• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Melaleuca quinquinervia (Cav.) S.T. Blake (Myrtales: Myrtaceae): Natural alternative for mosquito control

    2016-10-20 08:49:00MaureenLeyvaLeidysFrenchPachecoFelipeQuintanaDomingoMontadaMaydaCastexArielHernandezMardelCarmenMarquetti

    Maureen Leyva, Leidys French-Pacheco, Felipe Quintana, Domingo Montada, Mayda Castex, Ariel Hernandez, María del Carmen Marquetti

    1Institute Tropical Medicine ‘Pedro Kouri', Cuba

    2Chemical Research Center, Morelos, Mexico

    3Center for Integration and Social Welfare, Cuba

    ?

    Melaleuca quinquinervia (Cav.) S.T. Blake (Myrtales: Myrtaceae): Natural alternative for mosquito control

    Maureen Leyva1?, Leidys French-Pacheco2, Felipe Quintana3, Domingo Montada1, Mayda Castex1, Ariel Hernandez1, María del Carmen Marquetti1

    1Institute Tropical Medicine ‘Pedro Kouri', Cuba

    2Chemical Research Center, Morelos, Mexico

    3Center for Integration and Social Welfare, Cuba

    ARTICLE INFO

    Article history:

    in revised form 23 June 2016

    Accepted 19 July 2016

    Available online 20 October 2016

    Melaleuca quinquinervia

    Larvicidal activity

    Adulticidal activity

    Essential oils

    Aedes spp.

    Culex quinquefasciatus

    Objective: To evaluate an essential oil with larvicide, adulticide and growth inhibitory activity against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus mosquitoes, of medical importance. Methods: Standardized methodology by WHO was used to determine the levels of susceptibility of mosquito larvae exposed to the essential oil. To evaluate the adulticide activity with the essential oil at different doses, bottles were impregnated according to the methodology CDC. To determine the development inhibitory activity of Melaleuca quinquinervia (M. quinquinervia) oil in three mosquito species, third instar larvae were exposed to the LC50and LC90dose (calculated for each population) of M. quinquinervia oil in glass containers with a capacity of 500 mL. After 24 h exposure, the dead larvae were discarded. The mortality of larvae and pupae were recorded on a daily basis. Results: The calculated LC50indicates an order of effectiveness of preferential oil for Culex quinquefasciatus (LC50=0.002 1%), Aedes aegypti (LC50=0.004 7%) and Aedes albopictus (LC50=0.004 9%). Conclusions: The adulticide activity was achieved with impregnated bottles at 40 and 50 mg/mL with the three mosquitoes species. In larvae, a growth inhibition was detected when exposed to sublethal doses. The results indicate that M. quinquinervia is a plant with promising environmentally sustainable source for vector control.

    Document heading doi: 10.1016/j.apjtm.2016.07.034

    1. Introduction

    Culex quinquefasciatus (Cx. quinquefasciatus), Aedes albopictus(Ae. albopictus) and Aedes aegypti (Ae. aegypti) are within the entomological fauna of mosquitoes, vectors responsible for the maintenance and transmission of viruses such as West Nile[1]Dengue[2], Chikungunya[3] and Zika[4] in America region. Increasing population densities, high levels of unemployment, poverty, and lackof political will, among others, are factors that favor the circulation and maintenance of these endemic diseases in communities of developing countries[5].

    Unfortunately for many of vector-borne diseases, vaccine candidates are not available, being the chemical control the basic measure to reduce mosquito populations and thus the incidence of disease. This reduction is usually transient without a thorough understanding of ecological aspects of the species responsible for transmission: behavior, habitat preferences and susceptibility to insecticides applied, among others[6-8].

    The increased resistance to synthetic insecticides in these vectors of medical importance in Cuba was detected at laboratory level since the late 1990s[7,9]. While it is true that in periods of high infestation, insecticide application is the measure that reduces the incidence of diseases, it is also necessary to study alternativecontrol, with a comprehensive approach to delay or reduce the resistance to synthetic insecticides in field mosquito's population.

