羅玉來 , 何玉梅, 趙亮
1 中國科學院地質與地球物理研究所,中國科學院地球和行星物理重點實驗室, 北京 100029 2 中國科學院地質與地球物理研究所,巖石圈演化國家重點實驗室, 北京 100029
?
東南亞下方核幔邊界D″層地震各向異性
羅玉來1, 何玉梅1, 趙亮2
1 中國科學院地質與地球物理研究所,中國科學院地球和行星物理重點實驗室, 北京100029 2 中國科學院地質與地球物理研究所,巖石圈演化國家重點實驗室, 北京100029
本文利用中國國家數(shù)字地震臺網(CDSN)和國際數(shù)字地震臺網(FDSN)的寬頻帶遠震資料,采用S和ScS震相剪切波差異分裂方法對東南亞下方核幔邊界D″層地震各向異性進行研究.共獲得了來自7個深震(>400 km)的24對高質量的S和ScS剪切波分裂參數(shù),其中S震相的分裂參數(shù)與前人上地幔各向異性研究結果十分吻合,表明S震相觀測結果反映了觀測臺站下方的上地幔各向異性.通過對上地幔各向異性校正后的波形數(shù)據進行進一步的分裂參數(shù)分析,最后得到了24個可靠的ScS剩余各向異性分裂參數(shù).結果顯示,在經度107°~112°范圍內分裂參數(shù)均為空值(Null);而在該經度范圍東西兩側區(qū)域,主要表現(xiàn)為明顯分裂特征.這種分裂參數(shù)的分布指示了核幔邊界D″層的各向異性特征的區(qū)域變化,我們推測這種變化可能與停滯在核幔邊界的古特提斯和/或古太平洋俯沖板塊相關.
核幔邊界; D″層; 地震各向異性; 剪切波分裂; S和ScS
核幔邊界D″層是指從核幔邊界(Core-Mantle Boundary, CMB)到其上方250 km左右范圍內的下地幔底部區(qū)域(Bullen, 1949),是一個強烈的熱-化學邊界層.在全地幔對流模型中這一區(qū)域可能是地幔柱起源以及板塊俯沖終結的位置,其熱結構對地幔以及外核對流都有十分重要的影響(Lay and Garnero, 2004);同時下地幔底部一些區(qū)域可能堆積了與上部地?;瘜W組分存在顯著差異的物質,反映了地幔物質和地球內部熱狀態(tài)的演化過程(Labrosse et al., 2007; Nomura et al., 2011).
地震學方法是研究地球內部結構的強有力手段,已經開展的地震學研究揭示了核幔邊界D″層的多尺度復雜結構.全球層析成像結果顯示位于非洲和太平洋下方的核幔邊界區(qū)域分別存在大尺度的剪切波低速異常區(qū),而在環(huán)太平洋區(qū)域則存在高速異常區(qū)(Grand, 2002; Panning and Romanowicz, 2006).波形擬合研究進一步顯示非洲地區(qū)下地幔底部的剪切波低速異常擾動約為-2%~-12%(Wang and Wen, 2007a);太平洋地區(qū)下地幔底部的剪切波低速異常擾動約為-3%~-5%,并且在低速區(qū)局部邊緣存在小尺度的超低速區(qū)(Ultra Low Velocity Zone, ULVZ),剪切波速度擾動可達-10%(He and Wen, 2009).對于環(huán)太平洋剪切波高速異常區(qū),波形擬合研究顯示局部區(qū)域D″層上部存在速度間斷面,其剪切波速度擾動約為+2%~+3%(Lay and Helmberger, 1983).
