梁晶晶 蔣霞敏 江茂旺 張澤凌 韓慶喜
(寧波大學(xué)海洋學(xué)院,寧波 315211)
梁晶晶蔣霞敏江茂旺張澤凌韓慶喜
(寧波大學(xué)海洋學(xué)院,寧波 315211)
為了探究固定化微綠球藻(Nannochloropsis oculata)去除污水中NH+4-N、PO34--P的效果,采用海藻酸鈉固定化包埋技術(shù)進(jìn)行實(shí)驗(yàn)。開(kāi)展了固定化藻球大小、藻細(xì)胞包埋密度、藻球投放質(zhì)量及充氣培養(yǎng)條件對(duì)NH+4-N、PO3--P去除效果的單因子試驗(yàn)研究。結(jié)果表明,固定化藻球大小、藻細(xì)胞包埋密度、藻球投放質(zhì)
微綠球藻;固定化;NH4+-N;PO34--P;去除率
微藻是一類原始且分布廣泛的營(yíng)光合自養(yǎng)、異養(yǎng)或兼養(yǎng)的低等植物,一般要借助顯微鏡才能觀察到其細(xì)胞結(jié)構(gòu)形態(tài)[1]; 其生長(zhǎng)迅速,環(huán)境適應(yīng)能力強(qiáng),產(chǎn)量高效,含有許多陸地生物所缺乏的特殊生物活性物質(zhì),如EPA、DHA、蝦青素等[2—5]。微藻固定化技術(shù)始于20世紀(jì)80年代,在環(huán)境領(lǐng)域主要應(yīng)用于廢水處理和生物監(jiān)測(cè),具有藻細(xì)胞密度高、反應(yīng)速度快、固液分離效果好、運(yùn)行穩(wěn)定性高等[6,7]特點(diǎn)。固定化藻類處理廢水不僅反應(yīng)速度快、去除效率高,還可以實(shí)現(xiàn)廢水資源的再生利用:一方面,經(jīng)過(guò)處理的廢水可作為工農(nóng)業(yè)用水而重新加以利用; 另一方面,處理后的固定化藻細(xì)胞易于收獲,進(jìn)行加工生產(chǎn),不僅避免產(chǎn)生二次污染,還可以加以綜合利用。影響固定化微藻生長(zhǎng)和NH+4-N、PO34--P去除效率的因素可分外部因素和內(nèi)部因素,內(nèi)部因素主要是藻種本身生理特征的差異造成; 外部因素主要包括溫度、光照、營(yíng)養(yǎng)條件、藻球規(guī)格大小、藻細(xì)胞包埋量、藻球用量等方面[8]。
微綠球藻(Nannochloropsis oculata)是一種較常見(jiàn)的單細(xì)胞海洋微藻,其細(xì)胞壁極薄且富含EPA,廣泛應(yīng)用于蝦類、蟹類、貝類等的育苗及輪蟲(chóng)、鹵蟲(chóng)等培養(yǎng)。蔣霞敏[9]研究表明微綠球藻具有環(huán)境適應(yīng)能力強(qiáng),繁殖速度快,且不易老化污染的優(yōu)點(diǎn),能吸收水中氮磷等營(yíng)養(yǎng)物質(zhì)供給自身生長(zhǎng)需要。關(guān)于固定化微綠球藻研究鮮有報(bào)道,僅見(jiàn)鄭蓮等[10]和黃翔鵠等[11]將固定化微綠球藻引入對(duì)蝦養(yǎng)殖水體,能有效降低水體中氨氮、亞硝酸氮等有害因子的濃度,同時(shí)能抑制弧菌的生長(zhǎng),提高水中溶解氧含量,使水體長(zhǎng)時(shí)間保持較好的動(dòng)態(tài)平衡狀態(tài)。本文以微綠球藻為藻種,采用海藻酸鈉包埋進(jìn)行固定化,進(jìn)行了不同藻球規(guī)格,藻細(xì)胞密度,藻球投放質(zhì)量以及培養(yǎng)條件對(duì)固定化微綠球藻生長(zhǎng)、NH+4-N和PO34--P凈化效果的試驗(yàn),為固定化微綠球藻應(yīng)用于污水處理提供一定的理論依據(jù)。
1.1材料與儀器
試驗(yàn)藻種微綠球藻來(lái)自寧波大學(xué)海洋學(xué)院餌料生物實(shí)驗(yàn)室。培養(yǎng)液配方采用改良的寧波大學(xué)3#母液(表1),加入量母液與海水體積比為1 :1 000。培養(yǎng)用水采用象山港天然海水,經(jīng)沙濾、暗沉淀、脫脂棉過(guò)濾和燒開(kāi)冷卻; 藻種置于GXZ智能型光照培養(yǎng)箱(寧波江南儀器廠)培養(yǎng),培養(yǎng)條件:溫度(25±1)℃,鹽度25,光照強(qiáng)度80 μmol/(m2·s),pH 7.86,光暗周期12h :12h,不充氣。為防止使用實(shí)際污水中的某些化學(xué)物干擾測(cè)定結(jié)果,本實(shí)驗(yàn)采用了人工模擬污水,即在缺氮3#母液內(nèi)加一定量的NH4Cl配制成人工污水備用(NH+4-N含量17 m g/L)。
藻球制作方法:將處于指數(shù)生長(zhǎng)期的微綠球藻離心濃縮(4000 r/min,10min)兩次,取一定體積的藻細(xì)胞濃縮液與預(yù)先滅菌的5%海藻酸鈉溶液按照1 :1均勻混合,形成海藻酸鈉和微藻的混合液; 用注射器吸取混合液,并套上20#針頭,在預(yù)冷的2% CaCl2溶液距離液面20 cm處,滴入混合液即形成直徑(3.5 mm)的小球,藻球在CaCl2溶液中靜置3h后取出,用消毒海水洗滌2—3次備用。
脫固定化方法:在測(cè)定固定化藻細(xì)胞密度時(shí)需先脫固定化,將固定化藻球放入盛有一定量3%的檸檬酸三鈉(Na3C6H5O7)化解液中,搖動(dòng),直至固定化藻球完全溶解成懸浮狀,再計(jì)數(shù)測(cè)定藻細(xì)胞密度。
表1 改良的寧波大學(xué)3#母液配方Tab. 1 Composition of modified 3# culture medium
