• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    十二烷基苯磺酸鈉和無機陽離子之間相互作用的密度泛函理論研究

    2016-11-08 06:00:24劉志宏范成成張?zhí)锾?/span>紀(jì)賢晶陳生輝孫霜青胡松青中國石化勝利油田有限公司地質(zhì)科學(xué)研究院山東東營5705中國石油大學(xué)華東理學(xué)院山東青島66580山東省高校新能源物理與材料科學(xué)重點實驗室山東青島66580
    物理化學(xué)學(xué)報 2016年2期
    關(guān)鍵詞:烷基苯無機鹽磺酸鈉

    劉志宏 范成成 張?zhí)锾铩〖o(jì)賢晶 陳生輝 孫霜青, 胡松青,,*(中國石化勝利油田有限公司地質(zhì)科學(xué)研究院,山東東營5705;中國石油大學(xué)(華東)理學(xué)院,山東青島66580;山東省高校新能源物理與材料科學(xué)重點實驗室,山東青島66580)

    十二烷基苯磺酸鈉和無機陽離子之間相互作用的密度泛函理論研究

    劉志宏1范成成2張?zhí)锾?紀(jì)賢晶2陳生輝2孫霜青2,3胡松青2,3,*
    (1中國石化勝利油田有限公司地質(zhì)科學(xué)研究院,山東東營257015;2中國石油大學(xué)(華東)理學(xué)院,山東青島266580;3山東省高校新能源物理與材料科學(xué)重點實驗室,山東青島266580)

    研究陰離子表面活性劑和陽離子之間的相互作用對于理解陰離子表面活性劑的沉淀和溶解現(xiàn)象具有十分重要的理論和實際意義,但關(guān)于兩者相互作用的相關(guān)理論模型鮮有報道。本文采用密度泛函理論(DFT)方法研究了十二烷基苯磺酸根陰離子(DBS-)與陽離子(Na+,Mg2+和Ca2+)在溶液內(nèi)及氣/液界面處的相互作用。在溶液內(nèi),在兩種不同溶液環(huán)境中(水相和正十二烷)構(gòu)建DBS-/陽離子相互作用模型,并對其進行優(yōu)化。結(jié)果表明,DBS-能夠與陽離子以雙齒結(jié)構(gòu)穩(wěn)定結(jié)合。DBS-與陽離子的結(jié)合能不僅取決于參與的無機鹽離子種類,還與溶劑的性質(zhì)有關(guān)。在氣/液界面處,DBS-與六個水分子相互作用形成的水合物DBS-?6H2O最為穩(wěn)定。但是,無機鹽離子的引入會嚴(yán)重破壞DBS-?6H2O水合物的水化層結(jié)構(gòu)。本文定義無量綱參量def用來對水化層結(jié)構(gòu)的變化程度進行評價。無機鹽離子對DBS-?6H2O水化層結(jié)構(gòu)破壞程度的順序為:Ca2+>Mg2+> Na+。電荷分析結(jié)果表明水化層在十二烷基苯磺酸鈉(SDBS)頭基與陽離子的相互作用中起了重要作用。

    十二烷基苯磺酸鈉;陽離子;相互作用;氣/液界面;電荷分布;密度泛函理論

    doi:10.3866/PKU.WHXB201512013

    1 Introduction

    Anionic surfactants are the most common surfactant products, whichhavebeenextensivelyappliedinmanyfields,suchasfroth flotation,detergency,purification,soliddispersion,pharmaceutical, enhanced oil recovery(EOR),etc1-4.However,mineral cations, such as Na+,Mg2+,and Ca2+,can significantly affect the macroscopic properties of surfactants,including surface tension,solubility,aggregation morphology,etc5-7.It potentially causes the precipitation and even ineffectiveness of anionic surfactants in many applications8,9.Therefore,it is of great significance to investigating the interaction behaviors between anionic surfactants and cations.

    Over the past several years,experimental studies10-12and molecular dynamics(MD)simulations13-16on the interactions between anionic surfactants and inorganic salts have been reported.Bordes et al.10studied the interactions of three dicarboxylic amino acidbased surfactants with calcium ions based on the surface tension measurement and the nuclear magnetic resonance(NMR)analysis. They inferred that dodecylaminomalonate and dodecylaspartate could form intramolecular chelates with calcium ions,while dodecylglutamate preferred to form an intermolecular complex. Pereira et al.12studied the interactions of calcium ions with carboxylate anions under different alkyl chain lengths through turbidity,conductivity,and potentiometric measurements.They concluded that the electrostatic effect plays an important role in ordering the carboxylate anions before precipitation.MD simulations mainly emphasize the effect of cations on the self-assembly of surfactants at the interface or in the solution,supplying a detailed and atomistic insight into the three dimensional structures of the studied systems.However,both experimental techniques and MD simulations are incapable of accurately describing the structural and electrostatic properties.

    Quantum mechanics(QM)technique has been employed into a variety of studies of surfactants17-21,but seldom reported on the study of the interactions of surfactants with ions.Zieliński and Szymusiak22performed density functional theory(DFT)calculations on the stability of water clusters surrounding the headgroup of alkyl-ammonium surfactant in the presence of different counterions.They found that stable water clusters could form if no less than three water molecules were contained.Yuan et al.23,24investigated the effect of cation types on the structure and charge distributions of both the anionic and zwitterionic surfactants using DFT method and conductor-like screening model(COSMO). Vlachy et al.25studied the interactions of the charged surfactant headgroups with aqueous ions based on computational studies with a combined method of molecular dynamics simulation and an ab initio calculation.They proposed a Hofmeister-like ordering of charged headgroups to describe and qualitatively predict ionheadgroup interaction for a wide range of systems and applications.

    Upon dissolving in water,partial surfactant molecules are capable of adsorbing at the air/water interface,while the rest can present in the solution in the form of monomer or micelle,as shown in Fig.1.Unlike the surfactant monomer in the solution,the hydrophilic headgroups of the surfactant molecules at the air/water interface tend to adsorb on the interface while the hydrophobic tails are excluded from the water into the air.Additionally,the water molecules around the surfactant headgroup are thought to play an important role in the interactions between the surfactants and the inorganic salts according to MD simulations13,14.It is hence necessary to investigate the interactions of the surfactants and the cations both inside the solution and at the air/water interface.For the surfactant molecules in the micelle,the hydrophilic headgroups are in direct contact with water molecules while the rest are located in a water-free environment.It is reasonable to consider the surfactant molecule in the micelle as the case of that adsorbed at the air/water interface.

