• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assembly and marker analysis of mitochondrial genomes provide insights into origin,evolution and spread of Brassica juncea (L.)Czern.et Coss.

    2022-06-30 03:06:18LingYouLiuYngFngyingLiuLeiKngHoChenBinYngQinYngZhongsongLiu
    The Crop Journal 2022年3期

    Ling You,Liu Yng,Fngying Liu,Lei Kng,Ho Chen,Bin Yng,b,Qin Yng,Zhongsong Liu,*

    a College of Agronomy,Hunan Agricultural University,Changsha 410128,Hunan,China

    b Guizhou Institute of Oil Crops,Guizhou Academy of Agricultural Sciences,Guiyang 550000,Guizhou,China

    Keywords:Brassica juncea Mitochondrial genome Mitotypes Molecular markers Migration routes

    ABSTRACT The release of mitochondrial genome sequences provides the basis for characterizing interspecific and intraspecific variation in Brassica mitochondrial genomes.However,few B.juncea (mustard) mitochondrial genomes have been published.We assembled the mitochondrial genomes of three B.juncea subspecies and compared them with previously published genomes.The genomes were phylogenetically classified into A,B,C,and Bna clades.Two variant sites,a transversion (C →A) at nt 79,573 and a 31-bp copy-number variation between nts 65,564 and 65,596,were identified.Based on these variant sites,mitotype-specific sequence markers were developed to characterize the variation among worldwide 558 B.juncea accessions.Three mitochondrial genome types(mitotypes MT1–MT3)were identified.In terms of geographical distribution,MT1 and MT2 accessions were distributed mainly to the north and MT3 to the south of 34°N.Root mustards carried only MT1,leaf and stem mustards carried mainly MT3,and seed mustards carried all three mitotypes,implying that the mitotypes underwent selection during B.juncea domestication.A new form of oil mustard evolved by hybridization between two gene pools in southwest China.

    1.Introduction

    Mustard (Brassica juncea (L.) Czern.et Coss.) is grown as an oilseed,vegetable,and condiment crop worldwide,and is taxonomically classified into four subspecies:napiformis(root),juncea(seed),integrifolia (leaf) and tsatsai (stem) [1,2].B.juncea (2n=4x=36,AABB)is an allotetraploid that originated from natural hybridization between B.rapa (2n=20,AA) as a maternal parent and B.nigra(2n=16,BB).Mustard was grown 6000–7000 years ago in China[3],and Indian mustard was used by the Indus Valley civilization in the form of oil mustard as early as 2300 to 1750 BCE[4].

    Because the cytoplasm is inherited from the maternal parent in Brassica juncea and all others,variation in the cytoplasmic genome can be used to investigate species origin and domestication.The release of organellar genome sequences has provided new insights into the genetic relationships of Brassica crop species [5–13].Comparison showed that B.juncea and B.rapa carry identical mitochondrial (mt) genomes,in agreement with the fact that B.rapa is the cytoplasmic donor of B.juncea [6,9,13].Likewise,mt genome sequencing confirmed that B.nigra is the maternal parent of B.carinata [8].

    Intraspecific variation in the mt genome has been frequently observed in Brassica species.There was variation in size and structure of mt genomes between B.oleracea accessions [6,7].An InDel variation was detected between B.nigra mt genomes [8].A SNP variation,C to A,was identified between two B.rapa varieties,Chinese cabbage and Mizuna.This variation also appears in B.juncea[10].Based on 42 mt genes,B.napus accessions were clustered into two clades:B.rapa and B.oleracea clades [14],which were proposed to correspond to pol (Polima) and nap (Napus) cytoplasm,respectively [13].In mustard,mt genome sequences of three subspecies:leaf [6],stem [9] and seed mustards (GenBank ID:MT675103) have been released.The mt genome sequence of root mustard has not been reported.

    Mitotype-specific sequence (MSS) markers have been developed to classify mt genomes and permit identification of cytoplasmic types,phylogenetic analysis,and breeding of cytoplasmic male sterility (CMS) lines in Brassica species [15,16].In B.napus,the cytoplasmic types nap,cam(Campestris),pol,and ogu(Ogura)have been distinguished.For accurate and rapid identification of these different cytoplasms,corresponding MSS markers have been developed,and provide a reliable method for the identification of CMS rapeseed hybrids[15].Recently[16],MSS markers were developed from B.napus mitotype-specific sequences and used to identify breeding lines.

    With the rapid development of sequencing technologies,mt genome sequences can be assembled using long-read thirdgeneration technologies [17–20].The aim of the present study was to assemble the mt genomes of root,seed,and leaf mustards using PacBio sequencing and to develop MSS markers to characterize B.juncea accessions and mitotypes and to investigate the diversification and spread of B.juncea mitotypes.

    2.Materials and methods

    2.1.Plant materials

    Three Brassica juncea accessions:Datoucai (ssp.napiformis),Sichuan Yellow (SY,ssp.juncea),and CR 2493 (ssp.integrifolia)were used for genome sequencing.A panel of 558 B.juncea accessions from 38 countries or regions were used for mitotyping.Their geographic origins are presented in Table S1.The other accessions,including 51 B.napus accessions,5 B.rapa accessions,4 B.oleracea accessions,and 1 accession each of B.nigra and B.carinata(Table S2) were used to investigate mt genome variation.F1and F2progenies from reciprocal crosses between SY and Huayejie and their pooled seed samples(Table S3)were used to test the reliability and accuracy of MSS markers.