除了剪切波速度的不均勻分布,礦物物理實驗和地震學研究揭示D″層還具有地震各向異性特征,顯著區(qū)別于下地幔的各向同性性質(Meade et al., 1995),表明D″層具有產生地震各向異性的獨特物質結構/化學成分以及地球動力學條件.早期地震學研究中發(fā)現(xiàn)核幔邊界反射震相ScS的徑向分量和切向分量存在明顯的走時差.Cormier(1986)提出D″層的具有垂直對稱軸的橫向各向同性模型(Vertical Transversely Isotropy, VTI)來解釋這一現(xiàn)象,這成為后來學者利用走時分析方法研究D″層地震各向異性的基本假設.對核幔邊界衍射震相Sdiff的波形擬合研究表明太平洋東部局部區(qū)域D″層可能存在方位各向異性(Maupin, 1994),Garnero等(2004)則進一步用D″層的具有傾斜對稱軸的橫向各向同性模型(Tilted Transverse Isotropy, TTI)來解釋穿過加勒比海地區(qū)下方核幔邊界區(qū)域的Sdiff波形異常.非洲下方下地幔底部低速異常區(qū)邊界存在復雜的方位各向異性,可能與地幔流動狀態(tài)和強烈的剪切變形作用有關(Wang and Wen, 2007b; Lynner and Long, 2014; Ford et al., 2015).剪切波分裂研究顯示,太平洋北部和東部以及西伯利亞地區(qū)的D″層剪切波高速異常區(qū)域均存在TTI結構的各向異性,可能與俯沖板片物質及地幔流動狀態(tài)有關(Wookey et al., 2005; Wookey and Kendall, 2008; Long, 2009).對更多的D″層剪切波高速異常區(qū)域的地震各向異性進行研究,將會有助于我們進一步理解各向異性的來源,認清各向異性的形成機制.全球三維徑向各向異性模型顯示東南亞下方核幔邊界D″層是剪切波高速異常區(qū),并且橫向偏振的SH波速要大于垂直偏振的SV波速(Panning and Romanowicz, 2006).前人的研究結果進一步表明這個區(qū)域的剪切波高速異常區(qū)被一個非異常區(qū)分為東西兩部分,推測和不同的古俯沖板塊相關(He and Wen, 2011).對這個區(qū)域核幔邊界D″層的地震各向異性分布特征的研究有助于進一步理解這一區(qū)域的地球動力學演化過程,具有重要的科學意義.
剪切波分裂參數(shù)分析方法是獲取各向異性信息的有效手段.國內外學者通過分析多種震相資料的分裂參數(shù)可以約束地球內部地殼和上地幔各向異性,深刻反映了過去或者現(xiàn)今大規(guī)模的構造運動和上地幔變形特征(Chen et al., 2005; Li and Chen, 2006; Levin et al., 2008; 江麗君等, 2010; Li et al., 2010, 2011; Huang et al., 2011; Nagaya et al., 2011; Zhao et al., 2011; 馮強強等,2012; Chen et al., 2015; 于勇等,2016).由于地震各向異性廣泛分布于地殼和上地幔區(qū)域,因此穿過D″層震相的剪切波分裂參數(shù)通常無法直接反映D″層的地震各向異性.但通過選擇特定震相對進行剪切波分裂參數(shù)分析,消除地殼和上地幔各向異性對單個震相的影響,也能夠有效地獲得D″層的各向異性信息(Wookey et al., 2005; Wookey and Kendall, 2008; Long, 2009).例如直達S和ScS這對震相(圖1)的剪切波分裂參數(shù),可以對核幔邊界D″各向異性進行很好的約束.直達S波攜帶的是震源一側上地幔以及接收臺站下方地殼和上地幔的各向異性信息;而ScS波是核幔邊界的反射波,在一定震中距范圍內與直達S波在地殼和上地幔區(qū)域的射線路徑非常相近,不同之處在于其經過核幔邊界D″層,從而攜帶有D″層的各向異性信息.因此直達S和ScS的剪切波分裂參數(shù)若存在差異,則可能反映的是D″層地震各向異性.
在本研究中,我們使用來自深震的S和ScS震相對,通過把S震相的分裂參數(shù)作為上地幔各向異性校正量,對相應的ScS波形數(shù)據進行上地幔各向異性校正,獲得了東南亞下方下地幔底部的各向異性的異常分布.結合前人速度結構的研究結果,我們推測這里的地震各向異性變化可能與古俯沖板塊相關.
本研究收集了中國國家數(shù)字地震臺網寬頻帶臺站記錄的2001年至2015年,震中距55°~85°,震級大于5.8的地震資料(鄭秀芬等,2009),同時利用國際數(shù)字地震臺網FDSN的臺站來增加研究區(qū)域的數(shù)據覆蓋(圖2).這些臺站主要記錄了西太平洋以及東南亞地區(qū)的地震事件,ScS在CMB的反射點對于中國大陸和東南亞下方的核幔邊界D″層有較好的覆蓋.