    DFT is an extensively used method in investigating the hydrogen systems26-28and the structural transformation caused by the participation of ions29.In this paper,DFT method was used to investigate the molecular properties of the surfactant sodium dodecylbenzenesulfonate(SDBS),as well as the interactions between the dodecylbenzenesulfonate anion(DBS-)and different cations(Na+,Mg2+,and Ca2+).The binding mechanism and binding strength were comparatively studied inside the water solution and the n-dodecane solution separately in order to obtain the influence of the solvents.At the air/water interface,a hydrated complex of DBS-was constructed to describe the adsorbed surfactant molecule at the air/water interface.The effect of the cations on the structure and charge distribution of the hydrated complex was discussed as well. Mg2+>Na+.Acharge analysis reveals that the hydration shell plays an important role in the interactions between the sodium dodecyl benzene sulfonate(SDBS)headgroup and the cation.

    Fig.1 Schematic diagram of the surfactant/cation system in the aqueous solution with mineral cations

    2 Simulation method and technical details

    In this work,all DFT calculations were carried out using the generalized gradient approximation(GGA)with the Perdew-Burke-Ernzerhof(PBE)functional.The all-electron Kohn-Sham wave functions and double numerical plus polarization(DNP)30,31numerical basis set were selected.To minimize errors,the energies mentioned were all corrected with zero point vibrational energy (ZPVE corrected)22.Atomic charges were calculated using the Mulliken population analysis.All calculations were performed using Material Studio software(Accelrys,Inc).

    In the process of the crude oil displacement,surfactants distribute in both water and oil phases.As the main constituent of crude oil,n-dodecane can be used to represent the oil phase in laboratory experiments or theoretical simulations.Therefore, water and n-dodecane environments were selected in this work and described by COSMO which is a well-established continuum solvation model incorporating solvation effects into the quantum mechanical calculation32.The dielectric constant of the water in the COSMO model was 78.54,while the dielectric constant of the ndodecane was set to 2.02.

    In the construction of hydrated complexes of DBS-with different numbers of water molecules,the monohydrated complex was first determined by comparing the energy of all monohydrated configurations and choosing the one with the lowest energy.For the dihydrated complex,a second water molecule was added to the chosen monohydrated complex and then the dihydrated configuration with the lowest energy was found.By repeating this procedure,the hydrated complexes of DBS-with different numbers of water molecules(n=1-8)were constructed,as shown in Fig.2.

    Fig.2 Configurations of the DBS-?nH2O complexes(n=1-8)

    The second order difference of interaction energy is usually used to estimate the stability of clusters33,34.The first and second order difference of the interaction energy between the DBS-and the water molecules(i.e.Δ1D(n)and Δ2D(n),respectively)could be calculated according to the following equations:

    where ΔE(n)is the interaction energy between DBS-and n water molecules.Δ1D(n)indicates the ability to form the DBS-?nH2O complex.Alarger Δ1D(n)means that it is easier to form the DBS-?nH2O complex.Similarly,Δ1D(n+1)indicates the ability to form the DBS-?(n+1)H2O complex.Δ2D(n)is the difference between Δ1D(n)and Δ1D(n+1),and it can be used to evaluate the stability of the DBS-?nH2O complex.

    3 Results and discussion

    3.1Molecular properties of the single surfactant molecule

    The fully optimized geometry of DBS-is shown in Fig.3.It can be seen that the DBS-exhibits a non-planar geometry.The angle between the long hydrocarbon chain and the line connecting the sulfur atom(S15)and the alpha-carbon(C7)is 144.3°.The length of the hydrocarbon chain(C7…H51)is 1.5009 nm.Table 1 lists the geometry parameters of the sulfonate group.The bond lengths of S15―O16,S15―O17,and S15―O18 are 0.1486,0.1488,and 0.1488 nm,respectively.In addition,the angle of∠O―S―O ranges from 112.7°to 113.3°.Considering the approximate bond length of S―O and angle of O―S―O,the sulfonate group is supposed to be a delocalized structure.The S―O bonds have the same chemical nature,which can also be supported by the results of bond order calculated using Mayer population analysis35.

    Fig.3 Geometry of the fully optimized DBS-

    According to the frontier molecular orbital theory36,the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)can be used to determine the way that the molecule interacts with other species.Fig.4 shows the electronic density distributions of HOMO and LUMO for DBS-.The HOMO is located on the sulfonate group with the energy of-0.20754 a.u.,while the LUMO mainly distributes over the sixmembered aromatic phenyl group with the energy of-0.05298 a.u.This indicates that the headgroup is highly active.

    Table1 Geometry parameters of the optimized DBS-

    Fig.4 Isosurfaces of the frontier orbitals

    The contributions of individual atoms to the frontier orbital are shown in Fig.5.The oxygen atoms in the sulfonate group make a contribution of nearly one hundred percent to the HOMO,and the contributions of O16,O17,and O18 are 33.5%,33.2%,and 32.9%,respectively.Therefore,these oxygen atoms in the headgroup will act as the reaction sites,and donate electrons when the DBS-interacts with the cations,water molecules or positively charged solid surfaces.It should be pointed out that,the difference of the oxygen atoms in the sulfonate group will not be considered. In addition to the carbon atoms in the phenyl group,atoms in the sulfonate group,and hydrogen atoms in the α-methylene group also contribute to the LUMO,which agrees well with the results displayed in the isosurfaces.

    Fig.5 Atomic contributions of individual atoms to the frontier orbitals of DBS-

    3.2Surfactant-cation interaction inside the solution

    Based on the structural characteristics of the DBS-,three models were built to investigate the interaction between the DBS-and the cation inside the solution.The interaction models were defined by different atomic ratios of the oxygen atom to the cation (i.e.monodentate,bidentate,and tridentate structures).Every initial model was determined by changing the distances between the oxygen atoms and the cation and choosing the model with the lowest energy.

    3.2.1Water solution

    The initial and optimized DBS-/Mg2+systems inside the water solution are shown in Fig.6.Obviously,all the interaction models fall into a similar configuration with the ratio of the oxygen atom binding stably with the cation in a bidentate form.Mg2+is located in the plane composed of the sulfur atom and two oxygen atoms, and the distances between Mg2+and the two oxygen atoms are approximately equal.It indicates that Mg2+tends to bind with DBS-in a bidentate form inside the water solution.This might be due to the fact that DBS-would form a stable four-membered ring with Mg2+.Similar interactions of DBS-with Na+and Ca2+were also studied.

    Fig.6 Initial and optimized models of DBS-/Mg2+inside the water solution

    Table 2 lists the related geometry parameters and binding energies of DBS-/cation interaction models inside the water solution. It can be found that Na+and Ca2+exhibit a same binding form with DBS-as Mg2+.The binding energy ΔE,which represents the energy change before and after the interaction,is calculated by the following formula:

    Table2 Geometry parameters and binding energies(ΔE1)of the DBS-/cation interaction models inside the water solution

    where Esaa/cationis the total energy of the optimized model,Esaaand Ecationare the energies of the surfactant and the cation,respectively. The interaction is spontaneously,thus ΔE must be negative in value.The greater the absolute value of ΔE is,the more stable thebinding configuration is.

