劉正先,朱 暢,韓 博
(1. 天津大學(xué)機械工程學(xué)院,天津 300072;2. 天津大學(xué)化工學(xué)院,天津 300072)
實際氣體介質(zhì)離心壓縮機級氣動性能相似性分析
劉正先1,朱 暢2,韓 博2
(1. 天津大學(xué)機械工程學(xué)院,天津 300072;2. 天津大學(xué)化工學(xué)院,天津 300072)
為研究某一離心壓縮機模型級氣動性能是否隨不同實際氣體介質(zhì)變化,通過驗證數(shù)值模擬與實驗結(jié)果的符合性,采用數(shù)值方法對比分析了以空氣為原始工作介質(zhì)和以R134a(氟利昂)、CH4(甲烷)為實際氣體介質(zhì)在當(dāng)量轉(zhuǎn)速與變轉(zhuǎn)速下的氣動性能的相似性及變化規(guī)律:無論以設(shè)計工況還是非設(shè)計工況為當(dāng)量轉(zhuǎn)換點,均能獲得一致的當(dāng)量轉(zhuǎn)速值,且不同實際氣體介質(zhì)在當(dāng)量轉(zhuǎn)速下的多變效率及多變能量頭系數(shù)曲線與原始?xì)怏w性能曲線能夠保持很好的符合度.以實際氣體CH4為例,說明了在變轉(zhuǎn)速條件下,壓縮機氣動性能在亞音速時,不同馬赫數(shù)的性能曲線及工況范圍變化趨勢一致;跨音速時,氣體的最高效率點明顯移向大流量工況,且馬赫數(shù)越大,運行工況范圍顯著變窄,同時性能曲線不再滿足相似性規(guī)律.
離心壓縮機;實際氣體;當(dāng)量轉(zhuǎn)速;氣動性能
石油、化工等行業(yè)中離心壓縮機內(nèi)的氣體種類越來越多,除空氣外還有其他易燃易爆有毒單一氣體或者多組分混合氣體,有些特殊氣體不能在壓縮機內(nèi)進(jìn)行性能實驗,只能用具有良好物理性能的氣體來代替進(jìn)行相似轉(zhuǎn)換,如文獻(xiàn)[1-2]是以R134a(氟利昂)及CH4(甲烷)等代用氣體對壓縮機內(nèi)的實際氣體進(jìn)行當(dāng)量相似轉(zhuǎn)換.國內(nèi)外學(xué)者針對不同工作介質(zhì)在同一壓縮機內(nèi)的相似轉(zhuǎn)換以及同一工作介質(zhì)在不同馬赫數(shù)下性能的變化做了大量的分析研究[3-5],如通過不同實際氣體獲得壓縮機設(shè)計氣體的氣動性能,從而證實設(shè)計氣體在設(shè)計工況附近運行時,壓縮機能否達(dá)到出廠要求[6-7];另外有研究者提出一種更加精確的計算實驗氣體壓縮性函數(shù)X、Y的方法,為進(jìn)一步確定壓縮過程中的容積多變指數(shù)mv鞏固了基礎(chǔ)[8-10];還有研究者分析了同一實際氣體在不同馬赫數(shù)下運行時,壓縮機的性能參數(shù)以及氣動性能的變化規(guī)律[11-13].上述研究側(cè)重于通過對不同實際氣體進(jìn)行實際實驗,進(jìn)而驗證設(shè)計氣體的性能,本文則側(cè)重于壓縮機模型級對不同實際氣體介質(zhì)在氣動性能方面的適用性研究.根據(jù)已知原始工作介質(zhì)的氣動性能,按照ASME PTC10—1997標(biāo)準(zhǔn)[14]對以R134a(氟利昂)及CH4(甲烷)為代表的實際氣體介質(zhì)進(jìn)行當(dāng)量相似轉(zhuǎn)換后,基于數(shù)值方法,確定壓縮機模型級氣動性能受不同實際氣體當(dāng)量轉(zhuǎn)速及變轉(zhuǎn)速的影響度,為不同實際氣體介質(zhì)在同一壓縮機中的運行及氣動設(shè)計提供借鑒.