    2.2.DNA extraction and species identification of Brassica accessions

    Total DNA was isolated from 2-week-old leaves or mature seeds by the CTAB method [21].Species identification of Brassica accessions was performed by multiplex PCR using genome-specific primers [22].

    2.3.Assembly and sequence analysis of mt genomes

    The genomes of Datoucai,Sichuan Yellow,and CR 2493 were sequenced using the PacBio Sequel platform [23] (Table S4).The error correction module in Falcon (github.com/PacificBiosciences/falcon) was used to correct reads.The error-corrected reads were aligned with default parameters against the B.juncea mt genome sequence(JF920288)using blat software(v.3.2.1) [24].Reads with over 80-fold coverage,length >30 kb,and identity of 90%or more were taken as candidate reads from the mt genome.For de novo assembly of the mt genomes of these accessions,the candidate reads were assembled into contigs with Celera Assembler 8.3rc2[25],using default parameters.The longest contigs were aligned(blast.ncbi.nlm.nih.gov/Blast.cgi) against JF920288 to identify the start position of the mt genome.The circular genome was constructed after the overlap at the start and end of the sequence was verified.Finally,SNPs and InDels between the new and the reference (JF920288) mt sequences were identified by Basic Local Alignment Search Tool (BLAST,blast.ncbi.nlm.nih.gov/Blast.cgi)alignment and validated by sequencing of PCR products.

    The mt genomes were annotated by BLAST searches against nr/nt (blast.ncbi.nlm.nih.gov/Blast.cgi) to identify known mt protein genes,rRNA genes,and repetitive sequences.To identify tRNA genes,tRNAscan-SE (lowelab.ucsc.edu/tRNAscan-SE/) was used.OGDraw 1.3.1 [26] was used to draw circular mt genome maps.

    2.4.Phylogenetic analysis of mt genomes of Brassicaceae

    Twenty-one Brassica mt genome sequences were retrieved from NCBI (www.ncbi.nlm.nih.gov/) and used for clustering with the three sequences assembled above.Each mt genome sequence was simulated by the ART software [27] into 30-fold paired-end sequences (Illumina,San Diego,CA,USA) with an library of 200 bp and reads length of 150 bp.BWA 0.7.16[28]was then used to align the simulated reads against JF920288.SNPs and InDels between the sequences were identified by GATK [29].The identified variant sites were extracted,concatenated,and aligned with ClustalW in MEGA 7.0 [30],The maximum likelihood method was used to construct the phylogenetic tree,with 1000 bootstraps.The phylogenetic tree was drawn with EvolView(www.evolgenius.info/evolview).

    2.5.PCR validation of mt genome variants in B.Juncea

    To validate mt genome variants,the primers sequences of MSS markers MT.CNV and MT.SNP were redesigned as described previously [23] (Table S5).The PCR reactions contained 10 μL 2× Fast LongTaq PCR PreMix (Innovagene,Changsha,China),100 ng DNA template,and 0.4 μL forward and reverse primers (10 μmol L-1),and were made to 20 μL with sterilized water.The PCR protocol was as follows:94°C for 3 min;34 cycles of 94°C for 30 s,annealing for 30 s with the annealing temperature shown in Table S5,72°C for 30 s;and a final extension at 72°C for 5 min.For detecting MT.SNP markers,PCR amplicon could be digested by the endonuclease EarI when the nucleotide is C at position no.79,573 according to JF920288,whereas it could not be digested when the nucleotide C had undergone transversion to A.All PCR products,whether or not digested,were separated by electrophoresis on 2.0% agarose gels.

    3.Results

    3.1.The mt genomes of Brassica juncea

    The read N50s for the three assembled accessions Datoucai,Sichuan Yellow,and CR 2493 were 16.2,13.6,and 16.0 kb,respectively (Table S4).Their final assembled mt genomes were respectively 219,775 (GenBank ID:MZ671991),219,806 (MZ671990),and 219,775 bp(MZ671992)in length(Table 1).Like the reference(JF920288)[6],these genomes all harbored 55 genes,including 34 protein-coding genes,3 rRNA genes,and 18 tRNA genes.The mt genome of B.juncea Datoucai is shown in Fig.S1.

    Table 1 Size of mt genomes in Brassica juncea.

    3.2.Phylogenetics of the mt genomes in Brassicaceae

    A total of 2710 SNPs and 1371 InDels were detected in 24 Brassica mt genome sequences.These variant sites were used to construct a phylogenetic tree with Arabidopsis thaliana as an outgroup.The mt genomes of Brassicaceae were divided into clades A,B,C,and Bna.All the mt genomes of B.rapa and B.juncea and three mt genomes of pol-like B.napus were clustered in clade A,while clade B included the mt genomes of B.nigra,B.carinata,and Sinapis arvensis.Four B.oleracea mt genomes constituted clade C.Two nap-like B.napus mt genomes formed clade Bna (Fig.1).These results showed that there is divergence among the mt genomes of six Brassica species,and indicate that pol-like B.napus and nap-like B.napus have different cytoplasmic origins.

