• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Disturbed Constitutive Approach to Heat Transfer of Non-Newtonian Nanofluid Flow

    2016-11-04 09:07:57HANShifangWUYueqingXIAOFan
    關(guān)鍵詞:牛頓流體本構(gòu)牛頓

    HAN Shifang, WU Yueqing, XIAO Fan

    (Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu 610041, China)

    ?

    Disturbed Constitutive Approach to Heat Transfer of Non-Newtonian Nanofluid Flow

    HAN Shifang, WU Yueqing, XIAO Fan

    (Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu 610041, China)

    The non-Newtonian fluid flow theory is applied to study nanofluid motion which is considered as a new concept non-Newtonian fluid. Due to gliding motion of nano particles with respect to basic flow and thermal diffusion disturbed flow caused by random motion of nano-particles, the new concept non-Newtonian fluid is considered as a nearly basic flow, which is generalized by a slightly rotation of basic flow of one phase fluid with respect to the 1,2,3 axes of the Cartesian coordinate system. As an important application of the developed disturbed constitutive theory, the two dimensional thermal flow of nanofluid between two infinite planes is studied. The flow between two infinite planes is treaded as a flow with dominating extension. The developed disturbed constitutive theory can be used for the thermal nanofluid flow.

    thermal nanofluid flow; new concept non-Newtonian fluid; disturbed constitutive equation; flow with dominating extension ; computational symbolic manipulation

    INTRODUCTION

    Presented investigation is a new attempt to apply non-Newtonian fluid flow theory to study nanofluid motion which is considered as a new concept non-Newtonian fluid[1-3].In the present paper non-Newtonian thermal nanofluid flow is studied by disturbed constitutive approach. The disturbed constitutive equation theory for non-Newtonian fluid flow stability is generalized to study thermal nanofluid motion.The attempt is presented to extend principles in research on non-Newtonian fluid flow and rheology[4-5]to study nanofluid motion. In research on energy transfer theory of nanofluid two main approaches were reported[1]:one phase fluid approach and perturbation model for nanofluid. As first approximation the nanofluid can be considered as one phase fluid of uniform mixing. The one phase approach has been well used now by few authors for investigation on nanofluid heat transfer[6-9].Under assumptions that there exit no slip motion between the basic fluid and the dispersed fine particles,also thermal equilibrium between nanoparticles and the fluid is not important,the nanofluid can be treaded as one phase fluid. In general case Brownian force, friction force between fluid and particles, Brownian diffusion, sedimentation, dispersion may coexist in the basic flow of nanofluid.A gliding velocity between fluid and particles may not be zero. Due to the gliding motion of nanoparticles with respect to basic fluid and thermal diffusion the disturbances in velocity and temperature are caused by random motion of nanoparticles. Otherwise the suspended solid particles increase the thermal conductivity of the two phase mixture. Perturbation approach for nanofluid is developed on the base of one phase fluid with correction due small disturbance of nano-particles in nanofluid[1,10].

    In non-Newtonian fluid investigation a concept of nearly extensional flow was proposed by Huilgol[11].Han and Becker have extended the concept to study disturbed constitutive theory and stability of the fluid flow[4-5,12-19]. According to disturbed constitutive theory of Han and Becker the disturbed extensional flow can be considered as a nearly extensional flow, or nearly basic flow, which is generalized by a slightly rotation of basic flow with respect to the 1,2,3 axes of the Cartesian coordinate system. The theoretical approach will be now extended to study nanofluid motion. A new concept of nearly basic nanofluid flow is introduced and an original approach - disturbed constitutive approach is developed to study the nanofluid flow. A disturbed flow caused by random motion of nano-particles can be considered as nearly basic flow or nearly one phase fluid flow, which is generalized by a slightly rotation of basic flow of one phase fluid with respect to the 1,2,3 axes of the Cartesian coordinate system. An important application of the developed disturbed constitutive theory two dimensional thermal flow between two infinite planes will be studied. Following the investigation of Zahorski[20-21], the flow between two infinite planes will be considered as a flow with dominating extension, the developed disturbed constitutive theory can be available for the two dimensional nanofluid thermal flow.

    1 Disturbed Constitutive theory For Nanofluid Flow

    In research on suspension theory Betchelor has developed an ensemble average approach to study the stress system in a suspension of force free particles, Based on the theory for the viscosity of dilute suspension of rigid spheres a constitutive equation can be viewed as a single phase

    (1)

    wher φ-volume fraction of solid particles in nanofluid. The improved Einstein model is given as

    where:ηeff-effective viscosity of two phase fluid, ηf-apparent viscosity of fluid. This is the Einstein result for the viscosity of a suspension of dilute rigid spheres.

    Brinkman model is used in research on nanofluid flow[6-9], which is given as

    (2)

    On the basis of above results the non-Newtonian simple fluid in sense of Noll and Coleman is generalized for nanofluid, the constitutive equation of which is given as

    (3)

    where Π- generalized stress tensor for simple nanofluid, S-stress tensor for basic simple fluid, Ψ(φ)-nano-constitutive function.