1.1壓縮機模型級
以空氣為原始工作介質(zhì)的某典型離心壓縮機模型級,由閉式后彎離心葉輪、葉片擴壓器、彎道及回流器組成,圖1為模型級子午流道、葉輪、擴壓器、回流器三維型線和結(jié)構(gòu)圖.
模型級幾何參數(shù)如下:葉輪葉片數(shù)16,三維扭葉片;擴壓器為二維圓弧形葉片擴壓器,葉片數(shù)24;回流器葉片數(shù)20,二維香蕉形葉片.葉輪出口直徑D2=400,mm;擴壓器進(jìn)口直徑D3=440,mm,出口直徑D4=610,mm,回流器進(jìn)口直徑D5=600,mm,回流器擴張角為8°.
1.2實際氣體的當(dāng)量轉(zhuǎn)換方法
以空氣為壓縮機原始工作介質(zhì),根據(jù)ASME PTC10—1997標(biāo)準(zhǔn)對R134a(氟利昂)及CH4(甲烷)實際氣體介質(zhì)進(jìn)行當(dāng)量相似轉(zhuǎn)換,依據(jù)轉(zhuǎn)換得到的當(dāng)量轉(zhuǎn)速及其他當(dāng)量參數(shù)采用數(shù)值模擬方法對模型級氣動性能進(jìn)行驗證.
根據(jù)ASME PTC10—1997標(biāo)準(zhǔn)中的理想與實際氣體參數(shù)相似轉(zhuǎn)換流程和當(dāng)量流動相似原理[3],實施如圖2所示的本文介質(zhì)的當(dāng)量轉(zhuǎn)換.首先計算原始工作介質(zhì)工況下的多變能量頭Wp、多變效率ηp、壓比rp及比熱容比rv等參數(shù);其次,由假定的轉(zhuǎn)換后實際氣體的進(jìn)口壓力pi及溫度Ti分別得到壓縮性函數(shù)X、Y,進(jìn)而計算此時的溫度多變指數(shù)mT及容積多變指數(shù)mV;再由轉(zhuǎn)換后實際氣體的出口壓力po及溫度To計算實際氣體的多變能量頭,得到初始當(dāng)量轉(zhuǎn)速;最后,由雷諾修正系數(shù)Rem,corr及多變工作因子f確定轉(zhuǎn)換后實際氣體的最終當(dāng)量轉(zhuǎn)速N.
圖2 實際氣體參數(shù)當(dāng)量相似轉(zhuǎn)換流程Fig.2 Flowchart of equivalent similarity conversion for real gas parameters
圖2中關(guān)鍵參數(shù)的定義如下(部分下標(biāo)略).雷諾數(shù)
馬赫數(shù)
溫度多變指數(shù)
容積多變指數(shù)
氣體多變效率
當(dāng)量轉(zhuǎn)速
多變能量頭系數(shù)
采用數(shù)值方法對壓縮機模型級不同實際氣體氣動性能進(jìn)行驗證.在實施數(shù)值計算前,首先對以空氣為原始工作介質(zhì)的壓縮機模型級進(jìn)行數(shù)值與實驗測量值相符性分析,實驗測量值是本課題組將模型級裝配在滿足ASME PTC10—1997標(biāo)準(zhǔn)的測試裝置上進(jìn)行測試得到的.
數(shù)值計算采用CFX計算流體軟件建立壓縮機幾何模型并實施計算,求解采用雷諾時均方程(RANS)和RNG k-ε湍流模型.固壁面滿足絕熱、無滑移條件,葉輪進(jìn)、出口處采用動、靜交界面實現(xiàn)流動參數(shù)的傳遞.考慮到流動的周期性,選擇模型級單通道流場實施計算,葉輪單通道網(wǎng)格總數(shù)為1.5×106,擴壓器單通道網(wǎng)格總數(shù)為6×105,回流器單通道網(wǎng)格總數(shù)為6×105.在網(wǎng)格劃分時,為了提高網(wǎng)格質(zhì)量,在模型中對固壁面附近采用網(wǎng)格加密技術(shù),以保證壁面處滿足壁面函數(shù)法要求.?dāng)?shù)值計算的工況參數(shù)與實驗測量條件保持一致,即工作介質(zhì):空氣;壓力進(jìn)口條件:總壓p1=94,450,Pa,總溫T1=303,K;質(zhì)量流量出口條件:設(shè)計流量Qm=4.2,kg/s;葉輪轉(zhuǎn)速:N= 15,506,r/min,對應(yīng)馬赫數(shù)Ma=0.93.