    Fig.1.Phylogenetic tree of Brassicaceae mt genomes.The purple circle size represents the number of 31-bp repeat sequences.The red square indicates that the nucleotide is A,whereas the green and blue squares represent C and T,respectively.The species and serial numbers of the mt genomes used for phylogenetic analysis are Arabidopsis thaliana (NC_001284), Sinapis arvensis(KM851044), Brassica rapa (JF920285,AP017996,AP017997), B.nigra (AP012989,KP030753), B.oleracea (AP012988,KU831325,JF920286,KJ820683), B.juncea(MT675103,KF736093,MZ671990,MZ671991,MZ671992,JF920288,KJ461445),B.napus (FR715249,KM454975,KM454974,AP006444,KP161618),and B.carinata(JF920287)).

    3.3.Variation in Brassica juncea mt genomes

    One copy-number variation (CNV),four SNPs,and ten InDels were identified among the three new mt genome sequences and the reference JF920288 in B.juncea (Fig.2a;Table S6).All these variant sites were validated by PCR amplification.However,only four variant sites were found among the three new B.juncea mt genome sequences.Compared to Datoucai,SY had a transversion(T →G) at nt 40,702 and two 31-bp repeat sequences between nts 65,564 and 65,596,while CR 2493 had two transversions,G/T at nt 43,641 and C/A at nt 79,573.Sequencing of the PCR amplicons from 30 B.juncea accessions showed that the polymorphic nucleotide G at nt 40,702 kept together with the 31-bp repeats between nts 65,564 and 65,596 (Fig.2b;Table S7),but the variable nucleotide T at nt 43,641 was found only in CR 2493.Accordingly,only MT.CNV (nts 65,564–65,596) and MT.SNP (nt 79,573) were used to develop MSS markers.

    A total of 620 Brassica accessions(Tables S1,S2)were identified by genomic-specific markers [22].Among them,558 accessions belong to the species B.juncea.Three types of mt genomes (mitotypes,MT) in these B.juncea accessions were distinguished with the MSS markers MT.CNV and MT.SNP (Table S5):MT1 (one 31-bp repeat,nucleotide C),MT2 (two 31-bp repeats,nucleotide C),and MT3 (one 31-bp repeat,nucleotide A) (Fig.2b).MT1,MT2,and MT3 accounted for 16.3% (91/558),39.6% (221/558),and 44.1% (246/558) (Table S1),respectively.Among the remaining 62 accessions,51 B.napus and 5 B.rapa accessions were distinguished by these MSS markers (Table S2),as shown by the differences in the mt genome sequences of these species (Fig.1).

    3.4.Distribution of mitotypes among subspecies of Brassica juncea

    All 29 root mustards carried only MT1,whereas all 13 stem mustards and 96% (102/106) of leaf mustards carried MT3.Four hundred ten seed mustards carried all three mitotypes,with the three mitotypes accounting for 14.1%,53.9%,and 31.9%,respectively (Fig.3).Seed mustards from different geographic regions carried different mitotypes.Seed mustards from northwest China carried MT2,while those from South Asia carried MT3.The latitude 34°N appeared to be a geographical dividing line distinguishing the mitotypes of 492 B.juncea accessions with known geographical origins (Fig.4;Table S1).MT1 and MT2 occurred more frequently in the north,while MT3 predominated in the south.

    3.5.Utility of MSS markers for breeding and seed production of Brassica juncea

    The F1and F2progenies from the reciprocal crosses between Sichuan Yellow (MT2) and Huayejie (MT3) displayed the same mitotype as their female parent (Fig.5a).When 13 mixed seed samples of both parents were mitotyped to detect the sensitivity of the MSS markers,the markers MT.CNV and MT.SNP detected at least 5% of seed contamination and could detect contamination in a wide dynamic range of mixed proportion (5%–95%) (Fig.5b).

    4.Discussion

    4.1.MT1 is the primitive mitotype of Brassica juncea

    The clustering of the mt genomes of all B.juncea subspecies with those of B.rapa confirmed that the cytoplasm of B.juncea was directly inherited from the diploid progenitor species B.rapa.We confirmed that B.rapa and B.juncea showed intraspecific divergence in mt genomes[10]and found that MT3,though common to many B.juncea accessions (Tables S1,S2;Fig.1),was present in B.rapa only in the subspecies Nipposinica Mizuna,a unique vegetable cultivated in Kyoto since the 18th and early 19th centuries [32].Like potherb mustard (B.juncea var.multiceps),which dates back to the 16th century [33],Mizuna has deeply lobed,narrow leaves,high tillering ability,and small seeds.Contrary to Hatono et al.[10],we propose that the mt genome of Mizuna was introgressed from mustard.MT1 of B.rapa is phylogenetically the closest to that of B.juncea and thus can be considered the primitive mitotype of B.juncea.