圖1 震中距50°至80°的直達S (紅色線)、ScS(綠色線)射線路徑黑色五角星表示震源位置.這些路徑是基于地球基本參考模型PREM (Dziewonski and Anderson, 1981)和300 km的震源深度計算得出的.Fig.1 Raypaths of direct S (red lines) and ScS (green lines) waves at epicentral distances from 50° to 80°These raypaths are calculated using PREM (Dziewonski and Anderson, 1981) and a source depth of 300 km.
圖2 (a)本研究使用的所有臺站(綠色三角形)、地震事件(藍色五角星)、射線路徑(灰色曲線)以及ScS核幔邊界反射點(紅色十字)的位置分布圖. (b)和(a)類似,表示最終挑選的24對S和ScS震相相應的臺站、地震事件、射線路徑以及ScS在核幔邊界反射點的位置分布圖.背景是從全球層析成像模型GyPSuM (Simmons et al., 2010)中獲得的核幔邊界剪切波速度擾動圖Fig.2 (a) Seismic stations (green triangles), earthquakes (blue stars) and great circle paths (gray lines), along with the CMB reflection points of ScS (red crosses) used in this study. (b) Same as (a) but for the selected 24 pairs ScS-S data. The background is shear-velocity perturbations from a global shear-velocity tomographic model GyPSuM (Simmons et al., 2010)
對采集的地震數(shù)據去中值和趨勢,同時考慮到S和ScS震相的主頻范圍約為0.05~0.1 Hz,對所有數(shù)據進行0.01~0.3 Hz的雙通道雙極點Butterworth帶通濾波以壓制噪聲,提高信噪比,然后挑選S和ScS波形清晰的高信噪比地震記錄進行后續(xù)數(shù)據處理.為了減少震源一側上地幔區(qū)域各向異性的影響,選擇震源深度大于400 km的事件,同時深震的數(shù)據具有較高的信噪比,保證隨后剪切波分裂參數(shù)測量結果的可靠性.實際本研究開始時,并未對研究所使用事件的震源深度做出限制,因為S和ScS差異分裂研究方法同樣可以應用于淺震,結合SK(K)S分裂結果估計震源一側的各向異性,用于校正ScS震相波形.但隨著研究展開,高質量的S和ScS震相對分裂參數(shù)測量結果均來自深震數(shù)據,因此這些測量結果不包含震源一側地震各向異性信息.
在進行剪切波分裂參數(shù)分析之前要保證臺站儀器三分量極性的可靠性,因此我們采用Niu和Li (2011)的研究結果對定向存在偏差的部分CDSN臺站進行極性校正,然后利用SplitLab (Wüstefeld et al., 2008)程序,同時采用旋轉互相關法(Fukao, 1984)和特征值法(Silver and Chan, 1991)對S和ScS震相進行分裂參數(shù)分析(圖 3).為了確保測量結果的可靠性,我們只保留旋轉互相關法和特征值法測量結果一致的分裂參數(shù),并進一步根據各向異性校正后的質點運動軌跡篩選線性偏振程度高的結果,最終獲得了24對高質量的S和ScS分裂參數(shù),24對數(shù)據的地理分布如圖2b所示.表1給出了24對S和ScS震相的事件列表, 圖3給出了分裂參數(shù)測量的一個實例.所有結果及相關信息將匯總在表2中.
表1 24對分裂參數(shù)使用的地震事件Table 1 Events used for 24 pairs of parameters in this study
表2 S和ScS分裂研究結果Table 2 S and ScS splitting results
注:1—馮強強等,2012;2—Chen et al., 2005;3—Huang et al., 2011.ΓS和ΓScS分別表示觀測的S和ScS剪切波分裂參數(shù)最優(yōu)值;ΓUM表示前人上地幔各向異性研究結果(分別來自1, 2, 3),并且ΓUM列中的“-”表示該地震臺目前沒有已發(fā)表的上地幔各向異性研究結果;ΓScS-S表示以觀測的S分裂參數(shù)作為上地幔各向異性校正量對ScS進行校正后測量的ScS剩余分裂參數(shù);φ*表示射線坐標系中ScS剩余分裂參數(shù)的快波偏振方向.事件序號來自表1.