    A series of experimental results showed[1]that the viscosity and thermal conductivity of nanofluid are mainly functions of volume fraction of solid particles φ in it, meanwhile for the viscosity of a dilute suspension of rigid spheres the Einstein, improved and Brickman functions are used for one phase fluid model on the basis of which a nano-constitutive function ψ(φ) is introduced in constitutive equation (3) to characterize the special property of two phase nature of nanofluid:

    ψ(φ)→1, when φ→0

    The nano-constitutive function ψ(φ) is more complex one which depends not only mainly on volume fraction of solid particles φ, but also on particle's diameter, shape, temperature and so on. The present paper is limited to study influence of the main factor -volume fraction of solid particles φ.

    The equation (3) is generalized simple fluid for nanofluid. For a sufficiently small disturbance , the disturbance stress is a linear functional of the disturbance part of the right Cauchy strain tensor. Hence, the functional in (3) has an integral representation

    (4)

    where k1、k2、k3-kinematic parameters of flow. The concept of short memory is generalized for the magnetic nanofluid too, this means that the kernel functions in above integral expansion are of Maxwell character, the first term of right Cauchy tensor can be expressed by

    (5)

    (6)

    where

    (7)

    The disturbed constitutive equation (6) can be reduced to

    (8)

    where

    The disturbed constitutive equation theory will be developed to study nanofluid motion. Due to gliding motion of nano particles with respect to basic flow and thermal diffusion a disturbed flow caused by random motion of nano-particles is considered as a nearly basic flow, which is generalized by a slightly rotation of basic flow of one phase fluid with respect to the 1,2,3 axes of the Cartesian coordinate system. The rotation matrix is denoted by δQ

    (9)

    where the δα1, δα2, δα3are small rotation angles. The nearly basic flow can be considered a small disturbance of the basic flow.

    For the perturbation nanofluid fluid the disturbed Rivlin Ericksen tensor and extra stress tensor are assumed to be of

    (10)

    The disturbance flow is created by the following two factors:

    (1) Slightly rotation of basic flow of one phase nanofluid with respect to the 1,2,3 axes of the Cartesian coordinate system;

    (2) Variation in kinematic parameters k1, k2, k3of nanofluid flow .

    The disturbance Rivlin Ericksen tensor and extra stress tensor are determined by following equations:

    (11)

    The extensional flow of nanofluid is studied, velocity field of which is given as

    v1=k1x1,v2=k2x3,v3=k3x3

    (12)

    where k1, k2, k3are constant elongation rates in 1,2,3 axes. When the incompressible fluid is considered the relationship of incompressibility is satisfied. But for more general case the condition of incompressibility does not satisfy, the nano-fluid should be compressible one which will be studied

    k1+k2+k3≠0

    For basic flow the first Rivlin-Ericksen tensor and the stress tensor are given by

    (13)

    The disturbance Rivlin Ericksen tensor and extra stress tensor are determined by equation (11). Inserting the obtained expressions into equation (8) and taking account of the fact that the δk1, δk2, δk3, δa1, δk2, δk3, can be varied independently, a sufficient number of linear eqns. are obtained which uniquely determine the 36 coefficients kisin equation (8). The result is given.

    For the simple incompressible nano-fluid the disturbed stress tensor is reduced to

    δk1,δk2,δk3,δα1,δα2,δα3can be varied

    (14)

    As an application of the developed disturbed constitutive equation the motion of a stretching sheet of nanofluid will be considered.

    2 Thermal flow of nanofluid

    An important application of the developed disturbed constitutive theory the Poiseuille thermal flow will be studied. The thermal nanofluid flow is a flow between two infinite planes with distance of 2h. Following the investigation of Zahorski, the flow between two infinite planes will be considered as an evolution of some stretching motion, i.e. as a flow with dominating extension, thereby the above developed disturbed constitutive theory can be available for the two dimensional thermal flow. The velocity field is given. Neglecting inertia in governing equations and taking account of the velocity field the motion equation and energy equation are simplified.

    For the nanofluid the Maxwell fluid can be considered as a carrier liquid, the total velocity of the nanofluid is split into two parts; basic Maxwell fluid and nano-disturbed flow. For upper-convected Maxwell fluid the disturbance stress component is given by the disturbed constitutive theory.The following dimensionless variables are introduced

    (15)

    (16)

    where Tm-average temperature of nanofluid flow, Tw-wall temperature at the boundary. For steady process the energy equation is finally reduced to

    (17)

    The improved Kantorovich variational approach is used to solve equation (17). A series of shape functions is proposed which is given as

    (18)

    The following operator is defined

    (19)

    The approximate solution is assumed to be of

    T(ξ,η)=(1-η4)φ1(ξ)+(1-η4)η2φ2(ξ)…

    (20)