    4.2.Brassica juncea spread via three routes

    Fig.2.Variation in Brassica juncea mt genomes.(a)The positions of fifteen variants identified among three new mt genome sequences and the reference JF920288 of B.juncea.The orange and blue dotted lines represent the variant sites used for genotyping and not used for genotyping,respectively.(b)The variation and genotype of four mt genomes.Red and green lettering indicate respectively the CNV between nts 65,564 and 65,596 and the single-nucleotide variation at nt 79,573.MT1,mitotype 1;MT2,mitotype 2;MT3,mitotype 3.

    Fig.3.Proportions of mitotypes in various subspecies of Brassica juncea. N,root mustard;J,seed mustard;I,leaf mustard;T,stem mustard;MT1,mitotype 1;MT2,mitotype 2;MT3,mitotype 3.

    The mt genome evolved from MT1 to MT2 and MT3 via respectively a repeat insertion and a base transversion in B.juncea.B.juncea accessions from northern China,Central Asia,and Europe carried mainly MT1 and MT2,while those from Southern China and South Asia carried MT3 (Fig.4).We propose that B.juncea spread via several routes(Fig.6).The B.juncea accessions carrying MT1 spread eastward into East Asia.Those carrying MT2 spread into Central Asia and northwest China along the northern route suggested by Chen et al.[34].This route partially overlaps with the migration route of MT1.Accessions carrying MT3 spread into South Asia and further southwestern China along the southern route.MT1 and MT2 from northern China and MT3 from southwest China were introduced into the Yangtze River basin,where all three mitotypes of B.juncea are located and new forms of B.juncea evolved.

    4.3.A new form of oil mustard evolved from the hybridization between two gene pools

    Fig.4.Geographical distribution of Brassica juncea mitotypes.The green circle,orange circle,and red triangle represent MT1,MT2,and MT3,respectively.**,significant difference at P <0.01 between MT1,MT2 and MT3.MT1,mitotype 1;MT2,mitotype 2;MT3,mitotype 3.The world map was downloaded at the website http://bzdt.ch.mnr.gov.cn,and the map content approval number is GS(2016)1666.

    Fig.5.Electrophoregrams of PCR products amplified from mitotype-specific sequence markers in Brassica juncea.(a) Identification of cytoplasmic donor parents of hybrid offspring.(b)Identification of seed mixtures.M,DNA molecular weight ladder;D,a direct cross;R,the reciprocal cross.Lanes 1–2,P1(Sichuan Yellow);Lanes 3–4,F1(P1×P2);Lanes 5–6,F2(P1×P2);Lanes 7–8,P2(Huayejie);Lanes 9–10,F1(P2×P1);Lanes 11–12,F2(P2×P1);Lanes 13–25,100%,99%,95%,90%,80%,70%,50%,30%,20%,10%,5%,1%,and 0% of Sichuan Yellow seed,respectively.

    Fig.6.Evolution and migration of Brassica juncea mt genomes.

    Taxonomic[35],biochemical[36],and DNA marker[34]studies have shown that the seed mustards fall into two groups:the India-Pakistan and the China-Eastern Europe group.The India-Pakistan group typically has brown seed,is long day-insensitive,and carries the MT3 mitotype,while the China-Eastern Europe group is characterized by both yellow and brown seed,long-day sensitivity,and the MT2 mitotype.Oilseed mustard in southwest China carries all three mitotypes,with MT2 prevalent (Fig.4;Table S1),and shares the yellow-seed characteristic of oilseed mustard in northern China and the early-maturity character of India-Pakistan oilseed mustard.We speculate that a new form of oilseed mustard evolved in southwest China from hybridization between China-Eastern and India-Pakistan gene pools.

    4.4.The Brassica juncea MSS markers have potential for practical application

    Based on the distribution of mitotypes among subspecies,the MSS markers developed in this study may be applied to subspecies identification of B.juncea varieties or accessions;identification of the cytoplasmic donors of hybrid progenies of B.juncea,and determination of seed purity in B.juncea.Besides,the MT.CNV marker distinguished the pol-like from the nap-like mt genome in B.napus(Table S2),indicating that this MSS marker can be used for mitotyping not only in B.juncea but in other Brassica species.

    5.Conclusions

    The mt genome of root mustard was assembled.Based on CNV and SNP variation in mt genomes,two MSS markers were developed and three mitotypes identified in B.juncea.Analysis of the geographical and subspecies distributions of these mitotypes showed that B.juncea spread via three routes and that a new form of early maturing yellow-seeded oil mustard evolved in southwestern China by inter-gene-pool hybridization.

    CRediT authorship contribution statement

    Liang You:Methodology,Validation,Investigation,Data curation,Software,Visualization,Writing– original draft.Liu Yang:Investigation,Data curation,Writing– original draft.Fangying Liu:Software.Lei Kang:Methodology,Resources.Hao Chen:Software.Bin Yang:Resources.Qian Yang:Software.Zhongsong Liu:Conceptualization,Data curation,Formal analysis,Resources,Supervision,Writing– review &editing,Funding acquisition.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by China Agriculture Research System(CARS-12) and National Natural Science Foundation of China(U20A2029).

    Appendix A.Supplementary data

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2021.10.004.