1.2試驗(yàn)方法
1.3檢測(cè)方法
相對(duì)增長(zhǎng)率 K 值,計(jì)算公式為:K=(lg Nt-lg N0)/T,式中,N0為培養(yǎng)的起始濃度,Nt為培養(yǎng) t 時(shí)間后的濃度,t為培養(yǎng)時(shí)間。
標(biāo)準(zhǔn)曲線方程為:y=5.8899x-0.0094,R2= 0.9992。
標(biāo)準(zhǔn)曲線方程為:y=2.7418x-0.0034,R2=0.999
氮磷的去除率R按下式計(jì)算:R=(C0-Ct)/Ct× 100%,式中:R表示去除率(%); C0和Ct分別表示各種形態(tài)氮磷的初始濃度和各取樣時(shí)段濃度(mg/L)。
1.4數(shù)據(jù)統(tǒng)計(jì)與分析
數(shù)據(jù)、圖表用Excel進(jìn)行處理,數(shù)據(jù)分析運(yùn)用SPSS 17.0統(tǒng)計(jì)分析軟件進(jìn)行相關(guān)分析,并采用Duncan多重比較,差異顯著水平為P<0.05。
藻球直徑大小對(duì)藻細(xì)胞生長(zhǎng)速率(K值)影響顯著(P<0.05),隨著固定化藻球直徑增大K值呈先升高后降低趨勢(shì),在藻球直徑3.5 mm時(shí),K值最大(0.332±0.002),顯著高于(除藻球直徑3.0 mm外)其他各組(圖1)。
圖1 不同藻球直徑對(duì)微綠球藻生長(zhǎng)的影響Fig. 1 Effects of different size of immobilized algal balls on the growth of Nannochloropsis oculata同行數(shù)據(jù)肩標(biāo)無(wú)字母或相同字母表示差異不顯著(P>0.05),不同小寫(xiě)字母表示差異顯著(P<0.05); 下圖同In the same rowzvalucs with no letter or the same letter superscripts mean no significant difference(P>0.05),while with different small letter superscripts mean significant difference(P<0.05); The same applies below
不同藻細(xì)胞包埋密度對(duì)K值影響顯著(P<0.05),隨著藻細(xì)胞包埋密度增加,K值逐漸降低,在包埋密度100×104cells/ball時(shí)K值最大(0.330±0.033)(圖3)。
圖2 不同藻球直徑對(duì)微綠球藻NH+4-N, 34--P去除效果的影響Fig. 2 Effects of different size of immobilized algal balls on theN H+4-N, 34--P removal efficiency by Nannochloropsis oculata圖例單位:mm Legend unit:mm
圖3 不同藻細(xì)胞包埋密度對(duì)固定化微綠球藻生長(zhǎng)的影響Fig. 3 Effects of different density of algal cells embedded on growth of immobilized Nannochloropsis oculata
水體中藻球不同投放量對(duì)藻細(xì)胞生長(zhǎng)速率(K值)影響顯著(P<0.05),隨著藻球用量的增加K值下降(圖5)。在藻球投放質(zhì)量為10 g/L時(shí)K值達(dá)最大為(0.301±0.021)。
圖4 不同藻細(xì)胞包埋密度對(duì)固定化微綠球藻NH+4-N,34--P去除率的影響Fig. 4 Effects of different density of algal cells embedded on immobilized Nannochloropsis oculataNH+4-N, 34--P removal efficiency圖例單位為:×104cells/ball Legend unit:×104cells/ball
+表2 不同藻細(xì)胞密度第1天和單位密度吸收NH+4-N效果對(duì)比Tab. 2 Contrast ofN H4-N absorption of Nannochloropsis oculata in different densities at first day and unit density
+表2 不同藻細(xì)胞密度第1天和單位密度吸收NH+4-N效果對(duì)比Tab. 2 Contrast ofN H4-N absorption of Nannochloropsis oculata in different densities at first day and unit density