    Using the improved Kantorovich approach[4-5] the following integral relationship is satisfied

    ∫L(Tk)(1-η4)η2(k-1)dηδφkdξ=0

    k=1,2…

    (21)

    The expression of the temperature of 2nd approximation will be following

    (22)

    In general case the average temperature Tmis calculated by a special form which is a constant for definite ξ

    (23)

    When the ξ is enough great the temperature field is fully developed Tm. The average temperature can be considered as a constant with respect to ξ. The Nusselt number can be simplified as following

    (24)

    Figure 1flow between two infinite planes

    Figure 4Change of Nusselt number Nu with dimensionless distance ξ for second approximation of heat transfer theory Br=100,A0=0.4,Pr=1.0,λ1=2.51713091

    Results and Conclusions

    As an important application of the developed disturbed constitutive theory the two dimensional thermal nanofluid flow between two infinite planes is investigated. The flow between two infinite planes is simulated as a flow with dominating extension, the disturbed constitutive theory has been utilized for the thermal nanofluid flow. Using the improved variational Kantorovich method and the computer software Maple 16 artificial analytical solution of the thermal nanofluid flow is obtained.

    Base on the disturbed constitutive theory and using the improved Kantorovich variational approach the results of nanofluid thermal flow between two infinite planes are shown by Figs. Figure 4 shows change of Nusselt number Nu with dimensionless distance ξ for second approximation. The changes of Nusselt number Nu with volume fraction of solid particles for nanofluid flow are shown by Figs. 5 to 6 for nano-constitutive functions: Einstein model, and improved Einstein model respectively. As the experiments showed that the tendency of function Ψ(φ) is in agreement with the one phase fluid functions thereby in calculation one phase fluid models such as the Einstein , improved Einstein functions were used. It can be seen from the Figures , that The changes of Nusselt number Nu increase with the volume fraction of solid particles for nanofluid flow, it means that the suspended fine particles considerably increase the thermal conductivity of the mixture and improve the thermal capability of energy exchange equipment. The New concept non-Newtonian fluid theory, i.e. the disturbed constitutive equation theory has been successfully extended to study thermal nanofluid motion.

    [1] XUAN Yimin,LI Qiang.Energy transfer theory of nano-fluid and application[M].Beijing:Science Press,2010.(in Chinese).

    [2] LEE S P,CHOU S,LI S,et al.Measuring thermal conductivity of fluids containing oxide nanoparticles[J].Journal of Heat Transfer,1999,121(2):280-289.

    [3] XUAN Y,LI Q.Heat transfer enhancement of nanofluids[J]. International Journal of Heat Fluid Flow 2000,21(1):158-164.

    [4] HAN Shifang.Constitutive equation and computational analytical theory of Non-Newtonian Fluids[M].Beijing:Science Press,2000.(in Chinese)

    [5] HAN Shifang.Continuum mechanics of anisotropic non-Newtonian fluids - Rheology of liquid crystalline polymer[M].Beijing:Science Press,2008.(in Chinese)

    [6] XUAN Y,ROETZEL W.Conception for heat transfer correlation of nanofluids[J].International Journal of heat and mass transfer,2000,43(19):3701-3707.

    [7] HAMAD M A A,Fenlows M.Similarity solutions to viscous flow and heat transfer of nanofluid over nonlinearly stretching sheet[J].Applied Mathematics and Mechanics,2012,33(7):868-876.

    [8] AMINOSSADATI S M,CHASEMI B.Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure[J].European Journal of Mechanics-B/fluids,2009,28(5):630-640.

    [9] HAMAD M A A.Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field[J].International communications in heat and mass transfer,2011,38(4):487-492.

    [10] KAVIANY M.Principle of Heat Transfer in Porous Media[M].Berlin:Springer,1995.

    [11] HUILGOL R R.Nearly extensional flows[J].Journal of Non-Newtonian Fluid Mechanics,1979,5:219-231.

    [12] BECKER E.Bemerkugen zur Instabilitaet der Stroemung nicht-newtonscher Fluessigkeiten[J].Zamm Journal of Applied Mathematics & Mechanics Zeitschrift Fur Angewandte Mathematik Und Mechanik,1983,63:43-48.

    [13] HAN S F,BECKER E.Hydrodynamic instability of extensional flow[J].Rheologica Acta,1983,22(22):521-527.

    [14] HAN Shifang.Stability of extensional flow and extending viscoelastic fluid sheets[J].Journal of Non-Newtonian Fluid Mechanics,1984,15(2):181-197.

    [15] HAN Shifang.On the stability of extensional flow[J].Chemical Engineering Communications,1985,32(1):307-329.

    [16] HAN Shifang.Instability of extensional flow of non-Newtonian fluid flow[J].Zeitschrift fur Angewandte Mathematik und Mechanik,1985,65(4):199-202.