    一本色道久久久久久精品综合| 久久鲁丝午夜福利片| 欧美日韩亚洲高清精品| 日韩 亚洲 欧美在线| 美女内射精品一级片tv| 久久久久久伊人网av| 精华霜和精华液先用哪个| 777米奇影视久久| 成人影院久久| 国产成人免费无遮挡视频| 精品久久久久久久末码| 精品久久久精品久久久| 99九九线精品视频在线观看视频| 亚洲欧美精品专区久久| 欧美日韩综合久久久久久| 精品久久久噜噜| 国产精品麻豆人妻色哟哟久久| 色视频www国产| 成人影院久久| 美女福利国产在线 | 观看美女的网站| 免费黄频网站在线观看国产| 亚洲av福利一区| 免费av中文字幕在线| 少妇人妻 视频| 亚洲美女视频黄频| 草草在线视频免费看| 国内揄拍国产精品人妻在线| 九九久久精品国产亚洲av麻豆| av免费在线看不卡| 高清日韩中文字幕在线| 亚洲电影在线观看av| 一级av片app| 国产欧美日韩一区二区三区在线 | 国产精品麻豆人妻色哟哟久久| 一级黄片播放器| 国产美女午夜福利| 丝袜脚勾引网站| 久久久久久久国产电影| 欧美 日韩 精品 国产| 久久精品国产亚洲网站| 91在线精品国自产拍蜜月| 青青草视频在线视频观看| 91精品伊人久久大香线蕉| 最后的刺客免费高清国语| 少妇人妻精品综合一区二区| 国产精品久久久久久精品古装| 亚洲精品456在线播放app| 国产精品一区www在线观看| 国产美女午夜福利| 国产日韩欧美亚洲二区| 99热这里只有是精品50| 久久精品国产鲁丝片午夜精品| 狠狠精品人妻久久久久久综合| 欧美成人精品欧美一级黄| 极品教师在线视频| 中文字幕人妻熟人妻熟丝袜美| 男人添女人高潮全过程视频| 久久久久久久久久成人| 一个人看的www免费观看视频| 亚洲色图av天堂| .国产精品久久| 国产精品.久久久| 大陆偷拍与自拍| 日韩国内少妇激情av| 少妇的逼水好多| 国产在线视频一区二区| 日日摸夜夜添夜夜添av毛片| 亚洲国产毛片av蜜桃av| 国产亚洲av片在线观看秒播厂| 国产美女午夜福利| 亚洲va在线va天堂va国产| 亚洲综合精品二区| 午夜免费鲁丝| 久久女婷五月综合色啪小说| 中文乱码字字幕精品一区二区三区| 日本免费在线观看一区| 欧美区成人在线视频| 插逼视频在线观看| 1000部很黄的大片| 只有这里有精品99| 亚洲熟女精品中文字幕| 少妇丰满av| 久久久午夜欧美精品| 最黄视频免费看| 久久久久久伊人网av| 精品久久久久久久久av| 成人18禁高潮啪啪吃奶动态图 | 99热这里只有是精品在线观看| 秋霞在线观看毛片| 亚洲国产成人一精品久久久| 久久久久久久国产电影| 老师上课跳d突然被开到最大视频| av在线老鸭窝| 免费黄网站久久成人精品| 直男gayav资源| 直男gayav资源| av视频免费观看在线观看| 99国产精品免费福利视频| 久久国产精品大桥未久av | .国产精品久久| 亚洲真实伦在线观看| 亚洲精品久久久久久婷婷小说| 国产亚洲5aaaaa淫片| 亚洲美女视频黄频| 2018国产大陆天天弄谢| 国产视频首页在线观看| 亚洲四区av| 久久久久性生活片| 精品99又大又爽又粗少妇毛片| 亚洲第一av免费看| 国产人妻一区二区三区在| 纵有疾风起免费观看全集完整版| 久久女婷五月综合色啪小说| 你懂的网址亚洲精品在线观看| 少妇被粗大猛烈的视频| 欧美日韩视频高清一区二区三区二| 成年人午夜在线观看视频| 国产一级毛片在线| 老女人水多毛片| kizo精华| 欧美区成人在线视频| 亚洲欧美一区二区三区黑人 | 丝瓜视频免费看黄片| 国产成人精品一,二区| 精品少妇黑人巨大在线播放| 亚洲经典国产精华液单| 亚洲av日韩在线播放| 蜜臀久久99精品久久宅男| 91aial.com中文字幕在线观看| 成人国产麻豆网| 午夜福利在线观看免费完整高清在| 人妻一区二区av| 身体一侧抽搐| 少妇人妻 视频| 国产精品久久久久久av不卡| 少妇人妻精品综合一区二区| 久久久a久久爽久久v久久| 国产毛片在线视频| 亚洲av欧美aⅴ国产| 亚洲av.av天堂| 国产免费视频播放在线视频| 老司机影院成人| 内地一区二区视频在线| 国产深夜福利视频在线观看| 久久亚洲国产成人精品v| 亚洲av二区三区四区| 国产亚洲5aaaaa淫片| 中文精品一卡2卡3卡4更新| 少妇裸体淫交视频免费看高清| 亚洲av免费高清在线观看| 免费黄网站久久成人精品| 