至此本研究獲得了24對S和ScS的各向異性分裂參數(shù),同一對S和ScS分裂參數(shù)并不完全一致,有些存在明顯差異(特別是分裂時間).這種差異可能包含了來自核幔邊界D″層的地震各向異性信息,需要做進一步分析從數(shù)據中提取出來.對核幔邊界D″層地震各向異性研究需要對上地幔各向異性有較好的認識,因為所有能夠反映D″層地震各向異性的震相都不可避免的受到上地幔各向異性的影響,包括此處的ScS震相.因此需要對ScS進行上地幔各向異性校正,得到ScS剩余分裂參數(shù)做進一步分析.
2.1上地幔各向異性
前人在臺站所在區(qū)域利用SKS、SKKS和深震S等多種震相資料進行剪切波分裂參數(shù)觀測研究,取得了上地幔地震各向異性的可靠結果(Chen et al., 2005; Huang et al, 2011; 馮強強等, 2012).將本研究的深震S震相分裂參數(shù)ΓS與前人上地幔各向異性研究結果ΓUM進行對比,發(fā)現(xiàn)兩者具有高度的一致性(表 2),表明本研究中深震S波的分裂參數(shù)主要反映了臺站下方的上地幔各向異性.
以深震S震相的分裂參數(shù)作為本研究的上地幔各向異性校正量,對波形數(shù)據進行上地幔各向異性校正,結果顯示校正后深震S震相的分裂參數(shù)測量結果均為空值(Null),即無分裂狀態(tài),并且質點運動軌跡呈現(xiàn)很好的線性特征;同時我們采用Harvard Global CMT的震源機制解(www.globalcmt.org)(表3),利用位錯點源模型計算遠場S波的理論偏振方向,并與校正后的深震S波質點運動進行對比,發(fā)現(xiàn)質點運動與理論偏振方向兩者吻合得很好(圖4).以上結果表明了上地幔各向異性校正的可靠性,同時避免在校正過程中人為引入新的各向異性.
表3 各事件CMT震源機制解Table 3 CMT focal mechanisms of events
2.2核幔邊界各向異性
對地震數(shù)據進行上地幔各向異性校正后,S震相各向異性效應已被消除,質點振動呈線性(圖4中II列);對ScS震相質點振動分析結果顯示,19個波形數(shù)據的ScS震相質點呈現(xiàn)出顯著的橢圓運動軌跡(如圖4中的ZSU和HYS),表明這些數(shù)據中仍然存在顯著的ScS剩余各向異性,進一步對ScS剩余各向異性進行測量,分裂參數(shù)ΓScS-S見表2;其余5個ScS震相質點呈現(xiàn)較為明顯的線性運動軌跡(如圖4中的HEF和JHE),表明上地幔各向異性校正后的ScS剩余各向異性為Null.
由于下地幔區(qū)域除了核幔邊界D″層有顯著的地震各向異性,其余部分主要表現(xiàn)為各向同性(Meade et al.,1995);同一對ScS與S的差異分裂結果,即ScS剩余各向異性分裂參數(shù),反映的是ScS在核幔邊界區(qū)域路徑上的D″層各向異性信息.為了便于分析分裂參數(shù)與核幔邊界反射點以及射線路徑的幾何關系,我們將ScS剩余各向異性分裂參數(shù)從地理坐標系變換到射線坐標系中:(φ,δt)→(φ*,δt),φ*=Baz-φ,φ*表示在ScS核幔邊界反射點位置沿著近水平傳播的射線方向,觀察到的快軸方向與垂直方向的夾角(Wookey and Kendall, 2008).圖5展示了本研究最終獲得的射線坐標系下ScS剩余分裂參數(shù)的分布情況.
另外5個ScS剩余分裂參數(shù)結果為Null,其中4個分布于在經度107°~112°范圍內,表明該核幔邊界區(qū)域為各向同性,或者ScS入射波偏振方向與各向異性對稱軸垂直或平行.但以表2中事件3分裂結果為例,可以看到SCH,WSU和JHE三個臺站的剩余分裂為Null, FUY和HYS臺站的剩余分裂觀測值分別為(28°,0.9 s)和(41°,1.1 s),而這5個臺站的入射波偏振方向幾乎是一致的,表明該經度范圍內的核幔邊界各向異性顯著區(qū)別于兩側區(qū)域.同時該區(qū)域的另一個Null分裂來自事件5的HEF臺站,其入射波偏振方向又與事件3中各臺站不同.因此我們推斷經度107°~112°范圍內的Null分裂應該不是由于特定的入射波偏振方向引起的,其結果最可能代表的是局部區(qū)域的各向同性.
