久久精品欧美日韩精品| 免费人成视频x8x8入口观看| 一本久久中文字幕| 亚洲精华国产精华精| 久久午夜亚洲精品久久| 精品无人区乱码1区二区| 欧美中文综合在线视频| 丰满人妻熟妇乱又伦精品不卡| 观看免费一级毛片| 一级毛片高清免费大全| 无限看片的www在线观看| 日本成人三级电影网站| 婷婷精品国产亚洲av在线| 国产91精品成人一区二区三区| videosex国产| 日本 欧美在线| 日韩有码中文字幕| 免费看日本二区| 观看免费一级毛片| 亚洲va日本ⅴa欧美va伊人久久| 一级黄色大片毛片| 久久欧美精品欧美久久欧美| 黄色女人牲交| 国产一区二区三区在线臀色熟女| 国产成人影院久久av| 夜夜夜夜夜久久久久| 久久久久久久久免费视频了| 黑人操中国人逼视频| 国产亚洲精品久久久久久毛片| 此物有八面人人有两片| 欧美午夜高清在线| 天天添夜夜摸| 俺也久久电影网| 亚洲成a人片在线一区二区| 九色国产91popny在线| 夜夜躁狠狠躁天天躁| 国产精品一区二区精品视频观看| 一区二区三区高清视频在线| 亚洲欧美日韩无卡精品| 91麻豆精品激情在线观看国产| 久久久水蜜桃国产精品网| cao死你这个sao货| 热99re8久久精品国产| 国产片内射在线| 中文字幕人妻丝袜一区二区| 美女高潮到喷水免费观看| 国产精品久久视频播放| 很黄的视频免费| 国内精品久久久久精免费| 欧美性长视频在线观看| 国产精品亚洲一级av第二区| 一区二区三区高清视频在线| 日韩欧美一区二区三区在线观看| 久久香蕉激情| svipshipincom国产片| 好看av亚洲va欧美ⅴa在| 亚洲精品国产区一区二| 国产蜜桃级精品一区二区三区| 亚洲欧美一区二区三区黑人| 无人区码免费观看不卡| 国产精品一区二区免费欧美| 国产精品99久久99久久久不卡| 午夜免费成人在线视频| 亚洲熟妇熟女久久| 欧美乱妇无乱码| 黄色丝袜av网址大全| 久久久久国产精品人妻aⅴ院| 99国产极品粉嫩在线观看| АⅤ资源中文在线天堂| 俺也久久电影网| 国内久久婷婷六月综合欲色啪| 超碰成人久久| 婷婷精品国产亚洲av在线| 亚洲久久久国产精品| 1024视频免费在线观看| 精品日产1卡2卡| 在线观看舔阴道视频| 亚洲精品在线美女| 国产高清激情床上av| 免费女性裸体啪啪无遮挡网站| 在线观看免费午夜福利视频| 美女扒开内裤让男人捅视频| 美国免费a级毛片| 日本免费一区二区三区高清不卡| 99热只有精品国产| 麻豆av在线久日| 亚洲精品国产一区二区精华液| 人人妻人人看人人澡| 亚洲 欧美 日韩 在线 免费| 午夜福利欧美成人| 久久中文字幕一级| 国内精品久久久久久久电影| 中文字幕av电影在线播放| 亚洲精品在线美女| 欧美黑人精品巨大| 欧美在线一区亚洲| 最新在线观看一区二区三区| 精品国产国语对白av| 亚洲精品国产区一区二| 精品人妻1区二区| 免费高清视频大片| 午夜免费激情av| 亚洲国产精品久久男人天堂| 色婷婷久久久亚洲欧美| 村上凉子中文字幕在线| 国产精品精品国产色婷婷| 老司机午夜十八禁免费视频| 精品久久久久久久久久久久久 | 欧美 亚洲 国产 日韩一| 不卡一级毛片| 国产成年人精品一区二区| 一区二区三区精品91| 99久久综合精品五月天人人| 国产亚洲精品av在线| 精品电影一区二区在线| 美女高潮喷水抽搐中文字幕| 大香蕉久久成人网| 伦理电影免费视频| 亚洲人成网站在线播放欧美日韩| 一级a爱片免费观看的视频| 国产黄色小视频在线观看| 老司机午夜十八禁免费视频| 真人做人爱边吃奶动态| 成人av一区二区三区在线看| 欧美午夜高清在线| 俺也久久电影网| 伦理电影免费视频| 欧美精品啪啪一区二区三区| 天天躁夜夜躁狠狠躁躁| 国产精品日韩av在线免费观看| 最近在线观看免费完整版| 国产又黄又爽又无遮挡在线| 国产精品1区2区在线观看.