    Inside the water solution,the binding energies of DBS-/Na+, DBS-/Mg2+,and DBS-/Ca2+are approximately-50.7,-78.7,and-147.1 kJ?mol-1,respectively.It can be seen that the absolute values of ΔE1(DBS-/Ca2+)and ΔE1(DBS-/Mg2+)are larger than ΔE1(DBS-/Na+).Once the calcium soap or magnesium soap of SDBS is formed inside the solution,they would be more difficult to be dissolved compared with the sodium soap.This can give a tentative explain to the precipitation of anionic surfactants in the condition of high salinity.

    Table3 Geometry parameters and binding energies(ΔE2)of the DBS-/cation interaction models inside the n-dodecane solution

    The interactions between anionic surfactants and cations are primarily dominated by the electrostatic effect and the hydration effect.Ca2+and Mg2+have one more positive charge than Na+,thus they bind more strongly with DBS-.For identically charged Mg2+and Ca2+,Mg2+with a smaller ionic radius37and a higher electron density is supposed to have greater electrostatic effect.However, the absolute value of ΔE1(DBS-/Ca2+)is greater than ΔE1(DBS-/ Mg2+)with a difference of 68.4 kJ?mol-1.In the aqueous solution with strong polarity,Mg2+was verified to have a strong hydration effect which can weaken the electrostatic effect.In this work, COSMO describes the response of a solvent medium by generating screening charge on the cavity surface(or solvent-accessible surface)of the solutes.Inside the water solution,Mg2+can induce more screening charge than Ca2+,which hence decreases the electrostatic effect more greatly.

    3.2.2n-Dodecane solution

    The geometry parameters and binding energies of the DBS-/ cation systems inside the n-dodecane solution are listed in Table 3.All the optimized interaction models are in the bidentate form as those inside the water solution.However,the absolute values of binding energies are significantly greater.For example,the binding energy of DBS-/Mg2+inside the n-dodecane solution reaches up to approximately-780 kJ?mol-1.This is due to the low dielectric constant of the n-dodecane solution.Inside the ndodecane solution,the hydration effect is too weak and there is not enough induced screening charge to weaken the electrostatic effect.In addition,the ΔE2(DBS-/Mg2+)is more negative than ΔE2(DBS-/Ca2+)and ΔE2(DBS-/Na+).In contrary to the result inside the water solution,Mg2+binds more strongly with the DBS-than Ca2+.As mentioned before,the hydration effect inside the ndodecane solution is weak and the electrostatic effect plays a crucial role in the interaction.The electrostatic effect between Mg2+and DBS-is much stronger than that between Ca2+and DBS-, which leads to the difference.

    3.3Surfactant -cation interaction at the air/water interface

    3.3.1The most stable hydrated complex of DBS

    In Section 2,the hydrated complexes of DBS-with different numbers of water molecules were built.Fig.7 shows the relationship between the second order difference of the interaction energy Δ2D(n)and the number of water molecules(n).It can be seen that the absolute value of Δ2D(6)is the highest,which indicates that the DBS-?6H2O is the most stable model.In other words,SDBS tends to interact with six water molecules at the air/ water interface.The water molecules surround the hydrophilic headgroup and provide a good representation for the hydration shell.

    Fig.7 Relationship between the second order difference of interaction energy(Δ2D(n))and the number of water molecules(n)

    The structure of the DBS-?6H2O complex is shown in Fig.8. W1,W2,W3,and W6 form hydrogen bonds with the headgroup directly,while W4 and W5 interact with the headgroup through the bridging of the other water molecules.The geometry parameters of formed H-bonds are listed in Table 4.The Y―X distance and H…Xdistance are in the range of 0.2765-0.3118 nmand 0.1768-0.2434 nm,respectively(where X is a hydrogen donor,and Y is the atom accepting the hydrogen).The Y―H…X angle ranges from 130.7°to 171.8°.It is well known that the energy of hydrogen bond can be qualitatively estimated according to the H…X length38.The average length of H…X between the headgroup and water molecules is 0.2051 nm,longer than those between water molecules(0.1845 nm).Therefore,H-bond between the polar headgroup and water molecule is weaker than those between water molecules.

    3.3.2Effect of the cation on the structure of the DBS-?6H2O complex

    To reduce the influence of the water molecules on the results, we constructed ideal interaction models in which all cations are located between the oxygen atoms(O16 and O18)in the headgroup.The optimized results with Na+,Mg2+,and Ca2+are pre-sented in Fig.9.Overall,Na+affects the adjacent water molecules (W1,W2,and W4)apparently,while Mg2+and Ca2+disrupt the original configuration of the whole hydration shell.

    Fig.8 Arrangement of the water molecules in the DBS-?6H2O complex

    Table4 Geometry parameters of H-bonds in the DBS-?6H2O complex

    Fig.9 Optimized interaction models

    Table 5 lists the distances between the cation and oxygen atoms (O16 and O18).The RO16-cationand RO18-cationare close to each other, suggesting that the cations still bind with the headgroup in the bidentate form as that found inside the solution.The little difference between RO16-cationand RO18-cationmight be resulted from the influence of the adjacent water molecules.Moreover,the oxygen atoms in the water molecules are found to be close to the cation, while the hydrogen atoms have relative far distances from the cation.This distribution would be favorable to the formation of H-bonds with water molecules in the bulk phase.

    Table5 RO16-cation,RO18-cation,and structural deformation parameter (def)of the hydration shell in the optimized interaction models

    def,a dimensionless parameter,was proposed to quantitatively describe the structural deformation of the hydration shell.

    where,dijandare the distances between atom i and atom j in the hydration shell before and after the introduction of a cation, respectively.Similarly,dikandare the distances between atom i in the hydration shell and oxygen atom k in the headgroup before and after the introduction of a cation,respectively.It includes two parts,(1)the total variation of distances between different atoms in the hydration shelland(2)the total variation of distances between every atom in the hydration shell and every oxygen atom in the headgroupThe results of def(listed in Table 5)clearly reveal that the disturbing degree of the each cation to the hydration shell can be arranged in a decreasing order as follows:Ca2+>Mg2+>Na+.It suggests that the divalent cation can influence the hydration shell more greatly than the monovalent cation due to the stronger electrostatic interactions.Moreover,Ca2+with larger ionic radius has a more apparent effect on the hydration shell than Mg2+.

    3.3.3Effect of the cation on the charge distribution of the DBS-?6H2O complex

    Fig.10 Charge distributions of the isolated DBS-and the hydrated DBS-?6H2O complex

    For the ionic surfactant systems,the charge distribution was often mentioned to investigate the electrostatic effect or charge related physico-chemical properties39,40.For the sake of brevity,the DBS-?6H2O complex was described in different sub-molecular groups,i.e.the hydration shell(-0.149e),the sulfonic group (-0.694e),the aromatic phenyl group(-0.102e),and the alkyl tail (-0.055e)(Fig.10).Compared with the isolated DBS-,the negative charge of corresponding sub-molecular groups in the DBS-?6H2O complex is reduced.About 14.9%negative charge transfers from the isolated surfactant molecule to the hydration shell.It should be more accurate to estimate the charge distribution of the ionic surfactant with consideration of the impact of water molecules.