初始密度Preliminary density(×104cells/ball)最終密度Final density(×104cells/ball)100 16.99±0.43c 0.169±0.004 3.98±2.28d 0.039±0.023a 1110 300 21.49±1.89ab 0.071±0.006 10.94±3.11c 0.036±0.010b 1137.5 500 19.24±3.77bc 0.038±0.007 10.45±1.49c 0.021±0.003c 1762.5 700 21.49±0.43ab 0.030±0.001 21.39±1.49b 0.028±0.002cd 2025 900 25.24±1.15a 0.028±0.001 24.38±2.28a 0.027±0.002d 2037.5第1天去-N率Assimilation ratio at first day(%)NH+4單位密度去-N率Assimilation ratio at unit density(%/104cells)NH+4第1天去-P率Assimilation ratio at first day(%)3-4單位密度去-P率Assimilation ratio at unit density(%/104cells)3-4
圖5 不同投放質(zhì)量對(duì)固定化微綠球藻生長(zhǎng)的影響Fig. 5 Effects of different dosages of algae balls on immobilized Nannochloropsis oculata growth
圖6 不同投放質(zhì)量對(duì)固定化微綠球藻NH+-N, 34--P去除率的影響4Fig. 6 Effects of different dosages of algae balls on immobilized Nannochloropsis OculataN H+-N, 34--P removal efficiency4圖例單位:g/L Legend unit:g/L
充氣培養(yǎng)對(duì)藻細(xì)胞生長(zhǎng)速率(K值)影響顯著(P<0.05),充氣培養(yǎng)條件下藻細(xì)胞K值為(0.306±0.006);不充氣組K值為(0.177±0.010),顯著低于充氣組(圖7)。
圖7 充氣培養(yǎng)對(duì)固定化微綠球藻生長(zhǎng)的影響Fig. 7 Effects of aerated cultures on immobilized Nannochloropsis Oculata growth
充氣培養(yǎng)對(duì)藻細(xì)胞氮磷去除率影響顯著影響顯著(P<0.05)。第7天充氣組去除率為(85.93±0.45)%顯著高于不充氣組(49.32±0.45)%。充氣培養(yǎng)對(duì)藻細(xì)胞氮磷去除率影響顯著影響顯著(P<0.05)。第7天充氣組去除率為(66.66±5.00)%顯著高于不充氣組(46.29±2.12)%(圖8)。
圖8 充氣培養(yǎng)對(duì)固定化微綠球藻NH+-N, 34--P去除率的4影響Fig. 8 Effects of aerated cultures on immobilized Nannochloropsis OculataN H+-N, 34--P removal efficiency4
固定化藻球的制作工藝對(duì)污水的處理密切相關(guān),其中藻球直徑大小對(duì)藻細(xì)胞生長(zhǎng)速率(K值)影響差異顯著(P<0.05),本研究表明隨著固定化藻球直徑增大K值呈先升高后降低趨勢(shì),在藻球直徑3.5 mm時(shí)K值最大(0.332±0.002)。隨著固定化藻球直徑增大,NH+4-N和PO34--P去除率以藻球直徑3.5 mm組效果最佳,這與袁冰等[12]的研究結(jié)果一致,在一定直徑范圍內(nèi)藻球生長(zhǎng)及NH+4-N和PO34--P去除率均是先升高后降低的趨勢(shì); 這與楊海波等[13]的隨著藻球直徑越大藻球生長(zhǎng)量越大結(jié)果不同,可能是藻球越小,制備過(guò)程交聯(lián)程度越大,藻球結(jié)構(gòu)越致密,傳質(zhì)性能受到影響; 隨著藻球直徑增大,藻細(xì)胞在藻球中分布不均勻,外部藻細(xì)胞對(duì)藻球內(nèi)部有一定遮蔽作用,同時(shí)隨著藻球直徑增大,藻球通透性逐漸降低,藻球內(nèi)細(xì)胞營(yíng)養(yǎng)不足,生長(zhǎng)環(huán)境較差等,對(duì)藻細(xì)胞的增值生長(zhǎng)及氮磷等營(yíng)養(yǎng)物質(zhì)的吸收有一定阻礙作用。
水中投放固定化藻球的多寡直接影響污水處理效果,本實(shí)驗(yàn)結(jié)果表明投放不同質(zhì)量藻球?qū)潭ɑ迳L(zhǎng)及NH+4-N和PO34--P去除效果影響差異顯著(P<0.05)。藻球投放量大,生長(zhǎng)速率減小,NH+4-N和PO34--P去除速率卻增加。這與高鵬等[17]的觀點(diǎn)相吻合,固定化微藻投入量的增加,能一定效果提高NH+4-N和PO34--P去除速率,但是隨著固定化藻球用量達(dá)到一定值后,NH+4-N和PO34--P去除速率并不會(huì)相應(yīng)提高,這種情況會(huì)造成藻球的浪費(fèi),在實(shí)際應(yīng)用中,藻球與污水應(yīng)有一個(gè)最佳比例值,這樣既能縮短污水凈化時(shí)間,又能節(jié)約成本。這是由于污水中隨著藻球投放量加大,有效藻細(xì)胞數(shù)目也多,參與反應(yīng)的藻細(xì)胞數(shù)目多,對(duì)氮磷吸收的量大大增加,所以在短時(shí)間內(nèi)去除NH+4-N和PO3--P的效果就
4好; 但藻球用量過(guò)多,不但藻球之間相互遮擋,對(duì)光照利用效率降低,光合作用降低,細(xì)胞生長(zhǎng)速率也相應(yīng)降低[16]; 而且藻球用量過(guò)大,制作藻球的成本就大大增加,處理污水就會(huì)得不喪失。