欧美+日韩+精品| 看非洲黑人一级黄片| 好男人视频免费观看在线| 精品亚洲乱码少妇综合久久| 在线观看免费日韩欧美大片 | 视频区图区小说| 日本一二三区视频观看| 久久亚洲国产成人精品v| 成人国产麻豆网| 国内精品宾馆在线| 国产探花极品一区二区| 亚州av有码| 建设人人有责人人尽责人人享有的 | 国产日韩欧美亚洲二区| 肉色欧美久久久久久久蜜桃| 久久人人爽av亚洲精品天堂 | 九色成人免费人妻av| 99热这里只有是精品在线观看| 少妇高潮的动态图| 亚洲国产欧美人成| 又爽又黄a免费视频| 国产爱豆传媒在线观看| 亚洲aⅴ乱码一区二区在线播放| 一级爰片在线观看| 精华霜和精华液先用哪个| 精品久久久久久久末码| av专区在线播放| 亚洲av国产av综合av卡| xxx大片免费视频| 中文资源天堂在线| 精品一品国产午夜福利视频| 美女脱内裤让男人舔精品视频| 3wmmmm亚洲av在线观看| 一级毛片电影观看| 一区二区三区免费毛片| 亚洲成人一二三区av| 国产伦精品一区二区三区四那| 99视频精品全部免费 在线| 亚洲天堂av无毛| 多毛熟女@视频| 美女高潮的动态| 亚洲成色77777| 免费久久久久久久精品成人欧美视频 | 欧美成人午夜免费资源| 午夜福利在线在线| 99久久精品国产国产毛片| 国产精品国产av在线观看| 最黄视频免费看| 男人和女人高潮做爰伦理| 亚洲欧美成人精品一区二区| 国产一区亚洲一区在线观看| 亚洲人成网站在线播| 在线看a的网站| 成人漫画全彩无遮挡| 尤物成人国产欧美一区二区三区| 亚洲真实伦在线观看| 最近中文字幕高清免费大全6| 中文字幕亚洲精品专区| 成年女人在线观看亚洲视频| 亚洲欧美日韩无卡精品| 99热网站在线观看| 少妇裸体淫交视频免费看高清| 黄色视频在线播放观看不卡| 日本欧美视频一区| 成年女人在线观看亚洲视频| 男女下面进入的视频免费午夜| 日韩成人伦理影院| 国产男女超爽视频在线观看| 久久婷婷青草| 新久久久久国产一级毛片| 中文字幕精品免费在线观看视频 | 中文字幕久久专区| 国产乱人偷精品视频| 成人毛片a级毛片在线播放| 少妇人妻 视频| 久久国产亚洲av麻豆专区| 亚洲美女搞黄在线观看| 亚洲av免费高清在线观看| av黄色大香蕉| videos熟女内射| 97精品久久久久久久久久精品| 亚洲精华国产精华液的使用体验| 欧美精品一区二区大全| 久久av网站| 另类亚洲欧美激情| 天堂中文最新版在线下载| 精品一区二区免费观看| 国模一区二区三区四区视频| 又爽又黄a免费视频| 久久久亚洲精品成人影院| 色婷婷av一区二区三区视频| 在线精品无人区一区二区三 | 精品人妻一区二区三区麻豆| 韩国高清视频一区二区三区| 色5月婷婷丁香| 国产高潮美女av| 免费人成在线观看视频色| 人妻一区二区av| 中文天堂在线官网| 久久久久视频综合| 国产精品国产三级国产专区5o| 中文字幕久久专区| 纵有疾风起免费观看全集完整版| 免费不卡的大黄色大毛片视频在线观看| 一级毛片我不卡| 精品亚洲成a人片在线观看 | 日日摸夜夜添夜夜爱| 免费黄频网站在线观看国产| 午夜日本视频在线| 国产精品爽爽va在线观看网站| 亚洲精品日本国产第一区| 精品视频人人做人人爽| 久久久午夜欧美精品| 视频中文字幕在线观看| 美女中出高潮动态图| 国产乱人视频| 2018国产大陆天天弄谢| 国产精品国产三级国产专区5o| 精品一品国产午夜福利视频| 婷婷色综合大香蕉| 欧美日韩国产mv在线观看视频 | 国产成人91sexporn| 六月丁香七月| 国产亚洲av片在线观看秒播厂| 深夜a级毛片| 大片免费播放器 马上看| 观看免费一级毛片| 欧美日韩在线观看h| 亚洲aⅴ乱码一区二区在线播放| 中文字幕亚洲精品专区| 亚洲精品视频女| 免费观看性生交大片5| 精品亚洲乱码少妇综合久久| 国产女主播在线喷水免费视频网站| 有码 亚洲区| 国产精品久久久久久精品电影小说 | 妹子高潮喷水视频| 最近中文字幕2019免费版| 国产精品免费大片| 免费在线观看成人毛片| 不卡视频在线观看欧美| 99久久精品热视频| 中文字幕精品免费在线观看视频 | 人人妻人人爽人人添夜夜欢视频 | 亚洲丝袜综合中文字幕| 亚洲中文av在线| 亚洲国产av新网站| 中文乱码字字幕精品一区二区三区| 看非洲黑人一级黄片| 久久韩国三级中文字幕| av黄色大香蕉| 久久人妻熟女aⅴ| 舔av片在线| 国产日韩欧美在线精品| 国产av码专区亚洲av| 中国国产av一级| 国产一级毛片在线| 国产女主播在线喷水免费视频网站| 在线观看美女被高潮喷水网站| 一级av片app| 日韩欧美一区视频在线观看 | 国产精品.