    Fig.11 shows the charge redistribution of the DBS-?6H2O complex after introducing different cations.In general,Mg2+causes the most notable decrease in the total charge of the hydrated complex(-1e to-0.414e),then Ca2+(-1e to-0.525e)and Na+(-1e to-0.826e).The negative charge in hydrophobic parts (i.e.the alkyl tail and the aromatic phenyl group)decreases in the value and even turns to positive.Interestingly,the negative charge in the headgroup increases after introducing the cation.This is because the cation with positive charge attracts the negative charge of the surfactant anion concentrating in the headgroup.But the hydration shell around the headgroup plays an important role in preventing the charge transfer between the surfactant anion and cation.That is why the hydration shell is more positively charged.

    Fig.11 Charge redistributions of the DBS-?6H2O complex after introducing different cations

    4 Conclusions

    In this work,two different models have been built to investigate the interactions of the surfactant SDBS and the mineral cations both inside the solution and at the air/water interface.Firstly,the structural analysis of single DBS-anion indicates that the sulfonate headgroup is highly active and different oxygen atoms in the DBS-h(huán)ave the same interaction with the cation.Inside the solution,cations tend to bind with DBS-in a bidentate form,and the binding energy of the DBS-and the cation depends on the characteristics of both the participating cation and the solvent medium.The binding energy,which implies the binding strength of the surfactant and the cation,can be explored to correlate with the solubility of formed metal salts or estimate the salt tolerance of different surfactants.Although this method is at the price of a continuum treatment of the solvent,it still can be generalized in order to provide some microscopic information.At the air/water interface,the hydrated complex DBS-?6H2O is determined to represent the adsorbed surfactant molecule.The water molecules around the hydrophilic headgroup provide a good representation for the hydration shell.This can be taken as a wise way to represent the complicated task of the adsorption at the air/water interface in theory.A dimensionless parameter,def,is proposed to evaluate the deformation extent of the hydration shell caused by the participation of cation,and the disturbing degree of the cation follows the order:Ca2+>Mg2+>Na+.Furthermore,the hydration shell is shown to play an important role in the interaction between the surfactant headgroup and the cation based on the results of the charge analysis.

    References

    (1)Rosen,M.J.;Kunjappu,J.T.Surfactants and Interfacial Phenomena;Wiley:New Jersey,2012.

    (2)Hirasaki,G.;Miller,C.;Puerto,M.SPE Journal 2011,16,889. doi:10.2118/115386-PA

    (3)Cserháti,T.;Forgács,E.;Oros,G.Environment International 2002,28,337.doi:10.1016/S0160-4120(02)00032-6

    (4)Gomez,V.;Ferreres,L.;Pocurull,E.;Borrull,F.Talanta 2011, 84,859.doi:10.1016/j.talanta.2011.02.009

    (5)Yu,D.;Wang,Y.;Zhang,J.;Tian,M.;Han,Y.;Wang,Y. Journal of Colloid and Interface Science 2012,381,83.doi: 10.1016/j.jcis.2012.05.016

    (6)Santos,F.K.G.;Neto,E.L.B.;Moura,M.C.P.A.;Dantas,T. N.C.;Neto,A.A.D.Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009,333,156.doi: 10.1016/j.colsurfa.2008.09.040

    (7)Vakarelski,I.U.;Dushkin,C.D.Colloids and Surfaces A: Physicochemical and Engineering Aspects 2000,163,177.doi: 10.1016/S0927-7757(99)00306-4

    (8)Stellner,K.L.;Scamehorn,J.F.Langmuir 1989,5,70.doi: 10.1021/la00085a014

    (9)No?k,C.;Bavière,M.;Defives,D.Journal of Colloid and Interface Science 1987,115,36.doi:10.1016/0021-9797(87) 90006-3

    (10)Bordes,R.;Tropsch,J.;Holmberg,K.Journal of Colloid and Interface Science 2009,338,529.doi:10.1016/j. jcis.2009.06.032

    (11)Bordes,R.;Holmberg,K.Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011,391,32.doi: 10.1016/j.colsurfa.2011.03.023

    (12)Pereira,R.F.P.;Valente,A.J.M.;Fernandes,M.;Burrows,H. D.Physical Chemistry Chemical Physics 2012,14,7517.

    (13)Zhao,T.T.;Xu,G.Y.;Yuan,S.L.;Chen,Y.;Yan,H.The Journal of Physical Chemistry B 2010,114,5025.

    (14)Yan,H.;Guo,X.L.;Yuan,S.L.;Liu,C.B.Langmuir 2011, 27,5762.doi:10.1021/la1049869

    (15)Sammalkorpi,M.;Karttunen,M.;Haataja,M.The Journal of Physical Chemistry B 2009,113,5863.doi:10.1021/jp901228v

    (16)Domínguez,H.Langmuir 2009,25,9006.doi:10.1021/ la900714a

    (17)Yan,P.;Xiao,J.X.Colloids and Surfaces A:Physicochemical and Engineering Aspects 2004,244,39.doi:10.1016/j. colsurfa.2004.06.023

    (18)Motamedi,M.;Bathaie,S.Z.;Hemmateenejad,B.;Adjloo,D. Journal of Molecular Structure:Theochem 2004,678,163.

    (19)Kocherbitov,V.;Veryazov,V.;S?derman,O.Theochem 2007, 808,111.doi:10.1016/j.theochem.2006.12.043

    (20)Aime,C.;Plet,B.;Manet,S.;Schmitter,J.M.;Huc,I.;Oda, R.;Sauers,R.R.;Romsted,L.S.The Journal of Physical Chemistry B 2008,112,14435.doi:10.1021/jp802801r

    (21)Zhu,M.;Ge,F.;Zhu,R.;Wang,X.;Zheng,X.Chemosphere 2010,80,46.doi:10.1016/j.chemosphere.2010.03.044

    (22)Zieliński,R.;Szymusiak,H.International Journal of Quantum Chemistry 2004,99,724.