圖4 ZSU,HEF,JHE,HYS臺站的上地幔各向異性校正后S偏振分析和ScS剩余各向異性分析圖中第II列藍色虛線部分是去除各向異性之后的遠震S波質點運動軌跡,紅色線段表示根據CMT震源機制解計算的遠場S波偏振. 圖中IV列藍色虛線部分表示上地幔各向異性校正后ScS的質點振動圖,紅色曲線表示ScS剩余各向異性校正后的質點振動圖.Fig.4 S polarization analysis and ScS residual anisotropy analysis for stations ZSU, HEF, JHE, and HYS after correction for the upper mantle anisotropyII column blue dashed line represents S wave particle motion after anisotropy correction. Red solid line represents calculated remote S wave polarization based on CMT focal mechanism. IV column blue dashed line represents ScS particle motion after correction for upper mantle anisotropy. Red solid line represents particle motion after correction for residual ScS anisotropy.
圖5 畫在核幔邊界反射點上的ScS剩余各向異性分裂參數(shù)紅色線段表示射線參考系中的ScS分裂參數(shù)(φ*,δt),黃色圓點表示ScS剩余各向異性為空值(Null),黑色線段表示ScS射線路徑穿過核幔邊界區(qū)域的部分(CMB之上220 km范圍內). 綠色方框表示Thomas等各向異性研究中的ScS反射點分布范圍,黃色線段是疊加后的分裂結果(Thomas et al., 2007). 背景是核幔邊界剪切波速度擾動圖(He and Wen, 2011).Fig.5 ScS residual splitting parameters at reflection points of the CMBRed lines represent ScS residual splitting parameters in ray-based reference frame, yellow points represent ScS residual splitting with Null, and black lines represent seismic ray paths in the lowermost 220 km of the mantle. Green rectangle denotes the study area of Thomas, and the yellow line represents the stacking result (Thomas et al., 2007). The background is the shear velocity perturbations (He and Wen, 2011).
綜合上述分析結果,24個ScS剩余分裂參數(shù)的分布具有區(qū)域特征:在經度107°~112°范圍內,剩余各向異性分裂參數(shù)均為Null(圖5黃色圓點所示);而在該經度范圍東西兩側區(qū)域,各向異性分裂結果基本均為非Null(西側一個Null結果除外).剩余分裂參數(shù)區(qū)域分布特征表明研究區(qū)域核幔邊界D″層各向異性存在區(qū)域變化.He和Wen(2011)對歐亞大陸東部下方核幔邊界區(qū)域開展的S-ScS走時殘差分析和波形擬合研究揭示,在我們研究區(qū)域附近的核幔邊界D″層存在具有不同速度結構和不同間斷面性質的東西兩塊高速區(qū)域,可能與古特提斯和古太平洋俯沖板塊相關(van der Meer et al., 2010; He and Wen, 2011).McNamara等(2002)的地球動力學模擬結果顯示,核幔邊界區(qū)域俯沖板塊存在強烈的剪切應變.礦物物理實驗已經發(fā)現(xiàn)在D″層溫壓條件下可能存在鈣鈦礦(pv)到過鈣鈦礦(ppv)的相變,導致速度結構的異常.在強烈的剪切應變條件下,過鈣鈦礦的晶格優(yōu)勢排列(LPO,Lattice Preferred Orientation)則可能是造成剪切波高速區(qū)D″層存在顯著各向異性的微觀機制(Murakami et al., 2004; Nowacki et al., 2013).結合前人研究結果,我們推測本研究中各向異性的區(qū)域變化可能同樣與古特提斯和/或古太平洋俯沖板塊相關(圖 6).
圖6 各向異性區(qū)域變化的可能解釋Fig.6 Schematic representation of potential scenarios that could explain the observed ScS residual splitting parameters
前人研究結果表明約束TTI對稱軸的幾何參數(shù)需要采用多路徑多方位角分布的各向異性分裂參數(shù)(Wookey et al., 2008;Nowacki et al., 2010).受地震事件和臺站分布限制,我們獲取的高質量分裂參數(shù)均來自同一后方位角分布(125°~144°)的地震數(shù)據,因此無法利用獲得的剩余分裂參數(shù)對該區(qū)域核幔邊界D″層TTI對稱結構做出進一步的約束.另外本研究中高質量的各向異性參數(shù)數(shù)量仍然有限,目前還無法約束不同各向異性區(qū)域的分布范圍.進一步的研究需要結合其他震相對的研究結果,如SKS和SKKS差異分裂(Niu and Perez, 2004; Long,2009; He and Long, 2011; Ford et al., 2015)等,來共同約束可能的各向異性對稱結構,提高對各向異性精細結構的分辨能力,從而進一步探討核幔邊界D″層各向異性產生的機制及相應的地球動力學過程.