    [17] HAN Shifang.2008,Stability of shear-extensional flow in film extrusion of liquid crystalline polymer-anisotropic viscoelastic fluid[C]//Proc.of XVth International Congress on Rheology,California,August 3-8,2008:126-128.

    [18] HAN Shifang.A stability of multiaxial extensional flow of non-Newtonian fluid sheets[C]//Proc.Ot 10th Intern. Congress on Rheology,Sydney,1988:380-382.

    [19] HAN Shifang.Disturbed constitutive equation and instability of extensional flow of viscoelastic fluids[J].Acta Mechanica Sinica,1993,9(2):213-217.(in Chinese)

    [20] ZAHORSKI S.Flows in converging slits and pipes as flows with dominating extensions[J].Engineering Transactions,1988,36(3)563-574.

    [21] ZAHORSKI S.Axially symmetric squeezed films as viscoelastic flows with dominating extensions[J].Engineering Transactions,1986,34(1-2):181-196.

    2016-03-31

    國家自然科學(xué)基金資助項(xiàng)目(10772177;19832050 (重點(diǎn)))

    韓式方(1935-),男,教授,湖南湘潭人,主要從事流體力學(xué)、流變學(xué)等方面的研究,(E-mail)sfh5578@sina.com

    1673-1549(2016)03-0027-06

    TB115

    A

    擾動本構(gòu)方法研究非牛頓納米流體傳熱流動

    韓式方, 伍岳慶, 肖帆

    (中國科學(xué)院成都計算機(jī)應(yīng)用研究所, 成都610041)

    將非牛頓流體力學(xué)理論及其方法推廣應(yīng)用于建立納米流體-新概念非牛頓流體擾動本構(gòu)方程,并研究其傳熱流動。韓式方發(fā)展了有特色的非牛頓流體擾動本構(gòu)理論,并成功地應(yīng)用于研究非牛頓流動穩(wěn)定性,可以應(yīng)用于非牛頓流動研究。將非牛頓流體擾動本構(gòu)理論推廣至建立新的納米流體微擾動模型,對單相流體模型進(jìn)行微擾動修正。納米流體強(qiáng)化熱交換機(jī)制:懸浮粒子增加二相混合體的熱傳導(dǎo)率;極細(xì)粒子隨機(jī)運(yùn)動,熱耗散加速流體中能量轉(zhuǎn)換過程。在新的納米流體擾動本構(gòu)方程基礎(chǔ)上。研究了納米流體傳熱流動,其結(jié)果表明,Nusselt 數(shù)隨納米粒子的體積分?jǐn)?shù)的增加而增加,其趨勢與實(shí)驗(yàn)結(jié)果一致,表明本理論方法是合理的,可以推廣于應(yīng)用一系列納米流體流動問題。