| 国产不卡一卡二| 亚洲av第一区精品v没综合| 美女 人体艺术 gogo| 国产99久久九九免费精品| 麻豆久久精品国产亚洲av| 美女高潮喷水抽搐中文字幕| 午夜免费激情av| 伦理电影免费视频| 黑人巨大精品欧美一区二区mp4| 成人国产一区最新在线观看| 国产一区二区激情短视频| 可以在线观看的亚洲视频| 男男h啪啪无遮挡| 韩国精品一区二区三区| 国产黄a三级三级三级人| 男人操女人黄网站| 国产片内射在线| 国产亚洲精品久久久久久毛片| 他把我摸到了高潮在线观看| 亚洲精华国产精华精| 免费看日本二区| 一区二区三区国产精品乱码| 妹子高潮喷水视频| 欧美黄色片欧美黄色片| 午夜福利在线观看吧| 国产精品一区二区免费欧美| 免费在线观看影片大全网站| avwww免费| 国产精品久久久久久人妻精品电影| 精品日产1卡2卡| 欧美日韩瑟瑟在线播放| 国产真人三级小视频在线观看| 香蕉丝袜av| 亚洲精品国产一区二区精华液| av免费在线观看网站| 香蕉av资源在线| 看免费av毛片| 男女做爰动态图高潮gif福利片| 男女视频在线观看网站免费 | 首页视频小说图片口味搜索| 热re99久久国产66热| 久久国产乱子伦精品免费另类| 欧美黑人巨大hd| 久久热在线av| 大型黄色视频在线免费观看| 国产三级黄色录像| 日本撒尿小便嘘嘘汇集6| 国产伦一二天堂av在线观看| 一a级毛片在线观看| 老鸭窝网址在线观看| 国产人伦9x9x在线观看| 夜夜看夜夜爽夜夜摸| 国产三级黄色录像| 可以免费在线观看a视频的电影网站| 美女国产高潮福利片在线看| 18禁国产床啪视频网站| 国产精华一区二区三区| 国产精品电影一区二区三区| www.自偷自拍.com| 亚洲七黄色美女视频| 丰满人妻熟妇乱又伦精品不卡| 久久久久久免费高清国产稀缺| 国产黄a三级三级三级人| 夜夜夜夜夜久久久久| 亚洲专区国产一区二区| 亚洲av成人av| 很黄的视频免费| 亚洲午夜精品一区,二区,三区| 亚洲成人国产一区在线观看| 国产熟女午夜一区二区三区| 老司机深夜福利视频在线观看| 亚洲精品久久成人aⅴ小说| 两性夫妻黄色片| 国产在线精品亚洲第一网站| 国产成人欧美| a级毛片a级免费在线| 日本在线视频免费播放| 一区二区三区高清视频在线| 少妇裸体淫交视频免费看高清 | 99国产精品一区二区蜜桃av| 国产久久久一区二区三区| 亚洲精品国产区一区二| 成在线人永久免费视频| 美女扒开内裤让男人捅视频| 国产黄片美女视频| 在线免费观看的www视频| 国产成人影院久久av| 日韩大尺度精品在线看网址| 日韩欧美国产一区二区入口| 欧美成人性av电影在线观看| 男女那种视频在线观看| 久久久久久人人人人人| 制服丝袜大香蕉在线| 亚洲欧洲精品一区二区精品久久久| 日韩欧美 国产精品| 51午夜福利影视在线观看| 国产在线精品亚洲第一网站| 国产亚洲精品第一综合不卡| 听说在线观看完整版免费高清| 人人妻人人澡人人看| www日本在线高清视频| 欧美黄色片欧美黄色片| 亚洲人成电影免费在线| 