致謝感謝中國地震局地球物理研究所國家數(shù)字測震臺網數(shù)據備份中心為本研究提供CDSN臺網地震波形數(shù)據,感謝IRIS為本研究提供FDSN臺網的地震波形數(shù)據.研究中使用Wüstefeld的SplitLab軟件對S和ScS進行剪切波分裂參數(shù)的分析.
Bullen K E. 1949. Compressibility-pressure hypothesis and the Earth′s interior.GeophysicalJournalInternational, 5(9): 355-368.
Chen Y P, Wang L S, Mi N, et al. 2005. Shear wave splitting observations in the Chinese Tianshan orogenic belt.GeophysicalResearchLetters, 32(7): 303-341. Chen Y, Li W, Yuan X H, et al. 2015. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements.Earth&PlanetaryScienceLetters, 413: 13-24.
Cormier V F. 1986. Synthesis of body waves in transversely isotropic Earth models.BulletinoftheSeismologicalSocietyofAmerica, 76(1): 231-240.
Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model.PhysicsoftheEarth&PlanetaryInteriors, 25(4): 297-356.
Feng Q Q, Wu Q J, Li Y H, et al. 2012. Shear wave splitting in Xinjiang region.ActaSeismologicaSinica(in Chinese), 34(3): 296-307.
Ford H A, Long M D, He X B, et al. 2015. Lowermost mantle flow at the eastern edge of the African Large Low Shear Velocity Province.Earth&PlanetaryScienceLetters, 420: 12-22.
Fukao Y. 1984. Evidence from core-reflected shear waves for anisotropy in the Earth′s mantle.Nature, 309(5970): 695-698. Garnero E J, Maupin V, Lay T, et al. 2004. Variable azimuthal anisotropy in Earth′s lowermost mantle.Science, 306(5694): 259-261.
Grand S P. 2002. Mantle shear-wave tomography and the fate of subducted slabs.PhilosophicalTransactionsoftheRoyalSocietyA:Mathematical,Physical&EngineeringSciences, 360(1800): 2475-2491. He X B, Long M D. 2011. Lowermost mantle anisotropy beneath the northwestern Pacific: Evidence from PcS, ScS, SKS, and SKKS phases.Geochemistry,Geophysics,Geosystems, 12(12), doi:10.1029/2011GC003779.
He Y M, Wen L X. 2009. Structural features and shear-velocity structure of the “Pacific Anomaly”.JournalofGeophysicalResearch, 114(B2),doi:10.1029/2008JB005814.
He Y M, Wen L X. 2011. Seismic velocity structures and detailed features of the D″ discontinuity near the core-mantle boundary beneath eastern Eurasia.PhysicsoftheEarth&PlanetaryInteriors, 189(3-4): 176-184. Huang Z C, Wang L S, Zhao D P, et al. 2011. Seismic anisotropy and mantle dynamics beneath China.Earth&PlanetaryScienceLetters, 306(1-2): 105-117.
Jiang L J, Li Y H, Wu Q J. 2010. The shear wave splitting of Central Tien Shan and its implications.ChineseJ.Geophys. (in Chinese), 53(6): 1399-1408, doi: 10.3969/j.issn.0001-5733.2010.06.018.
Labrosse S, Hernlund J W, Coltice N. 2007. A crystallizing dense magma ocean at the base of the Earth′s mantle.Nature, 450(7171): 866-869.
Lay T, Helmberger D V. 1983. A lower mantle S-wave triplication and the shear velocity structure of D″.GeophysicalJournalInternational, 75(3): 799-837. Lay T, Garnero E J. 2004. Core-mantle boundary structures and processes. ∥ Sparks R S J, Hawkesworth C J eds. The State of the Planet: Frontiers and Challenges in Geophysics. Washington, DC: AGU. Levin V, Roecker S, Graham P, et al. 2008. Seismic anisotropy indicators in Western Tibet: Shear wave splitting and receiver function analysis.Tectonophysics, 462(1-4): 99-108.