    (23)Li,Z.Q.;Yan,H.;Song,X.W.;Yuan,S.L.;Pan,B.L.;Wang, L.J.Acta Chimica Sinica 2011,69,898.[李振泉,延輝,宋新旺,苑世領(lǐng),潘斌林,王麗娟.物理化學(xué)學(xué)報,2011,69, 898.]doi:10.3866/PKU.WHXB20110431

    (24)Cao,X.L.;Lü,K.;Cui,X.H.;Shi,J.;Yuan,S.L.Acta Physico-Chimica Sinica 2010,26,1959.[曹緒龍,呂凱,崔曉紅,石靜,苑世領(lǐng).物理化學(xué)學(xué)報,2010,26,1959.]doi: 10.3866/PKU.WHXB20100706

    (25)Vlachy,N.;Jagoda-Cwiklik,B.;Vácha,R.;Touraud,D.; Jungwirth,P.;Kunz,W.Advances in Colloid and Interface Science 2009,146,42.doi:10.1016/j.cis.2008.09.010

    (26)Iype,E.;Nedea,S.V.;Rindt,C.C.M.;Steenhoven,A.A.V.; Zondag,H.A.;Jansen,A.P.J.The Journal of Physical Chemistry C 2012,116,18584.doi:10.1021/jp3025649

    (27)Fumino,K.;Peppel,T.;Geppert-Rybczynska,M.;Zaitsau,D. H.;Lehmann,J.K.;Verevkin,S.P.;Kockerling,M.;Ludwig, R.Physical Chemistry Chemical Physics 2011,13,14064.doi: 10.1039/c1cp20732f

    (28)Thanthiriwatte,K.S.;Hohenstein,E.G.;Burns,L.A.;Sherrill, C.D.Journal of Chemical Theory and Computation 2010,7, 88.

    (29)Shishkin,M.;Ziegler,T.The Journal of Physical Chemistry C 2009,113,21667.doi:10.1021/jp905615c

    (30)Inada,Y.;Orita,H.Journal of Computational Chemistry 2008, 29(2),225.

    (31)Delley,B.The Journal of Chemical Physics 1990,92(1),508. doi:10.1063/1.458452

    (32)Klamt,A.;Schuurmann,G.Journal of the Chemical Society, Perkin Transactions 1993,2,799.

    (33)Li,X.J.;Su,K.H.Theor.Chem.Acc.2009,124,345.doi: 10.1007/s00214-009-0618-9

    (34)Bandyopadhyay,D.;Sen,P.The Journal of Physical Chemistry A 2010,114,1835.doi:10.1021/jp905561n

    (35)Mayer,I.Journal of Quantum Chemistry 1986,29,477.

    (36)Gece,G.Corrosion Science 2008,50,2981.doi:10.1016/j. corsci.2008.08.043

    (37)Kiriukhin,M.Y.;Collins,K.D.Biophysical Chemistry 2002, 99,155.doi:10.1016/S0301-4622(02)00153-9

    (38)Shishkin,O.V.;Gorb,L.;Leszczynski,J.The Journal of Physical Chemistry B 2000,104,5357.doi:10.1021/jp993144c

    (39)Zhao,G.X.;Zhu,B.Y.;Dou,Z.P.;Yan,P.;Xiao,J.X. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2008,327,122.doi:10.1016/j.colsurfa.2008.06.014

    (40)Huibers,P.D.T.Langmuir 1999,15,7546.doi:10.1021/ la990367l

    Density Functional Theory Study of the Interaction between Sodium Dodecylbenzenesulfonate and Mineral Cations

    LIU Zhi-Hong1FAN Cheng-Cheng2ZHANG Tian-Tian2JI Xian-Jing2CHEN Sheng-Hui2SUN Shuang-Qing2,3HU Song-Qing2,3,*
    (1GeologicalScientificResearchInstitute,ShengliOilfieldCompany Ltd.,Dongying 257015,Shandong Province,P.R.China;2CollegeofScience,ChinaUniversityofPetroleum(EastChina),Qingdao266580,ShandongProvince,P.R.China;3KeyLaboratory ofNewEnergyPhysics&MaterialsScienceinUniversitiesofShandong,Qingdao266580,ShandongProvince,P.R.China)

    Investigating the interactions between anionic surfactants and cations is of great theoretical and practical significance to understanding the precipitation and solubility of anionic surfactant products but relevant theoretical interaction models are seldom reported.In this paper,the density functional theory(DFT)method was used to investigate the interactions of the dodecylbenzenesulfonate anion(DBS-)with Na+,Mg2+,and Ca2+both in the solution and at the air/water interface.In the solution,DBS-/cation interaction models were built and optimized with consideration of two different solutions(i.e.water and n-dodecane).The results indicate that DBS-can bind stably with the cations in a bidentate form.The binding energy of the DBS-/cation depends on the properties of both the participating cation and the solvent.At the air/water interface,DBS-formed a stable hydrated complex with six water molecules(i.e.DBS-?6H2O).However,the structure of DBS-?6H2O was greatly disturbed by the introduction of the cation.A dimensionless parameter,def,was proposed to evaluate the deformation extent of the hydration shell.The degree of disturbance by the cations follows the order:Ca2+>

    July 28,2015;Revised:November 27,2015;Published on Web:December 1,2015.

    SDBS;Cation;Interaction;Air/water interface;Charge distribution; Density functional theory

    O641

    *Corresponding author.Email:ccupc@upc.edu.cn;Tel:+86-532-86983170.

    The project was supported by the PetroChina Innovation Foundation,China(2015D-5006-0213)and Fundamental Research Funds for the Central Universities,China(14CX02221A,14CX06157A).

    中國石油科技創(chuàng)新基金(2015D-5006-0213)及中央高?;究蒲袠I(yè)務(wù)費專項資金(14CX02221A,14CX06157A)資助項目