国产免费男女视频| 日韩欧美一区二区三区在线观看| 久久香蕉激情| 亚洲av中文字字幕乱码综合 | 久久草成人影院| 日本黄色视频三级网站网址| 嫩草影院精品99| 国内久久婷婷六月综合欲色啪| 久久精品人妻少妇| 18美女黄网站色大片免费观看| 日本三级黄在线观看| 欧美 亚洲 国产 日韩一| 国产精品免费视频内射| 久久久久国产一级毛片高清牌| 久久九九热精品免费| 视频区欧美日本亚洲| 波多野结衣av一区二区av| 亚洲 国产 在线| 亚洲国产欧洲综合997久久, | 亚洲一区二区三区不卡视频| 久久久水蜜桃国产精品网| 中文字幕最新亚洲高清| 久久人人精品亚洲av| 一级作爱视频免费观看| 国产视频一区二区在线看| 91成年电影在线观看| 99热6这里只有精品| 99国产精品99久久久久| 搡老岳熟女国产| 两性夫妻黄色片| 欧美日本视频| 成人国产一区最新在线观看| 欧美日韩中文字幕国产精品一区二区三区| 99热6这里只有精品| 黄色毛片三级朝国网站| av中文乱码字幕在线| 18禁裸乳无遮挡免费网站照片 | www.自偷自拍.com| 夜夜爽天天搞| 熟女少妇亚洲综合色aaa.| 亚洲成人久久性| 99国产综合亚洲精品| svipshipincom国产片| 午夜视频精品福利| 国产成人精品久久二区二区91| 天堂影院成人在线观看| 精品电影一区二区在线| 最近最新免费中文字幕在线| 亚洲av中文字字幕乱码综合 | 在线播放国产精品三级| 午夜影院日韩av| 国产高清有码在线观看视频 | 桃红色精品国产亚洲av| 免费无遮挡裸体视频| 欧美激情高清一区二区三区| 中文字幕av电影在线播放| 国产精品二区激情视频| 天堂影院成人在线观看| 午夜a级毛片| 少妇的丰满在线观看| 亚洲精品中文字幕在线视频| 亚洲七黄色美女视频| 夜夜躁狠狠躁天天躁| 精华霜和精华液先用哪个| 大香蕉久久成人网| 欧美日韩瑟瑟在线播放| 嫩草影院精品99| 国产99久久九九免费精品| 免费av毛片视频| 熟女少妇亚洲综合色aaa.| 亚洲精品色激情综合| 亚洲自偷自拍图片 自拍| 亚洲久久久国产精品| 99久久精品国产亚洲精品| 精品国产超薄肉色丝袜足j| 色播亚洲综合网| 中文字幕高清在线视频| 国产精品免费一区二区三区在线| 在线av久久热| 午夜福利高清视频| 在线观看午夜福利视频| 看片在线看免费视频| 亚洲av美国av| 亚洲avbb在线观看| 亚洲精品一区av在线观看| 久久九九热精品免费| 国产黄片美女视频| 久久久精品欧美日韩精品| 午夜免费鲁丝| 在线永久观看黄色视频| 欧美丝袜亚洲另类 | 嫩草影视91久久| 亚洲五月婷婷丁香| 又黄又爽又免费观看的视频| 变态另类丝袜制服| 一本精品99久久精品77| av欧美777| aaaaa片日本免费| 久久久久久人人人人人| 丝袜人妻中文字幕| 亚洲一区中文字幕在线| 天天添夜夜摸| 国产精品一区二区免费欧美| 免费av毛片视频| 亚洲精品国产一区二区精华液| 亚洲成人精品中文字幕电影| 一进一出抽搐动态| 身体一侧抽搐| 国产成人影院久久av| 国产黄片美女视频| 亚洲av第一区精品v没综合| 亚洲国产欧美网| 久久久水蜜桃国产精品网| 最新美女视频免费是黄的| 一区福利在线观看| 亚洲一区高清亚洲精品| 韩国精品一区二区三区| 国产欧美日韩一区二区精品| 久久香蕉精品热| 日本 欧美在线| 免费在线观看视频国产中文字幕亚洲| 天天添夜夜摸| 