Li A B, Chen C Z. 2006. Shear wave splitting beneath the central Tien Shan and tectonic implications.GeophysicalResearchLetters, 33(22): 217-234.Li Y H, Wu Q J, Jiang L J, et al. 2010. Complex seismic anisotropic structure beneath the central Tien Shan revealed by shear wave splitting analyses.GeophysicalJournalInternational, 181(3): 1678-1686. Li Y H, Wu Q J, Zhang F X, et al. 2011. Seismic anisotropy of the Northeastern Tibetan Plateau from shear wave splitting analysis.Earth&PlanetaryScienceLetters, 304(1-2): 147-157. Long M D. 2009. Complex anisotropy in D″ beneath the eastern Pacific from SKS-SKKS splitting discrepancies.Earth&PlanetaryScienceLetters, 283(1-4): 181-189. Lynner C, Long M D. 2014. Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP.GeophysicalResearchLetters, 41(10): 3447-3454.
Maupin V. 1994. On the possibility of anisotropy in the D″ layer as inferred from the polarization of diffracted S-waves.PhysicsoftheEarth&PlanetaryInteriors, 87(1-2): 1-32.
McNamara A K, van Keken P E, Karato S I. 2002. Development of anisotropic structure in the Earth′s lower mantle by solid-state convection.Nature, 416(6878): 310-314.
Meade C P, Silver P G, Kaneshima S. 1995. Laboratory and seismological observations of lower mantle isotropy.GeophysicalResearchLetters, 22(10): 1293-1296. Murakami M, Hirose K, Kawamura K, et al. 2004. Post-perovskite phase transition in MgSiO3.Science, 304(5672): 855-858.
Nagaya M, Oda H, Kamimoto T. 2011. Regional variation in shear-wave polarization anisotropy of the crust in southwest Japan as estimated by splitting analysis of Ps-converted waves on receiver functions.PhysicsoftheEarth&PlanetaryInteriors, 187(1-2): 56-65. Niu F L, Perez A M. 2004. Seismic anisotropy in the lower mantle: A comparison of waveform splitting of SKS and SKKS.GeophysicalResearchLetter, 31(24): 357-370.
Niu F L, Li J. 2011. Component azimuths of the CEArray stations estimated from P-wave particle motion.EarthquakeScience, 24(1): 3-13.
Nomura R, Ozawa H, Tateno S, et al. 2011. Spin crossover and iron-rich silicate melt in the Earth′s deep mantle.Nature, 473(7346): 199-203.
Nowacki A, Wookey J, Kendall J M. 2010. Deformation of the lowermost mantle from seismic anisotropy.Nature, 467(7319): 1091-1094. Nowacki A, Walker A M, Wookey J, et al. 2013. Evaluating post-perovskite as a cause of D″ anisotropy in regions of palaeosubduction.GeophysicalJournalInternational, 192(3): 1085-1090. Panning M, Romanowicz B. 2006. A three-dimensional radially anisotropic model of shear velocity in the whole mantle.GeophysicalJournalInternational, 167(1): 361-379. Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation.JournalofGeophysicalResearch:SolidEarth, 96(B10): 16429-16454. Simmons N A, Forte A M, Boschi L, et al. 2010. GyPSuM: A joint tomographic model of mantle density and seismic wave speeds.JournalofGeophysicalResearch, 115(B12): 424-440.Thomas C, Wookey J, Simpson M. 2007. D″ anisotropy beneath Southeast Asia.GeophysicalResearchLetters, 34(4), doi:10.1029/2006GL028965.van der Meer D G, Spakman W, van Hinsbergen D, et al. 2010. Towards absolute plate motions constrained by lower-mantle slab remnants.NatureGeoscience, 3(1): 36-40.
Wang Y, Wen L X. 2007a. Geometry and P and S velocity structure
of the “African Anomaly”.JournalofGeophysicalResearch, 112(B5), doi:10.1029/2006JB004483.
Wang Y, Wen L X. 2007b. Complex seismic anisotropy at the border of a very low velocity province at the base of the Earth′s mantle.JournalofGeophysicalResearch, 112(B9), doi:10.1029/2006JB004719.
Wookey J, Kendall J M. 2008. Constraints on lowermost mantle mineralogy and fabric beneath Siberia from seismic anisotropy.Earth&PlanetaryScienceLetters, 275: 32-42.