圖3和圖4是空氣原始工作介質(zhì)多變效率和多變能量頭系數(shù)計算值與實驗測量值對比.可以看出:多變效率及多變能量頭系數(shù)曲線在計算與實驗條件下具有一致的變化趨勢;兩者的計算值均略高于實驗測量值.作者分析這是由于數(shù)值模擬過程中沒有考慮
圖3 多變效率實驗值與計算值結(jié)果比較Fig.3 Comparison between experimental and numerical results of polytropic efficiency
圖4 多變能量頭系數(shù)實驗值與計算值比較Fig.4 Comparison between experimental and numerical results of polytropic energy head coefficient
到模型級實驗過程中氣體內(nèi)泄漏及其引起的流動損失,一般由葉輪內(nèi)泄漏造成的多變效率降為1.5%,~4.0%,造成的多變能量頭系數(shù)損失為1%,~4%,[15];圖中計算值與實驗值在設(shè)計點D處的多變效率偏差為2%,、多變能量頭系數(shù)偏差為1.5%,.除去內(nèi)泄漏因素,可以認(rèn)為數(shù)值結(jié)果與實驗測量值具有很好的符合度,數(shù)值計算方法可以較真實地反映模型級的氣動性能.
3.1設(shè)計工況及非設(shè)計工況當(dāng)量參數(shù)比較
在對空氣原始工作介質(zhì)實施變介質(zhì)當(dāng)量轉(zhuǎn)換時,除以設(shè)計工況作為基本轉(zhuǎn)換工況外,本文還分別考察了以小流量工況和大流量工況為基本轉(zhuǎn)換工況的當(dāng)量相似轉(zhuǎn)換,以考察在全量程范圍不同介質(zhì)的相似符合度.
表1為3種工況下當(dāng)量轉(zhuǎn)換后實際氣體R134a(氟利昂)及CH4(甲烷)的當(dāng)量轉(zhuǎn)速及溫度多變指數(shù)mT、容積多變指數(shù)mV等關(guān)鍵參數(shù);表2是當(dāng)量轉(zhuǎn)換后R134a及CH4實際氣體介質(zhì)與空氣原始介質(zhì)在3種工況下對應(yīng)參數(shù)比較及允許偏差范圍.對比可以看出,轉(zhuǎn)換后實際氣體比容比νi/νd、流量轉(zhuǎn)速比Qv/N、馬赫數(shù)偏差Mat-Masp及絕對雷諾數(shù)偏差Rem,t/Rem,sp的偏差范圍均滿足ASME PTC 10—1997要求(見表2).從表1及表2還可以看出:當(dāng)對空氣原始介質(zhì)下的小流量和大流量工況進(jìn)行相似轉(zhuǎn)換后,實際氣體R134a(氟利昂)及CH4(甲烷)的當(dāng)量參數(shù)與在設(shè)計工況下轉(zhuǎn)換得到的當(dāng)量參數(shù)結(jié)果非常接近,這說明不同介質(zhì)間的當(dāng)量轉(zhuǎn)換關(guān)系在整個運行工況范圍內(nèi)均適用.
表1 實際氣體R134a及CH4轉(zhuǎn)換后當(dāng)量參數(shù)值Tab.1Converted equivalent parameter values of real gasR134a and CH4
表2 實際氣體R134a及CH4與空氣當(dāng)量參數(shù)比較Tab.2Comparison of equivalent parameter values of realgas R134a,CH4and air
3.2當(dāng)量轉(zhuǎn)速氣動性能分析
由表1可知,轉(zhuǎn)換后實際氣體的當(dāng)量轉(zhuǎn)速分別為6,740,r/min、19,900,r/min.由于必須保證轉(zhuǎn)換前后實際氣體的容積流量轉(zhuǎn)速比即Qv/N相同,由此可得轉(zhuǎn)換后設(shè)計工況下實際氣體的流量如下:R134a整機流量為9.4,kg/s,CH4整機流量為4.26,kg/s.