男男h啪啪无遮挡| 久久久水蜜桃国产精品网| 两个人看的免费小视频| 婷婷六月久久综合丁香| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品一区av在线观看| 热99re8久久精品国产| 黄网站色视频无遮挡免费观看| 欧美日韩亚洲综合一区二区三区_| 啦啦啦韩国在线观看视频| 男女做爰动态图高潮gif福利片| 人妻久久中文字幕网| 村上凉子中文字幕在线| 亚洲免费av在线视频| 嫩草影视91久久| 欧美日韩福利视频一区二区| 国产99白浆流出| 十八禁人妻一区二区| 久久香蕉精品热| 日韩大码丰满熟妇| 精品福利观看| 人成视频在线观看免费观看| 亚洲最大成人中文| 99国产综合亚洲精品| 亚洲一区二区三区不卡视频| 亚洲性夜色夜夜综合| 亚洲国产日韩欧美精品在线观看 | 99久久无色码亚洲精品果冻| 精品久久久久久久久久免费视频| 午夜免费观看网址| 黄色丝袜av网址大全| 国产精品久久久人人做人人爽| 国产激情久久老熟女| 国产又爽黄色视频| 久久久久国产一级毛片高清牌| 午夜免费成人在线视频| 老司机午夜十八禁免费视频| 欧美又色又爽又黄视频| 国产极品粉嫩免费观看在线| 亚洲色图av天堂| 欧美日韩亚洲综合一区二区三区_| 久久久久免费精品人妻一区二区 | 18禁黄网站禁片午夜丰满| 精品电影一区二区在线| 女警被强在线播放| 久久欧美精品欧美久久欧美| 亚洲人成伊人成综合网2020| 亚洲精品在线观看二区| 成年免费大片在线观看| 亚洲自拍偷在线| 很黄的视频免费| 日本五十路高清| 日本撒尿小便嘘嘘汇集6| 2021天堂中文幕一二区在线观 | www.自偷自拍.com| 亚洲人成伊人成综合网2020| 自线自在国产av| 亚洲欧美激情综合另类| 2021天堂中文幕一二区在线观 | 人人妻人人澡欧美一区二区| aaaaa片日本免费| 国产三级在线视频| 国产区一区二久久| 在线视频色国产色| 特大巨黑吊av在线直播 | 特大巨黑吊av在线直播 | www.精华液| 久久婷婷人人爽人人干人人爱| 亚洲欧洲精品一区二区精品久久久| 午夜免费观看网址| 精品一区二区三区av网在线观看| 亚洲精品色激情综合| 亚洲 欧美一区二区三区| 亚洲av日韩精品久久久久久密| 一区二区三区国产精品乱码| 黑丝袜美女国产一区| 国产成+人综合+亚洲专区| 搡老妇女老女人老熟妇| 成人国产综合亚洲| 日本 欧美在线| 精品不卡国产一区二区三区| 亚洲成av人片免费观看| 老司机靠b影院| 日韩有码中文字幕| 12—13女人毛片做爰片一| 日本一区二区免费在线视频| 亚洲精品在线观看二区| www国产在线视频色| 国产精品久久久av美女十八| 成人三级做爰电影| 精品国产美女av久久久久小说| xxx96com| 国产黄a三级三级三级人| 波多野结衣巨乳人妻| 欧美激情高清一区二区三区| 老司机在亚洲福利影院| 日韩高清综合在线| 国产一区二区三区视频了| 欧美日韩福利视频一区二区| www.自偷自拍.com| 亚洲一区高清亚洲精品| 国内揄拍国产精品人妻在线 | 日本黄色视频三级网站网址| 国产真实乱freesex| 波多野结衣高清无吗| 成年女人毛片免费观看观看9| 丁香欧美五月| www.熟女人妻精品国产| 18禁国产床啪视频网站| 国内精品久久久久精免费| 国产蜜桃级精品一区二区三区| 成人一区二区视频在线观看| 久久精品国产亚洲av高清一级| 色哟哟哟哟哟哟|