充氣與否對(duì)固定化藻去氮除磷密切相關(guān),本實(shí)驗(yàn)結(jié)果表明,充氣培養(yǎng)對(duì)固定化微綠球藻生長(zhǎng)速率(K值)及氮磷去除速率影響差異顯著(P<0.05)。在相同培養(yǎng)時(shí)間,充氣培養(yǎng)條件下固定化微綠球藻生長(zhǎng)速率和氮磷去除率均高于不充氣條件。韓婷婷等[18]研究充氣培養(yǎng)能顯著提高半頁(yè)馬尾藻(Sargassum hemiphyllum)生長(zhǎng)速率及活性磷吸收效果; 滕懷麗等[19]研究表明,充氣培養(yǎng)能顯著提高鹽藻(Dunaliella salina)的生長(zhǎng)速率以及其對(duì)培養(yǎng)液中氮的吸收速率; 這與本實(shí)驗(yàn)觀點(diǎn)一致,充氣培養(yǎng)能顯著提高藻的生長(zhǎng)速率和氮磷去除效果。Svensen等[20]發(fā)現(xiàn)輕微的攪動(dòng)促進(jìn)浮游植物的生長(zhǎng),生長(zhǎng)率高于完全靜止培養(yǎng)的浮游植物。海藻光合生長(zhǎng)消耗水體中大量的無(wú)機(jī)鹽并釋放大量的氧,水體pH 升高,CO2等碳源供應(yīng)不足引起藻體的最大光合作用能力下降[21,22]。充氣培養(yǎng)條件下促進(jìn)空氣中CO2進(jìn)入藻類培養(yǎng)水體[23],向水體中及時(shí)補(bǔ)充藻體光合生長(zhǎng)所需的無(wú)機(jī)碳源,調(diào)節(jié)水體pH,促進(jìn)藻體光合固碳,從而加速藻體的生長(zhǎng)[24]。同時(shí),充氣加快藻體表面周圍的營(yíng)養(yǎng)鹽交換,促進(jìn)海藻同化吸收 N、P 營(yíng)養(yǎng)鹽,為藻體光合作用和生長(zhǎng)提供有利的條件。
本實(shí)驗(yàn)對(duì)固定化微綠球藻不同規(guī)格、不同藻細(xì)胞包埋密度、不同藻球投放質(zhì)量和充氣培養(yǎng)進(jìn)行了NH+4-N、PO34--P去除效果優(yōu)化研究,得到最優(yōu)條件為:固定化微綠球藻應(yīng)進(jìn)行充氣培養(yǎng),藻球規(guī)格3.5 mm、藻細(xì)胞包埋密度100×104cells/ball、藻球投放量30 g/L。
[1]Zhou W Z,Huo S H,Zhu S N,et al. Microalgae immobilization and application on resources reclamation [J]. Renewable Energy Resources,2011,29(4):90—94 [周衛(wèi)征,霍書(shū)豪,朱順妮,等. 微藻固定化技術(shù)及其在資源化中應(yīng)用. 可再生能源,2011,29(4):90—94]
[2]Teresa M M,Martins A A,Caetano N S. Microalgae for biodiesel production and other applications:A review [J]. Renewable and Sustainable Energy Reviews,2010,14(1):217—232
[3]Xia S,Wan L L,Li A,et al. Research and development of commercial biomass products and bioactive compounds of microalgae [J]. Natural Product Research and Development,2014,26(1):463—469 [夏嵩,萬(wàn)凌琳,李愛(ài),等.微藻生物質(zhì)產(chǎn)品和生物活性物質(zhì)的研究與開(kāi)發(fā). 天然產(chǎn)物研究與開(kāi)發(fā),2014,26(1):463—469]
[4]He S S,Gao B Y,Lei X Q,et al. Effects of initial nitrogen supply on the growth,morphology and lipid accumulation of oleaginous microalga Eustigmatos vischeri(eustigmatophyceae) [J]. Acta Hydrobilogica Sinica,2015,39(3):574—582 [何思思,高保燕,雷學(xué)青,等. 初始硝酸鈉濃度對(duì)魏氏真眼點(diǎn)藻的生長(zhǎng)、形態(tài)和油脂積累的影響. 水生生物學(xué)報(bào),2015,39(3):574—582]
[5]Li A F,Liu R,Liu X J,et al. Effects of carbon sources on growth and fatty acid composition of Pinguiococcus pyrenoidosus CCMP [J]. Acta Hydrobiologica Sinica,2009,33(3):461—467 [李愛(ài)芬,劉然,劉曉娟,等. 碳源對(duì)粉核油球藻生長(zhǎng)和脂肪酸組成特性的影響. 水生生物學(xué)報(bào),2009,33(3):461—467]
[6]Naessens M,Leclerc J C,Tran-Minh C. Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds [J]. Ecotoxicology and Environmental Safety,2000,46(2):181—185