對當(dāng)量轉(zhuǎn)速下各實際氣體實施數(shù)值計算,對應(yīng)設(shè)計工況點參數(shù)如下.
工作介質(zhì):R134a和CH4.
壓力進(jìn)口條件相同:總壓p1=137,900,Pa,總溫T1=310.928,K.
質(zhì)量流量出口條件:R134a為9.4,kg/s,CH4為4.26,kg/s.
葉輪轉(zhuǎn)速:R134a為6,740,r/min,對應(yīng)馬赫數(shù)0.928,7;CH4為19,900,r/min,對應(yīng)馬赫數(shù)0.914.
圖5是數(shù)值計算得到的實際氣體R134a及CH4在當(dāng)量轉(zhuǎn)速下氣動性能與空氣原始介質(zhì)的氣動性能對比.可以看出,R134a及CH4在當(dāng)量轉(zhuǎn)速下的多變效率及多變能量頭系數(shù)曲線與空氣在對應(yīng)轉(zhuǎn)速下的性能曲線幾乎完全重合;最高多變效率點A在流量系數(shù)為0.092處,其值為86.2%,最高多變能量頭系數(shù)B點在流量系數(shù)為0.084處,其值約為0.560.由此驗證了表2得到的結(jié)果,即嚴(yán)格按照當(dāng)量條件進(jìn)行不同實際氣體相似轉(zhuǎn)換后,其運行性能與原始?xì)怏w的氣動性能可以達(dá)到完全相同.
圖5 當(dāng)量轉(zhuǎn)速下不同實際氣體與空氣氣動性能的對比Fig.5 Comparison of aerodynamic performance among different real gases and air at equivalent rotation speed
3.3變轉(zhuǎn)速對氣動性能的影響
為考察不同實際氣體在變轉(zhuǎn)速下的氣動性能,以CH4實際氣體為代表對變轉(zhuǎn)速模型級流場進(jìn)行了計算和分析.
圖6是CH4實際氣體在當(dāng)量轉(zhuǎn)速19,900,r/min及4種變轉(zhuǎn)速15,500,r/min、17,500,r/min、23,000 r/min與27,500,r/min下的性能曲線,對應(yīng)馬赫數(shù)從小到大依次為0.71、0.80、0.91、1.05、1.25,點A1、A2、A3、A4、A5分別為各馬赫數(shù)性能曲線的最高效率點.圖7和圖8是機械馬赫數(shù)為0.91及1.25、流量系數(shù)都為0.10時95%,葉高流面的馬赫數(shù)分布及葉片表面靜壓分布.
圖6CH4實際氣體在亞音速及跨音速下氣動性能對比Fig.6Comparison of aerodynamic performance of CH4real gas at subsonic and transonic rotation speeds
圖6(a)、6(b)分別為轉(zhuǎn)速小于和大于當(dāng)量轉(zhuǎn)速時模型級多變效率曲線,當(dāng)量轉(zhuǎn)速對應(yīng)馬赫數(shù)為0.91.圖6(c)和6(d)為對應(yīng)圖6(a)和6(b)的多變能量頭系數(shù)分布.可以看到,多變能量頭系數(shù)曲線與多變效率曲線的變化規(guī)律基本相同.與亞音速相比,跨音速葉輪內(nèi)部的激波現(xiàn)象會對流動造成更明顯影響,由圖7馬赫數(shù)及圖8葉片表面靜壓分布可知,在葉片前緣的吸力面處出現(xiàn)激波.