久久久| 国产精品一及| 大香蕉97超碰在线| 国产伦在线观看视频一区| 欧美日韩精品成人综合77777| 男男h啪啪无遮挡| 欧美人与善性xxx| 只有这里有精品99| 亚洲成人手机| 精品亚洲成a人片在线观看 | 乱系列少妇在线播放| 黄色配什么色好看| 黑人高潮一二区| 黄色怎么调成土黄色| 精品久久久噜噜| 亚洲精品亚洲一区二区| av国产精品久久久久影院| 国产日韩欧美在线精品| 这个男人来自地球电影免费观看 | 国产精品国产三级国产专区5o| 国产成人一区二区在线| 免费高清在线观看视频在线观看| av在线播放精品| 免费少妇av软件| 中文欧美无线码| 亚洲欧美清纯卡通| 久久av网站| 亚洲欧美精品专区久久| 亚洲天堂av无毛| 美女cb高潮喷水在线观看| 在线观看人妻少妇| 国产av精品麻豆| 777米奇影视久久| 晚上一个人看的免费电影| 两个人的视频大全免费| 一二三四中文在线观看免费高清| 久久这里有精品视频免费| 身体一侧抽搐| 寂寞人妻少妇视频99o| 搡女人真爽免费视频火全软件| 97精品久久久久久久久久精品| 人体艺术视频欧美日本| 欧美性感艳星| 高清在线视频一区二区三区| 高清午夜精品一区二区三区| 高清av免费在线| 久久久久网色| 亚洲精品一二三| 久久精品国产自在天天线| 美女福利国产在线 | 80岁老熟妇乱子伦牲交| 精品国产三级普通话版| 色视频www国产| 日日啪夜夜撸| 国产人妻一区二区三区在| 97精品久久久久久久久久精品| 精品久久久久久电影网| 人妻系列 视频| 国产日韩欧美亚洲二区| 亚洲精品日本国产第一区| .国产精品久久| 欧美日韩在线观看h| 久久久久精品性色| 国产色爽女视频免费观看| 欧美日韩精品成人综合77777| 久久久久精品性色| kizo精华| 亚洲国产欧美在线一区| 国产91av在线免费观看| 欧美xxⅹ黑人| 美女主播在线视频| 99热这里只有是精品在线观看| 亚洲电影在线观看av| 国产av国产精品国产| 久久精品熟女亚洲av麻豆精品| 日本wwww免费看| 日韩 亚洲 欧美在线| 老司机影院毛片| 黑人猛操日本美女一级片| 嘟嘟电影网在线观看| 99视频精品全部免费 在线| 噜噜噜噜噜久久久久久91| 国产色婷婷99| 欧美亚洲 丝袜 人妻 在线| videossex国产| 国产又色又爽无遮挡免| 视频区图区小说| 色婷婷久久久亚洲欧美| 人妻一区二区av| 亚洲美女视频黄频| 国产精品一区www在线观看| 黄色配什么色好看| 有码 亚洲区| 国产大屁股一区二区在线视频| 亚洲国产av新网站| 伊人久久国产一区二区| 日本wwww免费看| 国产 一区 欧美 日韩| 亚洲欧美成人综合另类久久久| 国产乱人偷精品视频| 久久久久久久久大av| 最近最新中文字幕大全电影3| 777米奇影视久久| 成年女人在线观看亚洲视频| 国产视频首页在线观看| 亚洲av中文字字幕乱码综合| 国国产精品蜜臀av免费| 国产伦精品一区二区三区四那| 国产高清国产精品国产三级 | 国产精品欧美亚洲77777| 国产午夜精品一二区理论片| a级毛片免费高清观看在线播放| 久久久欧美国产精品| 美女xxoo啪啪120秒动态图| 国产伦理片在线播放av一区| 在线观看美女被高潮喷水网站| 少妇高潮的动态图| 一区二区三区免费毛片| 日本-黄色视频高清免费观看| 热99国产精品久久久久久7| 我的老师免费观看完整版| 亚洲精品第二区| 亚洲欧美精品专区久久| 欧美成人精品欧美一级黄| 亚洲欧洲国产日韩| 中文在线观看免费www的网站| 国产一区亚洲一区在线观看| 久久久精品免费免费高清| 搡老乐熟女国产| 日韩,欧美,国产一区二区三区| 精品久久久久久久末码| av.