    熱流體流; 新概念非牛頓流體; 擾動本構(gòu)方程; 擴(kuò)展流動; 計算符號處理

    10.11863/j.suse.2016.03.07

    猜你喜歡
    牛頓流體本構(gòu)牛頓
    非牛頓流體
    離心SC柱混凝土本構(gòu)模型比較研究
    牛頓忘食
    什么是非牛頓流體
    少兒科技(2019年3期)2019-09-10 07:22:44
    區(qū)別牛頓流體和非牛頓流體
    鋸齒形結(jié)構(gòu)面剪切流變及非線性本構(gòu)模型分析
    一種新型超固結(jié)土三維本構(gòu)模型
    風(fēng)中的牛頓
    首款XGEL非牛頓流體“高樂高”系列水溶肥問世
    失信的牛頓
    欧美最新免费一区二区三区| 国产成人a区在线观看| 成人高潮视频无遮挡免费网站| 国产永久视频网站| 一边亲一边摸免费视频| 在线免费十八禁| 亚洲不卡免费看| 国产毛片在线视频| 日日啪夜夜撸| 狂野欧美激情性xxxx在线观看| 在线 av 中文字幕| 精品视频人人做人人爽| 午夜福利高清视频| 色哟哟·www| 18禁裸乳无遮挡免费网站照片| 亚洲精品国产av蜜桃| 国产精品99久久久久久久久| 国产黄色免费在线视频| 久久久精品94久久精品| 日韩一区二区三区影片| 高清视频免费观看一区二区| 亚洲成人精品中文字幕电影| 99九九线精品视频在线观看视频| 亚洲成人一二三区av| 97超碰精品成人国产| 中文字幕av成人在线电影| 少妇的逼好多水| 大香蕉97超碰在线| 97在线人人人人妻| 国产成人精品久久久久久| 成人国产av品久久久| 亚洲精品第二区| 日韩电影二区| 亚洲一区二区三区欧美精品 | 久久亚洲国产成人精品v| 91午夜精品亚洲一区二区三区| 国产国拍精品亚洲av在线观看| 高清欧美精品videossex| 久久精品国产鲁丝片午夜精品| 国产欧美日韩一区二区三区在线 | 国产精品女同一区二区软件| 特大巨黑吊av在线直播| 夫妻性生交免费视频一级片| 色吧在线观看| 国内精品宾馆在线| 人人妻人人看人人澡| 久久精品人妻少妇| 观看美女的网站| 免费看av在线观看网站| 看十八女毛片水多多多| 亚洲一级一片aⅴ在线观看| 一级毛片我不卡| 尤物成人国产欧美一区二区三区| 国内精品美女久久久久久| 亚洲精品色激情综合| 久久国内精品自在自线图片| 久久久精品免费免费高清| 22中文网久久字幕| 男女边吃奶边做爰视频| 国产精品久久久久久精品古装| 色5月婷婷丁香| 国产亚洲5aaaaa淫片| 亚洲av电影在线观看一区二区三区 | 一级av片app| 亚洲在久久综合| 亚洲熟女精品中文字幕| 欧美成人一区二区免费高清观看| 国产日韩欧美在线精品| 婷婷色麻豆天堂久久| 噜噜噜噜噜久久久久久91| 亚洲精品第二区| 亚洲精品一二三| 欧美亚洲 丝袜 人妻 在线| 噜噜噜噜噜久久久久久91| 建设人人有责人人尽责人人享有的 | 日本一本二区三区精品| 亚洲国产高清在线一区二区三| 国产精品国产三级国产av玫瑰| 国内精品宾馆在线| 亚洲无线观看免费| 亚洲美女视频黄频| 久久国内精品自在自线图片| 99久久精品一区二区三区| 日韩av不卡免费在线播放| 国产视频首页在线观看| 久久久久久久大尺度免费视频| 大香蕉久久网| 一本色道久久久久久精品综合| 在现免费观看毛片| 欧美日本视频| 国产真实伦视频高清在线观看| 日韩成人av中文字幕在线观看| 免费看日本二区| 大香蕉久久网| 一级片'在线观看视频| 国产人妻一区二区三区在| 欧美变态另类bdsm刘玥| 欧美日韩精品成人综合77777| 国精品久久久久久国模美| 亚洲久久久久久中文字幕| 夫妻性生交免费视频一级片| 久久精品综合一区二区三区| 麻豆精品久久久久久蜜桃| 最近中文字幕高清免费大全6| 国产欧美日韩一区二区三区在线 | 黄色视频在线播放观看不卡| 精品少妇黑人巨大在线播放| 18禁裸乳无遮挡动漫免费视频 | 国产一区二区三区av在线| 最近中文字幕高清免费大全6| 欧美成人午夜免费资源| 亚洲av欧美aⅴ国产| 国产亚洲最大av| 国产视频内射| 三级男女做爰猛烈吃奶摸视频| 日韩大片免费观看网站| 在线免费观看不下载黄p国产| 亚洲性久久影院| 亚洲欧美日韩无卡精品| 一级毛片我不卡| 国产淫语在线视频| 精品久久久久久久久亚洲| 国产精品久久久久久av不卡| 国产欧美日韩精品一区二区| 欧美日韩精品成人综合77777| 精品久久久久久久末码| 成人欧美大片| eeuss影院久久| 亚洲国产最新在线播放| 