    ?Editorial office ofActa Physico-Chimica Sinica

    猜你喜歡
    烷基苯無機鹽磺酸鈉
    2021年《無機鹽工業(yè)》總索引
    驅(qū)油用烷基苯的組成分析
    無機鹽對氣藏砂巖表面動態(tài)潤濕性的影響研究
    微反應(yīng)器中十二烷基苯液相SO3磺化過程
    丹參酮 IIA 磺酸鈉注射液對造影劑引起腎臟損害的作用
    丹參酮ⅡA磺酸鈉注射液治療室性早搏療效觀察(附18例報告)
    生產(chǎn)無機鹽的原料
    ——化工原料、農(nóng)副產(chǎn)品
    生產(chǎn)無機鹽的原料——工業(yè)廢料
    脂肪酸甲酯磺酸鈉在餐具洗滌中的復(fù)配性能研究
    直鏈烷基苯的未來
    国产欧美日韩精品一区二区| 人人妻,人人澡人人爽秒播| 毛片一级片免费看久久久久 | 日韩,欧美,国产一区二区三区 | 在线免费观看不下载黄p国产 | 国产人妻一区二区三区在| 国产精品久久久久久精品电影| 韩国av一区二区三区四区| 亚洲一区高清亚洲精品| 国产精品美女特级片免费视频播放器| 久久精品影院6| 亚洲一区二区三区色噜噜| 亚洲一区高清亚洲精品| 午夜福利18| 桃色一区二区三区在线观看| 日韩一本色道免费dvd| 禁无遮挡网站| 成人特级黄色片久久久久久久| 午夜老司机福利剧场| 亚洲经典国产精华液单| 国产精品嫩草影院av在线观看 | 国内精品久久久久精免费| 久久99热这里只有精品18| 成人高潮视频无遮挡免费网站| 日本精品一区二区三区蜜桃| 国产 一区 欧美 日韩| 男女之事视频高清在线观看| 日韩欧美三级三区| 欧美激情久久久久久爽电影| 午夜福利成人在线免费观看| 色精品久久人妻99蜜桃| 亚洲av免费在线观看| 99久久久亚洲精品蜜臀av| 美女被艹到高潮喷水动态| 久久精品国产亚洲网站| 一级毛片久久久久久久久女| 少妇人妻一区二区三区视频| 成年版毛片免费区| 国产色爽女视频免费观看| 成人性生交大片免费视频hd| 国产精品日韩av在线免费观看| 国产av在哪里看| 国产毛片a区久久久久| 精品久久久久久久久久久久久| 亚洲国产色片| 国产精品精品国产色婷婷| 91麻豆精品激情在线观看国产| 国产午夜精品久久久久久一区二区三区 | 夜夜爽天天搞| 国产av不卡久久| 日韩欧美精品免费久久| .国产精品久久| 国内精品美女久久久久久| 国产午夜精品久久久久久一区二区三区 | а√天堂www在线а√下载| 国产精品三级大全| 五月玫瑰六月丁香| 国产免费av片在线观看野外av| 深夜a级毛片| 日本与韩国留学比较| 99热网站在线观看| 国产蜜桃级精品一区二区三区| 久久99热这里只有精品18| 国产爱豆传媒在线观看| 亚洲成人免费电影在线观看| 亚洲专区国产一区二区| 18+在线观看网站| 国产精品久久电影中文字幕| 热99re8久久精品国产| 欧美中文日本在线观看视频| 成年女人毛片免费观看观看9| 春色校园在线视频观看| 午夜福利在线观看吧| 亚洲欧美日韩卡通动漫| 色综合站精品国产| 日韩欧美精品v在线| 久久精品人妻少妇| av.在线天堂| 变态另类成人亚洲欧美熟女| 尾随美女入室| 人妻丰满熟妇av一区二区三区| 99热这里只有是精品在线观看| 国产单亲对白刺激| 毛片女人毛片| 午夜免费激情av| 国产成人aa在线观看| 午夜激情欧美在线| 非洲黑人性xxxx精品又粗又长| 色精品久久人妻99蜜桃| 亚洲七黄色美女视频| 久久亚洲真实| 日本 欧美在线| 最近最新免费中文字幕在线| 91久久精品国产一区二区成人| 99九九线精品视频在线观看视频| 国产一区二区在线av高清观看| 69av精品久久久久久| 亚洲av熟女| av视频在线观看入口| 免费人成视频x8x8入口观看| 很黄的视频免费| 男女那种视频在线观看| 亚洲av五月六月丁香网| 国产午夜精品久久久久久一区二区三区 | 国产亚洲av嫩草精品影院| 99热6这里只有精品| 精品午夜福利视频在线观看一区| 国产欧美日韩一区二区精品| 国产精品久久久久久av不卡| 国产一区二区激情短视频| 3wmmmm亚洲av在线观看| 精品人妻1区二区| 人妻夜夜爽99麻豆av| av天堂中文字幕网| 欧美高清成人免费视频www| 别揉我奶头 嗯啊视频| xxxwww97欧美| 毛片女人毛片| 日本 欧美在线| 丰满乱子伦码专区| 国产私拍福利视频在线观看| 日本五十路高清| 国内精品美女久久久久久| 国产亚洲精品久久久久久毛片| 亚洲成av人片在线播放无| 欧美日本视频| 真实男女啪啪啪动态图| 蜜桃久久精品国产亚洲av| 久久久国产成人免费| 夜夜爽天天搞| 成人无遮挡网站| 两个人视频免费观看高清| 91久久精品国产一区二区三区| 色综合亚洲欧美另类图片| 日韩欧美国产一区二区入口| 22中文网久久字幕| 九九在线视频观看精品| 白带黄色成豆腐渣| 淫妇啪啪啪对白视频| 亚洲图色成人| 别揉我奶头 嗯啊视频| 免费看av在线观看网站| 久久久久国内视频| 极品教师在线免费播放| 国产av不卡久久| 99久久中文字幕三级久久日本| 欧美日本亚洲视频在线播放| 久久热精品热| 日本-黄色视频高清免费观看| 日韩中文字幕欧美一区二区| 人妻制服诱惑在线中文字幕| 亚洲成av人片在线播放无| 欧美潮喷喷水| 色尼玛亚洲综合影院| 九色国产91popny在线| 日本撒尿小便嘘嘘汇集6| 简卡轻食公司| 春色校园在线视频观看| 97热精品久久久久久| 美女cb高潮喷水在线观看| 亚洲国产精品成人综合色| 在线观看美女被高潮喷水网站| АⅤ资源中文在线天堂| 国内揄拍国产精品人妻在线| 我的女老师完整版在线观看| 色噜噜av男人的天堂激情| 亚洲精品成人久久久久久| 人人妻,人人澡人人爽秒播| 国内少妇人妻偷人精品xxx网站| 村上凉子中文字幕在线| 悠悠久久av| 国产精品电影一区二区三区| 久久久国产成人精品二区| 男女之事视频高清在线观看| 欧美成人a在线观看| 两个人视频免费观看高清| 欧美一区二区亚洲| 狂野欧美激情性xxxx在线观看| 长腿黑丝高跟| 极品教师在线免费播放| 琪琪午夜伦伦电影理论片6080| 麻豆国产97在线/欧美| 