    Melaleuca quinquinervia (M. quinquinervia) (Cav.) S.T. Blacke(Myrtales: Myrtaceae) is a plant considered for vector control,because of its proven insecticidal activity, being widely distributed,having complementary utilities such as medicinal or food and be environmentally sustainable. This plant is a tree widely distributed in Asian countries and parts of America[10-12].

    After its introduction in Cuba, this plant has become an invasive specie in the wetlands of the Ciénaga of Zapata, where has caused losses to the botanical biodiversity as a result of its high reproductive potential and its ability to withstand long dry periods[13].

    Despite its adverse effects on the ecosystem, its essential oil and various extracts show a potential as antiprotozoal[14], antimalarial[15],bactericide, fungicide[16] and insect repellent[17].

    Because of the importance that requires the search for natural alternatives for vector control, the objective was to determine the insecticidal activity of essential oil of (M. quinquinervia) on the vector species Ae. albopictus, Cx. quinquefasciatus and Ae. aegypti.

    2. Materials and methods

    2.1. Mosquito populations in the study

    Population Fraga 2012: Ae. albopictus specie collected at larval stage in Reparto Juan de Dios Fraga in the municipality of La Lisa,Havana Cuba in 2012.

    Population Regla 2013: Cx. quinquefasciatus specie collected in larval and pupal stage in the municipality Regla, Havana, Cuba, in 2013.

    Population Rockefeller: Ae. aegypti, laboratory reference strain susceptible to insecticides, supplied by the Center for Disease Control and Prevention (CDC), San Juan, Puerto Rico, 1996.

    Population Marianao 2013: Ae. aegypti specie strain collected in larval and pupal stages in 2013, during an intensive phase of vector control in the municipality of Marianao, Havana, Cuba.

    The mosquito colonies were stabilized in the department insectarium Vector Control Institute of Tropical Medicine ‘Pedro Kouri' Cuba, following the methodology of the Manual Technical Indications Insectarium[18] available on http://blue/bvs1/monografias/ manual.pdf.

    2.2. Bioassays to determine larvicidal activity of essential oils

    Standardized methodology by WHO was used to determine the levels of susceptibility of mosquito larvae exposed to the essential oil[19].

    The stock solutions were prepared in absolute ethanol. One ml of each concentration was added in a volume of 99 mL of water. A total of 125 larvae instar third or early fourth instar of Ae. aegypti, Ae. albopictus and Cx. quinquefasciatus, for each concentration were added. Each concentration had a control. Four replicates were done. Mortality was determined after 24 h and lethal concentrations (LC50and LC90) were calculated using the Probit test implemented in SPSS(version 11 for Windows).

    2.3. Bioassays to determine the development inhibitory activities

    Third instar larvae of three mosquito species were exposed to the LC50and LC90dose (calculated for each population) of M. quinquinervia oil in glass containers with a capacity of 500 mL. For each species, 150 larvae in 500 mL of water were used as control. After 24 h of exposure, the dead larvae were discarded and the survivors were added fishmeal as food. They remained in the water exposure until they reached the pupa state.

    The mortality of larvae and pupae were recorded on a daily basis. The surviving pupae were separated by sex in separate vials until adult emergence. For the analysis of data normality the Kolmogorov-Smirnov tests and Shapiro-Wilk were used. Multifactor ANOVA was applied to the analysis of daily mortality of each state for all species(Statistica 7). Tukey post hoc test was used to identify differences between dose and immature stages.