圖7 CH4實際氣體在亞音速及跨音速下馬赫數(shù)分布對比Fig.7 Comparison of Mach number of CH4real gas at subsonic and transonic rotation speeds
圖8 CH4實際氣體在亞音速及跨音速下葉片表面靜壓分布Fig.8 Distribution of static pressure on blade surface of CH4real gas at subsonic and transonic rotation speeds
由圖6(a)多變效率曲線可以看出:在亞音速條件下(馬赫數(shù)均小于1),幾種轉(zhuǎn)速下的氣體最高多變效率值基本保持不變,約為86.8%,性能曲線變化趨勢一致,運行工況范圍也基本相同,僅在大流量區(qū),隨著馬赫數(shù)的增加效率略有抬升;在跨音速條件下(圖6(b)),性能變化較大,不僅運行工況隨馬赫數(shù)增加明顯變窄,最高效率點相對于亞音速也顯著右移,且隨著馬赫數(shù)增加曲線不再有逐步增加的規(guī)律.可見,當(dāng)量相似轉(zhuǎn)換后的壓縮機氣動性能在亞音速條件下對轉(zhuǎn)速變化不敏感,但對跨音速,轉(zhuǎn)速變化不僅破壞了氣動相似性,且難以獲得變化規(guī)律.由圖7和圖8可知,造成這一現(xiàn)象的主要原因是跨音速葉輪內(nèi)部出現(xiàn)激波增加了流動復(fù)雜性[16].對實際氣體R134a(氟利昂)實施相同分析后,獲得了與上述CH4相同的結(jié)果.
(1) 以ASME PTC10—1997為標(biāo)準(zhǔn)實施的不同實際氣體的當(dāng)量相似轉(zhuǎn)換,無論是在設(shè)計工況還是在非設(shè)計工況下,對同一實際氣體介質(zhì)其所有轉(zhuǎn)換后的當(dāng)量參數(shù)均相同,表明當(dāng)原始?xì)怏w轉(zhuǎn)換為其他實際氣體介質(zhì)后,當(dāng)量轉(zhuǎn)換相似關(guān)系適用于整個運行工況范圍.
(2) 不同實際氣體介質(zhì)在當(dāng)量轉(zhuǎn)速下的無量綱性能曲線(多變效率及多變能量頭系數(shù))與原始工作介質(zhì)能夠很好符合,即滿足當(dāng)量流動相似.
(3) 以CH4實際氣體為代表介質(zhì)的壓縮機氣動性能隨轉(zhuǎn)速變化規(guī)律為:亞音速下,不同馬赫數(shù)的性能曲線變化趨勢一致,僅隨馬赫數(shù)的增加在數(shù)值上略有抬升;跨音速時,馬赫數(shù)越大,運行工況范圍越窄,同時,氣動性能既不相似也無變化規(guī)律.
[1] Wolfram D,Carolus T H. Experimental and numerical investigation of the unsteady flow field and tone generation in an isolated centrifugal fan impeller [J]. Journal of Sound and Vibration,2010,329(21):4380-4397.
[2] 徐 忠. 離心壓縮機原理[M]. 北京:機械工業(yè)出版社,1982. Xu Zhong. Mechanism of Centrifugal Compressor [M]. Beijing:China Machine Press,1982(in Chinese).
[3] Key B. Dynamic similitude theory:Key to understanding the ASME compressor-performance test [J]. Journal of Petroleum Technology,1989,41(8):860-866.
[4] Memmott E A. Stability analysis and testing of a train of centrifugal compressors for high pressure gas injection[J]. Journal of Engineering for Gas Turbines and Power,1999,121(3):509-514.
[5] McNeely M,Rolls-Royce. Dresser-rand test for dolphin project [J]. Diesel and Gas Turbine Worldwide,2005,37(5):63-65.
[6] Liu Zhengxian,Wang Xuejun,Dai Jishuang,et al. Application of factor difference scheme to solving discrete flow equation based on unstructured grid [J]. Transactions of Tianjin University,2009,15(5):324-329.
[7] Taher M. ASME PTC-10 performance testing of centrifugal compressors:The real gas calculation method [C]// ASME Turbo Expo 2014:Turbine Technical Conference and Exposition. Düsseldorf,Germany,2014,3B:1-10.
[8] Huntington R A. Evaluation of polytropic calculation methods for turbomachinery performance [J]. Journal of Engineering for Gas Turbines and Power,1985,107(4):872-876.
[9] Flathers M B,Baché G E. Aerodynamically induced radial forces in a centrifugal gas compressor:Part 2— Computation investigation [J]. Journal of Engineering for Gas Turbines and Power,1999,121(4):725-734.