亚洲最大成人av| videossex国产| 色视频www国产| 美女 人体艺术 gogo| 麻豆国产av国片精品| 97超级碰碰碰精品色视频在线观看| 乱系列少妇在线播放| 好男人在线观看高清免费视频| 一本久久中文字幕| 午夜老司机福利剧场| 一本一本综合久久| 好男人在线观看高清免费视频| 在线免费十八禁| 简卡轻食公司| 久久精品国产亚洲网站| 成熟少妇高潮喷水视频| 日韩欧美在线二视频| 99久久成人亚洲精品观看| 国产综合懂色| 精品人妻一区二区三区麻豆 | 高清日韩中文字幕在线| 日韩欧美一区二区三区在线观看| 国产主播在线观看一区二区| 国产主播在线观看一区二区| 波多野结衣高清作品| 天堂√8在线中文| a级毛片免费高清观看在线播放| 国产一区二区激情短视频| a级毛片免费高清观看在线播放| 日本免费a在线| 偷拍熟女少妇极品色| 嫩草影院新地址| 日本免费a在线| av视频在线观看入口| 一个人观看的视频www高清免费观看| 欧美激情在线99| 午夜老司机福利剧场| 美女cb高潮喷水在线观看| 成年人黄色毛片网站| 在线免费观看不下载黄p国产 | 九九在线视频观看精品| 精品一区二区三区人妻视频| 日本黄色视频三级网站网址| 悠悠久久av| 日韩中字成人| 国产免费av片在线观看野外av| 波多野结衣高清作品| 亚洲熟妇熟女久久| 国产精品爽爽va在线观看网站| 天天躁日日操中文字幕| 亚洲欧美日韩卡通动漫| 男女视频在线观看网站免费| 最后的刺客免费高清国语| 久久九九热精品免费| 国产成人aa在线观看| 非洲黑人性xxxx精品又粗又长| 成年免费大片在线观看| 免费看a级黄色片| 亚洲专区中文字幕在线| 日本色播在线视频| 国产三级中文精品| 色噜噜av男人的天堂激情| 国产精品免费一区二区三区在线| 欧美精品国产亚洲| a级毛片a级免费在线| 日本 欧美在线| 日本欧美国产在线视频| 很黄的视频免费| 99久国产av精品| 九色国产91popny在线| 国产精品野战在线观看| 少妇熟女aⅴ在线视频| 成人特级黄色片久久久久久久| 97碰自拍视频| 婷婷色综合大香蕉| 高清日韩中文字幕在线| 99九九线精品视频在线观看视频| 亚洲七黄色美女视频| 午夜免费激情av| x7x7x7水蜜桃| 久久久久精品国产欧美久久久| 亚洲在线观看片| 搡老熟女国产l中国老女人| 国产精品国产高清国产av| 99视频精品全部免费 在线| 精品一区二区三区人妻视频| 波多野结衣高清无吗| 久久婷婷人人爽人人干人人爱| 国产精品人妻久久久影院| 欧美性猛交黑人性爽| 亚洲欧美日韩卡通动漫| 99riav亚洲国产免费| 午夜激情欧美在线| 级片在线观看| 欧美高清成人免费视频www| 成人国产综合亚洲| 国产女主播在线喷水免费视频网站 | 狂野欧美激情性xxxx在线观看| 国产老妇女一区| 网址你懂的国产日韩在线| 国产一区二区三区视频了| 日韩一本色道免费dvd| 国产精品无大码| 国产av不卡久久| 日韩中字成人| 日韩欧美三级三区| 国产一区二区在线观看日韩| 亚洲精品色激情综合| 偷拍熟女少妇极品色| 久久天躁狠狠躁夜夜2o2o| 成年人黄色毛片网站| 欧美中文日本在线观看视频| av在线老鸭窝| 久久久久免费精品人妻一区二区| 国产一区二区三区视频了| 亚洲自拍偷在线| 国产精品一区二区三区四区久久| 听说在线观看完整版免费高清| 欧美激情在线99| 成人性生交大片免费视频hd| 天堂影院成人在线观看| 中文字幕av在线有码专区| 国产精品1区2区在线观看.| 亚洲av中文av极速乱 | 久9热在线精品视频| 国产久久久一区二区三区| 日日摸夜夜添夜夜添小说| 看十八女毛片水多多多| 91午夜精品亚洲一区二区三区 | 99热这里只有是精品在线观看| 国产aⅴ精品一区二区三区波| 国产精品不卡视频一区二区| 亚洲人成网站在线播放欧美日韩| 亚洲精品亚洲一区二区| 男女下面进入的视频免费午夜| 99九九线精品视频在线观看视频| 久久久久国内视频| 干丝袜人妻中文字幕| 亚洲在线观看片| 伦理电影大哥的女人| 此物有八面人人有两片| 亚洲精品色激情综合| 国产伦人伦偷精品视频| 国产淫片久久久久久久久| 老司机福利观看| 欧美日本视频| 不卡一级毛片| 88av欧美| 啪啪无遮挡十八禁网站| 久久精品国产亚洲网站| 国产精品一区二区免费欧美| 欧美激情国产日韩精品一区| 亚洲国产高清在线一区二区三| 亚洲av.av天堂| 搡老妇女老女人老熟妇| 精品人妻熟女av久视频| 亚洲国产精品久久男人天堂| 韩国av一区二区三区四区| 成人午夜高清在线视频| 精品一区二区三区视频在线| 内地一区二区视频在线| 成人永久免费在线观看视频| 老熟妇仑乱视频hdxx| 免费电影在线观看免费观看| 欧美黑人巨大hd| 最新在线观看一区二区三区| 日韩一区二区视频免费看| 色综合色国产| 亚洲成人精品中文字幕电影| 亚洲熟妇熟女久久| 亚洲精华国产精华精| 桃色一区二区三区在线观看| 亚洲人成网站高清观看| 老司机深夜福利视频在线观看| 永久网站在线| www.色视频.com| 色播亚洲综合网| 成年免费大片在线观看| av专区在线播放| 九九在线视频观看精品| avwww免费| 日本免费a在线| 亚洲最大成人av| 亚洲欧美清纯卡通| 日本在线视频免费播放| 特级一级黄色大片| 亚洲乱码一区二区免费版| 亚洲国产欧美人成| 99riav亚洲国产免费| 免费黄网站久久成人精品| 国产精品乱码一区二三区的特点| 欧美又色又爽又黄视频| 亚洲熟妇中文字幕五十中出| 男插女下体视频免费在线播放| 国产精品美女特级片免费视频播放器| 日本一本二区三区精品| 网址你懂的国产日韩在线| 一a级毛片在线观看| 欧美成人性av电影在线观看| 性欧美人与动物交配| 亚洲午夜理论影院| 久久精品人妻少妇| 亚洲熟妇熟女久久| 好男人在线观看高清免费视频| 最近最新中文字幕大全电影3| 亚洲av二区三区四区| 国产在线精品亚洲第一网站| 少妇的逼水好多| 国产女主播在线喷水免费视频网站 | 精品久久久久久,| 日韩欧美免费精品| 少妇人妻精品综合一区二区 | 一个人看的www免费观看视频| 婷婷色综合大香蕉| 国国产精品蜜臀av免费| 久9热在线精品视频| 国产探花在线观看一区二区| 国产极品精品免费视频能看的| 