少妇的逼水好多| 久久99蜜桃精品久久| 亚洲欧美日韩卡通动漫| 在线观看一区二区三区激情| 亚洲精品,欧美精品| 国产黄片视频在线免费观看| 日本一本二区三区精品| 国产精品福利在线免费观看| 成人无遮挡网站| 成年女人在线观看亚洲视频 | av线在线观看网站| 亚洲精品乱码久久久久久按摩| 综合色丁香网| 天堂网av新在线| 国产精品国产三级专区第一集| 亚洲,一卡二卡三卡| 高清在线视频一区二区三区| 2022亚洲国产成人精品| 最近中文字幕高清免费大全6| 日日啪夜夜爽| 亚洲精品久久久久久婷婷小说| 啦啦啦中文免费视频观看日本| 观看免费一级毛片| 自拍偷自拍亚洲精品老妇| 丝袜美腿在线中文| 久久这里有精品视频免费| 国产黄频视频在线观看| 国产亚洲精品久久久com| 赤兔流量卡办理| 久久国产乱子免费精品| 五月天丁香电影| av在线亚洲专区| 一区二区av电影网| 亚洲精品成人av观看孕妇| 久久鲁丝午夜福利片| 亚洲av.av天堂| 人妻少妇偷人精品九色| 欧美最新免费一区二区三区| 中国国产av一级| 亚洲美女搞黄在线观看| 2022亚洲国产成人精品| 禁无遮挡网站| 欧美+日韩+精品| 精品国产乱码久久久久久小说| 欧美zozozo另类| 免费黄频网站在线观看国产| 日韩欧美精品v在线| 亚洲婷婷狠狠爱综合网| 色5月婷婷丁香| 亚洲伊人久久精品综合| 51国产日韩欧美| 亚洲最大成人中文| 亚洲内射少妇av| 如何舔出高潮| 亚洲精品aⅴ在线观看| 久久久久久久精品精品| 国产探花在线观看一区二区| 亚洲怡红院男人天堂| 亚洲国产精品成人久久小说| 久久精品国产亚洲av涩爱| 国产精品一及| 嘟嘟电影网在线观看| 高清午夜精品一区二区三区| 精品少妇久久久久久888优播| 乱码一卡2卡4卡精品| 欧美亚洲 丝袜 人妻 在线| 欧美成人一区二区免费高清观看| 特级一级黄色大片| 精品久久久久久久久av| av黄色大香蕉| 2022亚洲国产成人精品| 五月天丁香电影| 亚洲欧美日韩东京热| 国产成年人精品一区二区| 色视频www国产| 最近中文字幕2019免费版| 一级毛片电影观看| 国产大屁股一区二区在线视频| 久久久午夜欧美精品| 王馨瑶露胸无遮挡在线观看| 在线精品无人区一区二区三 | 99久国产av精品国产电影| 亚洲国产精品999| 最近最新中文字幕免费大全7| 日韩一区二区三区影片| 永久免费av网站大全| 69人妻影院| 联通29元200g的流量卡| 免费av毛片视频| 麻豆乱淫一区二区| av在线蜜桃| 色视频在线一区二区三区| 在线观看人妻少妇| 欧美日韩在线观看h| 国产亚洲精品久久久com| 国产探花极品一区二区| 欧美国产精品一级二级三级 | 一级av片app| 大话2 男鬼变身卡| 色播亚洲综合网| 成人午夜精彩视频在线观看| 在线观看三级黄色| 直男gayav资源| 汤姆久久久久久久影院中文字幕| 男人爽女人下面视频在线观看| 国产精品一区二区三区四区免费观看| 久久久国产一区二区| 亚洲人成网站在线播| 天天躁夜夜躁狠狠久久av| 性插视频无遮挡在线免费观看| 午夜视频国产福利| av又黄又爽大尺度在线免费看| 热re99久久精品国产66热6| 大话2 男鬼变身卡| 亚洲综合精品二区| h日本视频在线播放| 国产精品爽爽va在线观看网站| 精品亚洲乱码少妇综合久久| 美女主播在线视频| 韩国av在线不卡| 在线天堂最新版资源| 校园人妻丝袜中文字幕| 亚洲av中文字字幕乱码综合| 最近最新中文字幕免费大全7| 亚洲国产精品成人久久小说| 国产毛片在线视频| 欧美成人a在线观看| 久久久久网色| 中文字幕人妻熟人妻熟丝袜美| 国产午夜福利久久久久久| 国产精品三级大全| 女的被弄到高潮叫床怎么办| 亚洲国产高清在线一区二区三| 噜噜噜噜噜久久久久久91| 久久久久久久国产电影| 大话2 男鬼变身卡| 欧美性感艳星| av在线app专区| 纵有疾风起免费观看全集完整版| 狂野欧美激情性xxxx在线观看| 超碰97精品在线观看| av福利片在线观看| 国产精品人妻久久久影院| 国产 精品1| 国产伦理片在线播放av一区| 日本wwww免费看| 午夜爱爱视频在线播放| 亚洲无线观看免费| 国产精品国产三级专区第一集| 美女国产视频在线观看| 成人综合一区亚洲| 在线看a的网站| 国产精品秋霞免费鲁丝片| 一个人观看的视频www高清免费观看| 蜜桃亚洲精品一区二区三区| 久久精品国产鲁丝片午夜精品| 免费av不卡在线播放| 久久人人爽人人爽人人片va| 亚洲,一卡二卡三卡| 亚洲不卡免费看| 成年版毛片免费区| 