在线天堂| 国产成人aa在线观看| 日产精品乱码卡一卡2卡三| 国产精品蜜桃在线观看| 日韩伦理黄色片| 伊人久久国产一区二区| 又粗又硬又长又爽又黄的视频| 亚洲欧洲国产日韩| 新久久久久国产一级毛片| 大片电影免费在线观看免费| 国产又色又爽无遮挡免| 色视频在线一区二区三区| 国产精品一区二区在线观看99| 国语对白做爰xxxⅹ性视频网站| 国产高潮美女av| 一级黄片播放器| 深夜a级毛片| 啦啦啦啦在线视频资源| 国产精品秋霞免费鲁丝片| 国产精品欧美亚洲77777| 一级爰片在线观看| 国产亚洲最大av| 尤物成人国产欧美一区二区三区| 美女主播在线视频| 六月丁香七月| 免费黄色在线免费观看| 欧美xxⅹ黑人| 久久午夜福利片| 伦精品一区二区三区| 男女边吃奶边做爰视频| 高清在线视频一区二区三区| 人妻夜夜爽99麻豆av| 丰满少妇做爰视频| 黄色配什么色好看| 狂野欧美激情性xxxx在线观看| av专区在线播放| 国产成人免费观看mmmm| 乱系列少妇在线播放| 国产精品国产三级专区第一集| 乱系列少妇在线播放| 亚洲精品aⅴ在线观看| 国产精品熟女久久久久浪| www.av在线官网国产| 一级二级三级毛片免费看| av在线播放精品| kizo精华| 丰满人妻一区二区三区视频av| 久久国产精品男人的天堂亚洲 | 欧美亚洲 丝袜 人妻 在线| 久久精品久久久久久久性| 男人舔奶头视频| 欧美丝袜亚洲另类| 看十八女毛片水多多多| 综合色丁香网| 欧美高清成人免费视频www| 欧美少妇被猛烈插入视频| 久久久欧美国产精品| 国产亚洲午夜精品一区二区久久| 观看免费一级毛片| 少妇人妻久久综合中文| 久久久久久久久久久丰满| 男女下面进入的视频免费午夜| 成人二区视频| 亚洲美女黄色视频免费看| 韩国av在线不卡| 只有这里有精品99| 国产精品伦人一区二区| 成人国产av品久久久| 春色校园在线视频观看| 伊人久久精品亚洲午夜| 成人18禁高潮啪啪吃奶动态图 | 永久免费av网站大全| 日韩亚洲欧美综合| 国产av码专区亚洲av| 欧美日韩国产mv在线观看视频 | 天美传媒精品一区二区| 国产伦在线观看视频一区| 久久久欧美国产精品| 少妇人妻 视频| 久热久热在线精品观看| 欧美精品一区二区免费开放| 狂野欧美白嫩少妇大欣赏| 天天躁夜夜躁狠狠久久av| 丝袜脚勾引网站| 午夜福利高清视频| 欧美精品亚洲一区二区| 边亲边吃奶的免费视频| 国产精品99久久99久久久不卡 | 中国美白少妇内射xxxbb| 男男h啪啪无遮挡| 中文字幕av成人在线电影| 国产欧美日韩一区二区三区在线 | 国产成人91sexporn| 午夜视频国产福利| av国产久精品久网站免费入址| 国产永久视频网站| 亚洲av不卡在线观看| 啦啦啦在线观看免费高清www| 日韩在线高清观看一区二区三区| 一区二区三区免费毛片| 国产黄频视频在线观看| 精品亚洲成a人片在线观看 | 插逼视频在线观看| 国产视频内射| 高清日韩中文字幕在线| 欧美人与善性xxx| 免费观看的影片在线观看| 成人黄色视频免费在线看| 国产成人精品一,二区| 91在线精品国自产拍蜜月| 亚洲av日韩在线播放| 中文字幕亚洲精品专区| 一级毛片 在线播放| 欧美激情国产日韩精品一区| 久久国内精品自在自线图片| 日本与韩国留学比较| 免费黄频网站在线观看国产| 日本爱情动作片www.在线观看| 在线看a的网站| 18禁动态无遮挡网站| 丰满人妻一区二区三区视频av| 亚洲精华国产精华液的使用体验| 婷婷色综合www| 久久99蜜桃精品久久| 精品久久久噜噜| 一级二级三级毛片免费看| 永久网站在线| 女的被弄到高潮叫床怎么办| 一级片'在线观看视频| 岛国毛片在线播放| 99热6这里只有精品| 又大又黄又爽视频免费| 国产精品人妻久久久久久| 精品久久久精品久久久| 成人黄色视频免费在线看| 中文字幕久久专区| 六月丁香七月| 亚洲真实伦在线观看| 久久国产精品男人的天堂亚洲 | 大话2 男鬼变身卡| 18禁动态无遮挡网站| 亚洲国产欧美人成| 老司机影院毛片| 韩国高清视频一区二区三区| 久久久国产一区二区| 女性生殖器流出的白浆| 亚洲精品成人av观看孕妇| 色吧在线观看| 麻豆成人av视频| 简卡轻食公司| 精品一区二区免费观看| 99国产精品免费福利视频| 男人爽女人下面视频在线观看| 亚洲怡红院男人天堂| 人人妻人人看人人澡| av不卡在线播放| 久久精品国产自在天天线| 97超碰精品成人国产| 国内精品宾馆在线| 男女下面进入的视频免费午夜| 久久亚洲国产成人精品v| 国内精品宾馆在线| 一区二区av电影网| 亚洲国产精品999| 国产人妻一区二区三区在| 我的女老师完整版在线观看| 久久久久久久久久成人| a 毛片基地| 99热网站在线观看| 免费大片黄手机在线观看| 亚洲精品成人av观看孕妇|