97超视频在线观看视频| 毛片女人毛片| 精品久久久噜噜| 不卡一级毛片| 九色成人免费人妻av| 成人性生交大片免费视频hd| 久久国产精品人妻蜜桃| 国产精品久久久久久久电影| 99久久中文字幕三级久久日本| 久久久国产成人免费| 精品久久久噜噜| 国产女主播在线喷水免费视频网站 | 欧美性猛交黑人性爽| 国产成人av教育| 18+在线观看网站| 婷婷精品国产亚洲av在线| 久久久精品欧美日韩精品| 欧美色欧美亚洲另类二区| 窝窝影院91人妻| 日韩精品青青久久久久久| 日韩av在线大香蕉| 一级av片app| 人妻制服诱惑在线中文字幕| 深夜a级毛片| 91久久精品国产一区二区成人| 色尼玛亚洲综合影院| 动漫黄色视频在线观看| 99在线人妻在线中文字幕| 欧美xxxx性猛交bbbb| 天堂av国产一区二区熟女人妻| 此物有八面人人有两片| 超碰av人人做人人爽久久| 蜜桃亚洲精品一区二区三区| h日本视频在线播放| 美女免费视频网站| 性插视频无遮挡在线免费观看| 国产精品永久免费网站| 全区人妻精品视频| 国产av不卡久久| 99热6这里只有精品| 日韩精品中文字幕看吧| 男女做爰动态图高潮gif福利片| 一边摸一边抽搐一进一小说| 精品久久久久久久久久免费视频| 午夜福利在线观看免费完整高清在 | 十八禁网站免费在线| 99久久精品热视频| 亚洲av熟女| 日本在线视频免费播放| 午夜福利在线观看免费完整高清在 | 日本爱情动作片www.在线观看 | av福利片在线观看| 日韩中文字幕欧美一区二区| 搡女人真爽免费视频火全软件 | 大型黄色视频在线免费观看| 最近视频中文字幕2019在线8| 国产亚洲欧美98| 亚洲va日本ⅴa欧美va伊人久久| 婷婷六月久久综合丁香| 亚洲va在线va天堂va国产| 97超级碰碰碰精品色视频在线观看| 伦精品一区二区三区| 少妇被粗大猛烈的视频| 啪啪无遮挡十八禁网站| 日本在线视频免费播放| 精品不卡国产一区二区三区| 日本精品一区二区三区蜜桃| 国产美女午夜福利| 日本熟妇午夜| 国产国拍精品亚洲av在线观看| 午夜激情欧美在线| 亚洲欧美日韩东京热| 免费电影在线观看免费观看| 毛片女人毛片| 色综合婷婷激情| www日本黄色视频网| videossex国产| 欧美日韩亚洲国产一区二区在线观看| 色综合婷婷激情| 一级a爱片免费观看的视频| 97热精品久久久久久| 欧美最黄视频在线播放免费| 久久精品人妻少妇| 午夜亚洲福利在线播放| 九九爱精品视频在线观看| 亚洲成人免费电影在线观看| 国产一区二区亚洲精品在线观看| 国产视频内射| 成年版毛片免费区| 国产亚洲91精品色在线| 久久久久性生活片| 日韩精品中文字幕看吧| 国产精品一及| 精品人妻熟女av久视频| 精品福利观看| 国产男人的电影天堂91| av女优亚洲男人天堂| 国产精品乱码一区二三区的特点| 色吧在线观看| 少妇人妻精品综合一区二区 | 麻豆久久精品国产亚洲av| 久久6这里有精品| 欧美一级a爱片免费观看看| 亚洲自拍偷在线| 桃红色精品国产亚洲av| 国产精品不卡视频一区二区| 国产私拍福利视频在线观看| 午夜激情福利司机影院| 网址你懂的国产日韩在线| 99在线人妻在线中文字幕| 99久久成人亚洲精品观看| 男女啪啪激烈高潮av片| 在线观看午夜福利视频| 亚洲精华国产精华液的使用体验 | 国产精品美女特级片免费视频播放器| 日本熟妇午夜| a级毛片a级免费在线| 尤物成人国产欧美一区二区三区| 神马国产精品三级电影在线观看| 少妇猛男粗大的猛烈进出视频 | 欧美黑人欧美精品刺激| 又爽又黄无遮挡网站| 国产午夜福利久久久久久| 制服丝袜大香蕉在线| 成人美女网站在线观看视频| 国产精品无大码| 精品欧美国产一区二区三| 久久久久久久久久成人| 免费电影在线观看免费观看| 性欧美人与动物交配| 久久人人精品亚洲av| 一进一出抽搐动态| 成人毛片a级毛片在线播放| 麻豆国产av国片精品| 在线观看免费视频日本深夜| 欧美性感艳星| 免费人成在线观看视频色| 婷婷六月久久综合丁香| aaaaa片日本免费| 女同久久另类99精品国产91| 露出奶头的视频| 最近最新中文字幕大全电影3| 日韩中字成人| 免费看日本二区| 精品人妻偷拍中文字幕| 少妇猛男粗大的猛烈进出视频 | 成人二区视频| 亚洲精品亚洲一区二区| 嫁个100分男人电影在线观看| 国产精品99久久久久久久久| 欧美黑人欧美精品刺激| 韩国av在线不卡| 国产精品一区二区性色av| 18禁裸乳无遮挡免费网站照片| 亚洲国产日韩欧美精品在线观看| 国产成年人精品一区二区| 久久久久久久久久久丰满 | 免费电影在线观看免费观看| 中出人妻视频一区二区| 日韩欧美国产一区二区入口| av女优亚洲男人天堂| 亚洲中文字幕日韩| 欧美黑人巨大hd| 欧美激情国产日韩精品一区| 狂野欧美激情性xxxx在线观看| 免费观看精品视频网站| 91麻豆精品激情在线观看国产| 99久国产av精品| 91午夜精品亚洲一区二区三区 | 国产午夜精品论理片| 亚洲国产欧美人成| 精品人妻一区二区三区麻豆 | 一本精品99久久精品77| 久久精品久久久久久噜噜老黄 | 久久久国产成人免费| 国产高清不卡午夜福利| 亚洲国产精品成人综合色| 欧美绝顶高潮抽搐喷水| 中文字幕熟女人妻在线| 国产色婷婷99| 九九久久精品国产亚洲av麻豆| 极品教师在线视频| 午夜免费成人在线视频| 禁无遮挡网站| 在线观看66精品国产| 久久久久久久精品吃奶| 国产伦在线观看视频一区| 日韩强制内射视频| 国产av麻豆久久久久久久| 亚洲自偷自拍三级| 国产高清三级在线| 国产精品久久久久久精品电影| 国产精品久久电影中文字幕| 自拍偷自拍亚洲精品老妇| 久久久久性生活片| 国产男靠女视频免费网站| 在线免费观看不下载黄p国产 | 国产精品久久久久久av不卡| 国产成人一区二区在线| 18禁在线播放成人免费| 人人妻人人看人人澡| 成年女人永久免费观看视频| 日日夜夜操网爽| 少妇的逼好多水| 精品久久久噜噜| 精品乱码久久久久久99久播| 级片在线观看| 在线免费观看的www视频| 看黄色毛片网站| 成人午夜高清在线视频| 国产午夜福利久久久久久| 亚洲欧美激情综合另类| 一a级毛片在线观看| 老女人水多毛片| 长腿黑丝高跟|