26uuu在线亚洲综合色| videossex国产| 日日啪夜夜爽| 精品熟女少妇av免费看| av又黄又爽大尺度在线免费看| 最近的中文字幕免费完整| 精品久久久久久久人妻蜜臀av| 久久国产乱子免费精品| 六月丁香七月| 亚洲人成网站高清观看| 永久免费av网站大全| 天美传媒精品一区二区| 伊人久久国产一区二区| 人妻夜夜爽99麻豆av| 欧美一区二区亚洲| 亚洲精品乱码久久久v下载方式| 亚洲经典国产精华液单| 国产精品国产三级国产av玫瑰| 国产片特级美女逼逼视频| 精品久久久久久久人妻蜜臀av| 久久热精品热| 视频中文字幕在线观看| 精品人妻一区二区三区麻豆| 久久久亚洲精品成人影院| 亚洲综合精品二区| av.在线天堂| 欧美xxxx黑人xx丫x性爽| 岛国毛片在线播放| 日日摸夜夜添夜夜爱| 一个人看视频在线观看www免费| 搡老乐熟女国产| 欧美潮喷喷水| 99久久中文字幕三级久久日本| 街头女战士在线观看网站| 一区二区三区免费毛片| 最近中文字幕2019免费版| av卡一久久| 伊人久久精品亚洲午夜| 午夜亚洲福利在线播放| 亚洲人成网站在线观看播放| av又黄又爽大尺度在线免费看| 精品人妻一区二区三区麻豆| 日韩不卡一区二区三区视频在线| 亚洲图色成人| 久久久久久久久大av| 免费黄网站久久成人精品| 哪个播放器可以免费观看大片| 天堂俺去俺来也www色官网| 午夜日本视频在线| 久久精品夜色国产| 亚洲精品自拍成人| 国产视频内射| 欧美日韩视频精品一区| 中文字幕制服av| 91aial.com中文字幕在线观看| 免费黄色在线免费观看| 久久久午夜欧美精品| 51国产日韩欧美| 天天躁夜夜躁狠狠久久av| 简卡轻食公司| 亚洲精品自拍成人| 久久久久性生活片| 2021天堂中文幕一二区在线观| 99热全是精品| 国产亚洲5aaaaa淫片| 久久精品国产亚洲网站| 免费看a级黄色片| 日韩一区二区三区影片| 国产真实伦视频高清在线观看| 国产亚洲一区二区精品| av免费观看日本| 嘟嘟电影网在线观看| 成人黄色视频免费在线看| 国产69精品久久久久777片| 日日啪夜夜撸| 成人二区视频| 日韩伦理黄色片| 亚洲av不卡在线观看| 哪个播放器可以免费观看大片| 美女视频免费永久观看网站| 免费播放大片免费观看视频在线观看| 亚洲精品乱码久久久v下载方式| 亚洲av成人精品一二三区| 中文字幕免费在线视频6| av国产免费在线观看| 热re99久久精品国产66热6| 亚洲自拍偷在线| 成人二区视频| 国内揄拍国产精品人妻在线| 涩涩av久久男人的天堂| 国产男人的电影天堂91| 久热这里只有精品99| 男女边吃奶边做爰视频| 熟女av电影| 免费大片18禁| 99久久九九国产精品国产免费| 亚洲欧美日韩卡通动漫| 国产高清不卡午夜福利| 婷婷色综合www| 亚洲欧美精品自产自拍| 亚洲成人久久爱视频| 日韩av不卡免费在线播放| 亚洲欧美日韩另类电影网站 | 国产午夜福利久久久久久| 日本欧美国产在线视频| 天堂中文最新版在线下载 | 国产精品一区二区在线观看99| 亚洲精品影视一区二区三区av| av天堂中文字幕网| 国产精品熟女久久久久浪| 身体一侧抽搐| 亚洲欧美日韩另类电影网站 | 高清日韩中文字幕在线| 欧美97在线视频| 亚洲国产欧美人成| 久久亚洲国产成人精品v| 欧美日韩视频高清一区二区三区二| 伊人久久精品亚洲午夜| 王馨瑶露胸无遮挡在线观看| 制服丝袜香蕉在线| 亚洲精品成人av观看孕妇| 国产精品福利在线免费观看| 亚洲人成网站在线播| 精品一区二区免费观看| 一级爰片在线观看| 一级毛片电影观看| 伊人久久精品亚洲午夜| 丰满少妇做爰视频| 两个人的视频大全免费| 少妇人妻精品综合一区二区| 哪个播放器可以免费观看大片| 国产91av在线免费观看| 18禁裸乳无遮挡动漫免费视频 | 久久久久久久精品精品| 国产男女超爽视频在线观看| 大香蕉97超碰在线| 国产黄色免费在线视频| 18禁动态无遮挡网站| 免费播放大片免费观看视频在线观看| 国产色爽女视频免费观看| 高清av免费在线| 欧美高清成人免费视频www| 亚洲av一区综合| 少妇高潮的动态图| 一级毛片我不卡| av在线蜜桃| 秋霞在线观看毛片| 欧美bdsm另类| 99热这里只有是精品50| 亚洲最大成人av| 国产一区二区三区综合在线观看 | 伊人久久国产一区二区| 在线观看三级黄色| 日韩成人伦理影院| 国产免费视频播放在线视频| 欧美xxⅹ黑人| 日韩一区二区三区影片| 视频区图区小说| av在线老鸭窝| 搡老乐熟女国产| 亚洲性久久影院| 校园人妻丝袜中文字幕| 日本熟妇午夜| 少妇猛男粗大的猛烈进出视频 | 黑人高潮一二区| 高清在线视频一区二区三区| 久久久久久久久大av| 伊人久久国产一区二区| 亚洲精品色激情综合| 在线观看一区二区三区激情| 一区二区av电影网| 青春草国产在线视频| 国产精品偷伦视频观看了| 日韩一区二区三区影片| 亚洲欧美精品自产自拍| 能在线免费看毛片的网站| av.