[7]Li H,Li L,Zhang F Y. Research on biological immobilization technology in the treatment of nitrogencontained wastewater [J]. Industrial Safety and Environmental Protection,2004,30(6):18—20 [李嘩,李凌,張發(fā)有. 生物固定化技術(shù)在含氮廢水處理中的研究. 工業(yè)安全與環(huán)保,2004,30(6):18—20]
[8]Touchette B W,Burkholder. Review of nitrogen and phosphorus metabolism in seagraasses [J]. Experimental Marine Biology and Ecology,2000,250(1—2):133—167
[9]Jiang X M. Effects of temperatures,light intensities and nitrogen concenrations on the growth and fatty acid compositions of Nannochloropsis oculata [J]. Marine Sciences,2002,26(8):9—12 [蔣霞敏. 溫度、光照、氮含量對(duì)微綠球藻生長(zhǎng)及脂肪酸組成的影響. 海洋科學(xué),2002,26(8):9—12]
[10]Zheng L,Huang X H,Liu C W,et al. Immobilization of Nannochloirs oculata in water quality control in shrimp mariculture [J]. Marine Sciences,2005,29(6):4—8 [鄭蓮,黃翔鵠,劉楚吾,等. 微綠球藻固定化培養(yǎng)及其對(duì)對(duì)蝦養(yǎng)殖水質(zhì)調(diào)控. 海洋科學(xué),2005,29(6):4—8]
[11]Huang X H,Li C L,Zheng L,et al. Effects of the immoblized microalgae on the quantity dynamics of vibrio in theshrump ponds [J]. Acta Hydrobiologica Sinica,2005,29(6):684—688 [黃翔鵠,李長(zhǎng)玲,鄭蓮,等. 固定化微藻對(duì)蝦池弧菌數(shù)量動(dòng)態(tài)的影響. 水生生物學(xué)報(bào),2005,29(6):684—688]
[12]Yuan B,Sun L Q,Hou S C,et al. Preparation of immobilized Chlorella and impact on N and P uptake [J]. Marine Environmental Science,2011,30(6):804—808 [袁冰,孫利芹,侯士昌,等. 固定化小球藻的制備及對(duì)N、P 吸收的影響. 海洋環(huán)境科學(xué),2011,30(6):804—808]
[13]Yang H B,Yu Y,Zhang X H,et al. Study on immobilization culture of marine microalga Chlorella vulgaris [J]. Fisheries Science,2001,20(5):4—7 [楊海波,于媛,張欣華,等. 小球藻固定化培養(yǎng)的初步研究. 水產(chǎn)科學(xué),2001,20(5):4—7]
[14]Mallick N,Rai L C. Influence of culture density,pH,organic acids and divalent cationson the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris [J]. World Journal Microbiology & Biotechnology,1993,9(2):196—201
[15]Jimntnez-Perez M V,Sanchez-Castillo P,Romera O,et al.Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure [J]. Enzyme and Microbial Technology,2004,34(5):392—398
[16]Mao X X,Jiang X M,Qian P. Effect of immobilized Prochlorococcus culture onNH+4-N removal [J]. Chinese Journal of Ecology,2014,33(11):3075—3080 [毛欣欣,蔣霞敏,錢鵬. 原綠球藻固定化培養(yǎng)去除NH+4-N的效果. 生態(tài)學(xué)雜志,2014,33(11):3075—3080]