Wookey J, Kendall J M, Rumpker G. 2005. Lowermost mantle anisotropy beneath the north Pacific from differential S-ScS splitting.GeophysicalJournalInternational, 161(3): 829-838. Wüstefeld A, Bokelmann G, Zaroli C, et al. 2008. SplitLab: A shear-wave splitting environment in Matlab.Computers&Geosciences, 34(5): 515-528.
Yu Y, Chen Y S, Jian H C, et al. 2016. SKS wave splitting study of the transition zone at the central portion of the North China Craton.ChineseJ.Geophys. (in Chinese), 59(1): 141-151, doi: 10.6038/cjg20160111. Zhao L, Zheng T Y, Lü G, et al. 2011. No direct correlation of mantle flow beneath the North China Craton to the India-Eurasia collision: Constraints from new SKS wave splitting measurements.GeophysicalJournalInternational, 187(2): 1027-1037. Zheng X F, Ouyang B, Zhang D N, et al. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake.ChineseJ.Geophys. (in Chinese), 52(5): 1412-1417, doi: 10.3969/j.issn.0001-5733.2009.05.031.
附中文參考文獻
馮強強, 吳慶舉, 李永華等. 2012. 新疆地區(qū)S波分裂研究. 地震學報, 34(3): 296-307.
江麗君, 李永華, 吳慶舉. 2010. 中天山及鄰區(qū)S波分裂研究及其動力學意義. 地球物理學報, 53(6): 1399-1408, doi: 10.3969/j.issn.0001-5733.2010.06.018.
于勇, 陳永順, 菅漢超等. 2016. 華北克拉通中部過渡帶SKS波分裂研究: 鄂爾多斯東南角的局部軟流圈繞流. 地球物理學報, 59(1): 141-151, doi: 10.6038/cjg20160111.
鄭秀芬, 歐陽飚, 張東寧等. 2009. “國家數(shù)字測震臺網數(shù)據備份中心”技術系統(tǒng)建設及其對汶川大地震研究的數(shù)據支撐. 地球物理學報, 52(5): 1412-1417, doi: 10.3969/j.issn.0001-5733.2009.05.031.
(本文編輯何燕)
Seismic anisotropy in the D″ layer near the core-mantle boundary beneath Southeast Asia
LUO Yu-Lai1, HE Yu-Mei1, ZHAO Liang2
1KeyLaboratoryofEarthandPlanetaryPhysics,ChineseAcademyofSciences,InstituteofGeologyandGeophysics,ChineseAcademyofSciences,Beijing100029,China2StateKeyLaboratoryofLithosphericEvolution,InstituteofGeologyandGeophysics,ChineseAcademyofSciences,Beijing100029,China
We probe lowermost mantle seismic anisotropy beneath Southeast Asia based on S and ScS differential splitting measurements of the broadband teleseismic data recorded by the Chinese Digital Seismic Network (CDSN) and the International Federation of Digital Seismograph Networks (FDSN). Twenty-four pairs of high-quality S and ScS shear wave splitting parameters from 7 deep events (>400 km) are obtained. Splitting parameters of S phases agree well with previous work, indicating upper mantle anisotropy beneath seismic stations. After correction for the upper mantle anisotropy and further analysis of the splitting parameters, we obtain 24 reliable ScS residual splitting parameters. Our results show Null splitting in the area between 107°~112° while non-Null splitting dominating to the east and west. Our results suggest that the distributions of splitting parameters indicate regional variation of the lowermost mantle anisotropy, which may be related with stagnant ancient Tethys and/or Pacific plates.
Core-mantle boundary; D″ layer; Seismic anisotropy; Shear wave splitting; S and ScS
10.6038/cjg20161014.
國家自然科學基金(41474042)資助.
羅玉來,男,1987年生,博士研究生,主要從事核幔邊界各向異性研究.E-mail:luoyulai10@mails.gucas.ac.cn
10.6038/cjg20161014
P315
2016-02-24,2016-07-15收修定稿
羅玉來, 何玉梅, 趙亮. 2016. 東南亞下方核幔邊界D″層地震各向異性. 地球物理學報,59(10):3674-3683,
Luo Y L, He Y M, Zhao L. 2016. Seismic anisotropy in the D″ layer near the core-mantle boundary beneath Southeast Asia.ChineseJ.Geophys. (in Chinese),59(10):3674-3683,doi:10.6038/cjg20161014.