在线天堂| 好男人在线观看高清免费视频| 国产 精品1| 网址你懂的国产日韩在线| 男插女下体视频免费在线播放| 日韩人妻高清精品专区| 欧美日韩亚洲高清精品| 18禁裸乳无遮挡动漫免费视频 | 女人十人毛片免费观看3o分钟| 99视频精品全部免费 在线| 亚洲精品日本国产第一区| 亚洲真实伦在线观看| 亚洲国产成人一精品久久久| av又黄又爽大尺度在线免费看| 人人妻人人看人人澡| 欧美激情在线99| 国产有黄有色有爽视频| 免费在线观看成人毛片| 国内揄拍国产精品人妻在线| 国产探花在线观看一区二区| 视频中文字幕在线观看| 一级毛片黄色毛片免费观看视频| 99热全是精品| 九九久久精品国产亚洲av麻豆| 亚洲av成人精品一区久久| 精品一区在线观看国产| 久久久久久久久久久免费av| 简卡轻食公司| av国产免费在线观看| av在线老鸭窝| 国产精品女同一区二区软件| 插逼视频在线观看| 黄色视频在线播放观看不卡| 国产一区二区在线观看日韩| 欧美97在线视频| 综合色丁香网| 成年女人看的毛片在线观看| 日韩一区二区三区影片| www.色视频.com| 国产在线男女| 欧美激情在线99| 我的老师免费观看完整版| 亚洲成人一二三区av| 成人国产av品久久久| 久久这里有精品视频免费| 亚洲av电影在线观看一区二区三区 | 午夜激情久久久久久久| 中文资源天堂在线| 亚洲高清免费不卡视频| 国产乱人视频| 国产久久久一区二区三区| 国产一区亚洲一区在线观看| 在线精品无人区一区二区三 | 在线观看一区二区三区激情| 国产综合精华液| 全区人妻精品视频| 久久99热6这里只有精品| 99热网站在线观看| 91精品一卡2卡3卡4卡| 国产免费一区二区三区四区乱码| 亚洲精品自拍成人| 精品亚洲乱码少妇综合久久| a级毛片免费高清观看在线播放| 白带黄色成豆腐渣| 国产成人aa在线观看| 国产一区二区在线观看日韩| 成年女人在线观看亚洲视频 | 亚洲av日韩在线播放| 男人狂女人下面高潮的视频| xxx大片免费视频| 不卡视频在线观看欧美| 毛片女人毛片| 免费观看a级毛片全部| 午夜精品一区二区三区免费看| 深爱激情五月婷婷| 熟女电影av网| 干丝袜人妻中文字幕| 亚洲精品色激情综合| 内射极品少妇av片p| 免费观看的影片在线观看| 免费看a级黄色片| 老女人水多毛片| 欧美性感艳星| 天堂中文最新版在线下载 | 亚洲一区二区三区欧美精品 | a级毛片免费高清观看在线播放| h日本视频在线播放| 在线免费观看不下载黄p国产| 菩萨蛮人人尽说江南好唐韦庄| 看黄色毛片网站| 美女内射精品一级片tv| 午夜福利在线在线| 观看免费一级毛片| 校园人妻丝袜中文字幕| 纵有疾风起免费观看全集完整版| 亚洲人成网站在线播| 丰满乱子伦码专区| 99视频精品全部免费 在线| 啦啦啦啦在线视频资源| 在线观看三级黄色| 色综合色国产| 少妇人妻精品综合一区二区| 日日撸夜夜添| 内射极品少妇av片p| 精品一区二区三区视频在线| 又大又黄又爽视频免费| 免费看不卡的av| 国产在视频线精品| 哪个播放器可以免费观看大片| 成人一区二区视频在线观看| 嫩草影院入口| 国产精品福利在线免费观看| 国产免费又黄又爽又色| 午夜福利视频精品| 国产亚洲5aaaaa淫片| 一级爰片在线观看| 69av精品久久久久久| 精品人妻偷拍中文字幕| av在线app专区| 校园人妻丝袜中文字幕| 22中文网久久字幕| 直男gayav资源| 超碰av人人做人人爽久久| 成人毛片60女人毛片免费| 又爽又黄无遮挡网站| 国产国拍精品亚洲av在线观看| 黄色一级大片看看| 久久人人爽人人片av| 成人国产av品久久久| 精品少妇久久久久久888优播| 91久久精品电影网| 日日啪夜夜爽| 亚洲精品久久午夜乱码| 国产永久视频网站| 尤物成人国产欧美一区二区三区| 国产综合精华液| 亚洲av欧美aⅴ国产| 国产日韩欧美亚洲二区| 最近中文字幕高清免费大全6| 久久精品人妻少妇| av在线老鸭窝| av在线播放精品| 亚洲精品亚洲一区二区| 99热这里只有是精品50| 91精品伊人久久大香线蕉| 国产精品福利在线免费观看| 免费人成在线观看视频色| 能在线免费看毛片的网站| 亚洲成人中文字幕在线播放|