[17]Gao P. Study on purification for livestock waste water by immobilized Microystis aeruginsa [D]. Sichuan Agricultural University. 2011 [高鵬. 固定化銅綠微囊藻及其對(duì)畜禽廢水的凈化研究. 四川農(nóng)業(yè)大學(xué). 2011]
[18]Han T T,F(xiàn)u G Q,Qi Z H,et al. Effects of aerated culture on growth,nutrient uptake,and biochemical composition in Sargassum hemiphyllum [J]. Journal of Fishery Sciences of China,2015,22(2):311—318 [韓婷婷,付貴權(quán),齊占會(huì),等. 充氣培養(yǎng)對(duì)半頁(yè)馬尾藻生長(zhǎng)、營(yíng)養(yǎng)鹽吸收和生化組成的影響. 中國(guó)水產(chǎn)科學(xué),2015,22(2):311—318]
[19]Teng H L,Huang X X,Zhou H Q,et al. Effects of bubbling on growth,use of N and P and biochemical composition of the microalgae Dunaliella salina [J]. Journal of Fisheries of China,2010,34(6):942—948 [滕懷麗,黃旭雄,周洪琪,等. 充氣方式對(duì)鹽藻生長(zhǎng)、細(xì)胞營(yíng)養(yǎng)成分及氮磷營(yíng)養(yǎng)鹽利用的影響. 水產(chǎn)學(xué)報(bào),2010,34(6):942—948]
[20]Svensen C,Egge J K,Stiansen J E. Can silicate and turbulence regulate the vertical flux of biogenic matter? A mesocosm study [J]. Marine Ecology Progress Series,2001,217:67—80
[21]Wu H Y,Gao K S,Du D H F. Short-term effects of solar ultraviolet radiation on the photochemical efficiency of Spirulina platensis in non-aerated and aerated cultures [J]. Acta Hydrobiologica Sinica,2005,29(6):673—677 [吳紅艷,高坤山,渡辺輝夫. 靜止和充氣培養(yǎng)條件下短期紫外輻射對(duì)鈍頂螺旋藻光化學(xué)效率的影響. 水生生物學(xué)報(bào),2005,29(6):673—677]
[22]Xu J T,Gao K S. Co-effects of CO2and solar UVR on the growth and photosynthetic performance of the economic red macroalga Porphyra haitanensis [J]. Acta Oceanologica Sinica,2013,35(5):184—190 [徐軍田,高坤山. CO2升高和陽(yáng)光紫外線輻射對(duì)壇紫菜生長(zhǎng)和光和特性的耦合效應(yīng). 海洋學(xué)報(bào),2013,35(5):184—190]
[23]Rodríguez-Maroto J M,Jiménez C,Aguilera,et al. Air bubbling results in carbon loss during microalgal cultivation in bicarbonate-enriched media:experimental data and process modeling [J]. Aquacultural Engineering,2005,32(s3—4):493—508
[24]Zou D H. Effects of elevated atmospheric CO2on growth,photosynthesis and nitrogen metabolism in the economic brown seaweed,Hizikia fusiforme(Sargassaceae,Phaeophyta) [J]. Aquaculture,2005,250(3—4):726—735
STUDY ON REMOVAL RATE OF NH4+-N AND PO43--P BY IMMOBILIZED NANNOCHLOROPSIS OCULATA
LIANG Jing-Jing,JIANG Xia-Min,JIANG Mao-Wang,ZHANG Ze-Ling and HAN Qing-Xi
(School of Marine Sciences,Ningbo University,Ningbo 315211,China)