    2.4. Bioassays to determine adulticidal activity by impregnating bottles at different concentrations

    To evaluate the adulticide activity with the essential oil at different doses, bottles were impregnated according to the methodology proposed[20]. Glass bottles of 250 mL capacity with frosted glass cover were used. The bottles were impregnated with 1 mL of each concentration of the oil, rotating them in every way until the acetone used as a solvent was evaporated. The bottles were covered with aluminum foil and kept uncovered overnight. Subsequently, they were capped until used. For each evaluated concentration, one control and four replicates were used. Fifteen females aged three days without blood feeding of each species were exposed. Every 5 min for 1 h mosquitoes knocked down were recorded.

    Data of the doses that produced mosquito knockdown were analyzed with Probit test implemented in SPSS (version 11 for Windows).

    3. Results

    The M. quinquinervia essential oil showed larvicidal activity at the concentrations evaluated in three mosquito species (Table 1). The oil was more effective in Cx. quinquefascitus followed by Ae. aegypti and Ae. albopictus according to the LC50values calculated.

    In assessing the adulticide activity, in the Rockefeller population a 100% knockdown after 30 min was obtained when using the dose of40 mg/mL. In populations of Marianao 2013, Regla 2013 and Fraga 2012, an increase in dose to 50 mg/mL was required to achieve the knockdown of 100% of the population in 30 minutes. The response of the three field populations was homogeneous in front of this oil despite the slight increase in the dose to achieve its toxic effect(Figure1).

    Table 1Larvicidal activity of M. quinquinervia in populations of Ae. aegypti, Ae. albopictus and Cx. quinquefasciatus used in the study.

    Table 2Knockdown times obtained in populations of Ae. aegypti, Ae. albopictus and Cx. quinquefasciatus used in the study, by impregnating bottles with M. quinquinervia oil.

    Figure 1. Knockdown percentage obtained during one hour of exposure to different concentrations of M. quinquinervia oil in Ae. aegypti, Cx. quinquefasciatus and Ae. albopictus.

    In Table 2 are shown knockdown time (TKN) calculated doses of 40 mg/mL for Rockefeller and 50 mg/mL in the rest of the evaluated populations. The times obtained (TKN50) suggest that the oil acts relatively quickly after exposure in any of the three species tested.

    With respect to the inhibitory activity of development, significant difference between individuals exposed to each lethal concentration and the control (F=4.829 7, P=0.008 03) was found, which makes evident the toxic effect of M. quinquinervia oil in mosquito larvae of the three species studied.

    The analysis of mortality among immature stages showed significant difference between larvae and pupae, and between pupae and adults in all the mosquito species (F=6.853 0, P=0.000 02). The greatest lethal effect occurred in Ae. albopictus, followed by Cx. quinquefasciatus and Ae. aegypti (Figure 2). Only 4% of the surviving pupae of three mosquito species reached the adult stage. Male mosquitoes emerged exceeded 3 times the number of females. Total N of individuals emerged was insufficient to study the effect of oil M. quinquinervia on fertility.

    Figure 2. Mortality obtained by immature stages of mosquitoes Ae. albopictus, Cx. quinquefasciatus and Ae. aegypti species CL50and CL90exposed to doses M. quinquinervia oil.

    Graphic obtained by a Multifactor Anova (F=2.089 3, P=0.0795 4). Error bars represent confidence intervals.

    4. Discussion

    It is understood as environmental sustainability: the exploitation of a biological system below its limit renewal without affecting adjacent diversity and ecosystem productivity[21]. A plant can be regarded as candidate for vector control, if in addition to its proven insecticidal activity, presents environmentally sustainable qualities. M. quinquinervia stands out among the 100 most harmful to the ecosystem and of greatest concern to botanical species in Cuba. It invades about 40 000 hectares in the swamps of Ciénaga of Zapata and Ciénaga of Majaguillar both in the province of Matanzas[22]. A form of exploitation of this renewable resource is to obtain its essential oil, which decrease the damage generated by their excessivegrowth[13].

    The intensive search for alternative methods of vector controlling,and in this case, of plants with insecticidal activity have been focused mostly in plants where the essential oils and extracts have medicinal bioactivity or condiments utility[23-25]. The pesticide bioactivity depends largely on the botanical specie, extraction method, insects used and their susceptibility to synthetic insecticides[26,27].