[10] Schultz J M. The polytropic analysis of centrifugal compressors [J]. ASME Journal of Engineering for Power,1962,84(1):69-82.
[11] Georgiou D P,Xenos T. The process of isothermal compression of gasses at sub-atmospheric pressures through regulated water injection in Braysson cycles [J]. Applied Thermal Engineering,2011,31(14/15):2205-2212.
[12] 謝 輝,李蘇蘇. 重型車用柴油機廢氣發(fā)電復(fù)合渦輪行駛工況的適應(yīng)性[J]. 天津大學(xué)學(xué)報:自然科學(xué)與工程技術(shù)版,2014,47(6):558-564. Xie Hui,Li Susu. Adaptive on driving cycles of waste energy recovery turbo-compound systems on a heavy duty diesel engine [J]. Journal of Tianjin University: Science and Technology,2014,47(6):558-564(in Chinese).
[13] 向宏輝,侯敏杰,劉志剛. 基于統(tǒng)計特征的軸流風(fēng)扇/壓氣機性能試驗數(shù)據(jù)相關(guān)性分析[J]. 航空動力學(xué)報,2014,29(1):146-152. Xiang Honghui,Hou Minjie,Liu Zhigang. Correlative analysis of performance experimental data of axial flow fans/compressors based on statistical characteristic [J]. Journal of Aerospace Power,2014,29(1):146-152(in Chinese).
[14] American National Standards Institute. ANSI/ASME PTC10—1997 Performance Test Code on Compressors and Exhausters [S]. 1997-01-01.
[15] 閆寶升. 離心葉輪內(nèi)部流動特征與性能的數(shù)值研究[D]. 天津:天津大學(xué)機械工程學(xué)院,2010. Yan Baosheng. Numerical Study of Flow Characteristics and Performance Inside Centrifugal Impeller [D]. Tianjin:School of Mechanical Engineering,Tianjin University,2010(in Chinese).
[16] 王牧蘇. 具有分流葉片跨聲速離心葉輪內(nèi)部流動的數(shù)值研究[D]. 天津:天津大學(xué)機械工程學(xué)院,2014. Wang Musu. Numerical Study of Flow Field in Transonic Centrifugal Impeller with Splitter Blades [D]. Tianjin: School of Mechanical Engineering,Tianjin University,2014(in Chinese).
(責(zé)任編輯:金順愛)
Similarity Analysis of Aerodynamic Performance on a Centrifugal Compressor Stage with Real Gas
Liu Zhengxian1,Zhu Chang2,Han Bo2
(1.School of Mechanical Engineering,Tianjin University,Tianjin 300072,China;2.School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China)
To investigate whether the aerodynamic performance of a centrifugal compressor stage would change with different real gas media,based on the conformity verification between numerical simulation and experimental results,the numerical method was adopted to compare and analyze the aerodynamic similarity and variation law of compressor stage,with air as original working medium and R134a and CH4as real gas medium,separately,and with the operating rotation speed of both equivalent rotation speed and variable rotation speed.The results demonstrate that no matter the design point or the off-design point is regarded as the base point of equivalent conversion,the equivalent rotation speeds are pretty much the same,and the polytropic efficiency and energy head coefficient curves of the compressor stage at equivalent rotation speed for different real gas media also agree well with those of the original gas medium.Taking the real gas of CH4as an example,the subsonic performance curves and working range at different Mach numbers almost display the same distribution trend at variable rotation speeds.But for transonic flow,the maximum efficiency value of performance markedly moves towards the working condition of large mass flow rate,and the higher Mach number,the narrower the operating range.As a result,the performance curves no longer meet the law of similarity at transonic rotation speeds.
centrifugal compressor;real gas;equivalent rotation speed;aerodynamic performance
TH45
A
0493-2137(2016)07-0721-07
10.11784/tdxbz201509044
2015-09-17;
2015-12-21.
國家重點基礎(chǔ)研究發(fā)展計劃(973計劃)資助項目(2012CB720101);國家自然科學(xué)基金資助項目(51276125).
劉正先(1969— ),女,博士,教授.
劉正先,zxliu@tju.edu.cn.
網(wǎng)絡(luò)出版時間:2016-01-18. 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/12.1127.N.20160118.1049.002.html.