Microalgae Nannochloropsis oculata,immobilized with sodium alginate,was used to explore its removal efficiency ofNH+4-N andPO34--P from artificial sewage water. Algae ball size,cell densities,dosages of algae balls,and aeration cultured were applied in the single-factor. The results showed that all these conditions significant impact the removal of ofNH+4-N andPO34--P. The growth rate of K value achieved the highest value(0.332±0.002) when the diameter was 3.5 mm; the removal rate ofNH+4-N andPO34--P were the highest one at the diameter was 3.5 mm,which were(75.08±3.83)% and(80.80±3.81)%,respectively. The maximum of the growth K values was(0.330±0.033) with the density of 100×104cells/ball. The highestNH+4-N andPO34--P removal rate were(87.20±0.43)% and(82.58±1.72)%,respectively,at the group of 300×104cells/ball; however,100×104cells/ball was the optimal algal cell density based on unit algal cells removal ratio ofNH+4-N andPO34--P. The increased algae balls dosages decreased the growth rate of K values. 10 g/L group had the maximum K values(0.301±0.02) and 50 g/L had the minimum K values(0.193±0.01). The removal rates ofNH+4-N were(84.12±0.78)% and(84.63±0.45)% when the dosage was 30 g/L and 50 g/L,respectively. 30 g/L group had the highestPO34--P removal rate(77.13±1.43)%. Combined analyses revealed that 30 g/L was optimum for the dosages of algae balls. The K value,the removal ofNH+4-N andPO34--P were significantly(P<0.05) higher with aeration than non-aerated; K values were(0.306±0.006) and(0.177±0.010),respectively;NH+4-N removal rates were(85.93±0.45)% and(49.32±0.45)%,respectively;PO34--P removal rates were(66.66±5.00)% and(46.29±2.12)%,respectively. This study optimized the conditions of immobilized microalgae Nannochloropsis oculata:immobilized Nannochloropsis oculata should be aerated cultures; algae ball size was 3.5 mm; the algal cell density was 100×104cells/ball; and the dosage of algae balls was 30 g/L.
Nannochloropsis oculata; Immobilization;NH+4-N;PO34--P; Removal rate
Q142
A
1000-3207(2016)05-1033-08
10.7541/2016.134
2016-01-11;
2016-04-10
國(guó)家海洋公益項(xiàng)目(201305022); 浙江省公益項(xiàng)目(2015C3204); 寧波市科技項(xiàng)目(2015C10062)寧波市創(chuàng)新團(tuán)隊(duì)(2011B81003)資助 [Supported by the Nonprofit Research Project for the State Oceanic Administration(201305022); Nonprofit Research Project of Zhejiang Province(2015C3204); Project of Science and Technology of Ningbo City(2015C10062); the Innovative Group of Ningbo City(2011B81003)]
梁晶晶(1990—),女,河南開(kāi)封人; 碩士; 主要研究方向?yàn)槲⒃迳鷳B(tài)學(xué)。E-mail:1245558982@qq.com
蔣霞敏(1957—),女,E-mail:jiangxiamin@nbu.edu.cn