    WHO has not established diagnostic dose for the determination of the larvicidal activity of natural products. Authors like Komalamisra et al., 2005 suggest that a natural product with CL50≤50 mg/ L is active and if the LC50is between 50 mg/L and 100 mg/L is moderately active[28]. Moreover Ravi-Kiran et al., 2006[29] suggest that compounds with a CL50≤100 mg/L present a significant larvicidal activity. In all our studies we have LC50values below 50 mg/L, so the M. quinquinervia oil is active and has significant larvicidal activity for the species Culex and Aedes spp.

    In numerous studies, insecticide action of plants is supported besides the bioassays, by enzymatic studies in the insects and chromatographic analysis that supporting the majority compound of the oils[30-33]. Authors recommended that because the mechanisms of action of secondary metabolites in many plants are different(inhibition of acetylcholinesterase, interrupting channels Na and K, blocking octopamine receptors) and similar to those used by synthetic insecticides in insects[34,35].

    M. quinquenervia produces different chemotypes, mainly based on the proportion of monoterpenes and sesquiterpenes 1.8 cineol and viridiflorol[10-12]. In the chemical characterization of the essential oil used in our studies, it was determined monoterpenes containing 1.8 cineol, α-pinene, β-pinene, α-terpineol, limonene and hydroxylated sesquiterpenoid viridiflorol, as majority compounds, all in a superior composition to 1%[36]. Several authors attribute this presence of metabolites in the essential oil of M. quinquinervia, to the insecticide action found in oils from other plants[23,37].

    There is no consensus on whether to attribute the insecticidal activity to the major components of oil, or one in particular. Certain metabolites isolated, produce an agonist effect when evaluated on their own, while others show a synergistic effect when combined with other components of oil[37,38].

    In studies by Giatropoulus et al. 2012[39] with a strain of Ae. albopictus, the α and β- pinene were higher when they were CL50calculated for isolates and compared with CL50three citrus oils which were isolated. This result demonstrated the synergistic role of components within an essence. Kim et al,. 2008[40] found significant larvicide and adulticide activity of 1.8 cineol, compared with Culex pipiens, and Zahram et al 2011 at doses of 500 mg/mL detected larvicidal activity against this species and had not yet elapsed effective adulticide activity after 48 h of exposure[41]. Noleto-Diaz et al.(2015) although it doesn't evaluate isolated metabolites, of the five plants used in their study, Eugenia piauhiensis presents the lower CL50value and the monoterpenes 1.8 cineol, α-pinene, β -pinene, α-terpineol and viridiflorol were the majority compounds in its essence[42].

    In any case, due to the criteria variability of specialists in the field,complementary studies with isolated metabolites should be made. However, the results obtained show the insecticidal activity of metabolites present in the oil.

    Bio-responses to phytochemicals may differ between larvae and adults because the adult insect is physiologically stronger, what could justify the increase in adults CL50evaluated. There are papers in which the method of the impregnated bottles (CDC methodology)is used to evaluate the adulticide activity of plant oils. Articles that evaluate this type of activity are made by impregnating papers with solutions of essential oils or isolated metabolites but most without a standardized methodology[43,44]. The methodology of the bottles is a cheap, simple and easily applicable method under laboratory conditions and terrain.

    In terms of adulticide activity of essential oils against mosquitoes,there are very few articles that allow comparison of results. In the Rockefeller population, with a dose of 40 mg/mL, the 100% knockdown of exposed females was obtained. The dose used in our work for the rest of the population (50 mg/mL =5%) is in the range of those used in other studies, e.g. experiments conducted with aereosoles of Melaleuca cajeputi[45]. The slight dose increase may be related to the fact that three of the populations studied were collected in a period of high pesticide application and were resistant to some groups of insecticides[46]. Therefore, they are likely to have increased levels of detoxifying enzymes and antioxidant mechanisms, which could influence the increase in dose. This phenomenon of crossed response has been already described in many papers[47]. The possible implication of the mechanisms of metabolic action on those made up with the essential oil of M. quinquinervia should be studied with more detail, given the possibility of using this promising candidate for vector control. A variety of formulations with this oil could be used for controlling of field populations who do not show any specific type of enzyme activity, as other authors suggest[47].

    With respect to the inhibitory activity of development, oil M. quinquinervia has a toxic effect on larvae exposed to cumulative sublethal doses, as reflected in the high mortality found in this immature stage, in dead or deformed pupae observed and inhibition of emergence of male were adhered to exuvias.

    These results may be due to the disruption of the hormonal balance caused by some secondary metabolites in insects exposed to sublethal doses[48,49].

    Molecular studies should be performed on possible sites of action and target organs. Most of the plants, which are inferred to have insecticidal activity against mosquitoes, have at least larvicidal activity, but few studies cover a wide bioactivity (larvicide,adulticide, inhibiting development and repellent) on the same plant. Our results allow recommending the use of M. quinquinervia oil for vector mosquito control. In this way it manages to give utility to aninvasive plant of wetlands in the western part of our country and propose an alternative to control mosquito populations, contributing to an environmentally sustainable pest management.

    Conflict of interest statement

    The authors declare that they have no conflict interest.

    Acknowledgments

    This study was supported by program ‘Determinants health risks and disease prevention in vulnerable groups' of Ministry of Science,Technology and Environment. Proyect 1601078 ‘Insecticidal activity of essential oils as a natural alternative for mosquito control' of the Institute of Tropical Medicine ‘Pedro Kouri'.

    Reference

    [1] Diaz LA, Qualia A, Flores FS, Contiagiani MS. Virus West Nile en Argentina: un agente infeccioso emergente que plantea nuevos desafíos. Hornero 2011; 26(1): 5-28.

    [2] Shepard DS, Coudeville L, Halasa YA, Zambrano B, Dayan GH. Economic impact of dengue illness in the Americas. Am J Trop Med Hyg 2011; 84: 200-207.

    [3] Corrales E, Troyo A, Calderón O. Chikunguya: un virus que nos acecha. Act Méd Costarricense 2015; 57(1): 7-15.

    [4] Fauci AS, Morens DM. Zika virus in the Americas-yet another arbovirus threat. N Eng J Med 2016; 37(4): 601-604

    [5] Kourí G, Pelegrino JL, Munster BM, Guzmán GM. Sociedad, economía,inequidades y dengue. Rev Cubana Med Trop 2007; 59(3). Aviliable from: http://scielo.sld.cu/pdf/mtr/v59n3/mtr01307.pdf.

    [6] Marquetti MC, Leyva M, Bisset JA, García A. Recipientes asociados a la infestación por Aedes aegypti en el municipio La Lisa. Rev Cubana Med Trop 2009; 61(3): 232-238.

    [7] Bisset JA, Rodríguez MM, Moya M, Ricardo Y, Montada D, Gato R, et al. Efectividad de formulaciones de insecticidas para el control de adultos de Aedes aegypti en La Habana, Cuba. Rev Cubana Med Trop 2011; 63(2): 166-170.

    [8] Bisset JA, Rodríguez MM, Hernández H, Valdéz V, Fuentes I, Hurtado D. Resistencia a insecticidas y sus mecanismos bioquímicos en Aedes aegypti del municipio Boyeros en los a?os 2010 y 2012. Rev Cubana Med Trop 2016; 68(1). Aviliable from: http://www.revmedtropical.sld.cu/index.php/ medtropical/article/view/129/113

    [9] Rodríguez MM, Bisset JA, Ricardo Y, Pérez O, Montada D, Figueredo D et al. Resistencia a insecticidas organofosforados en Aedes aegypti(Diptera: Culicidae) de Santiago de Cuba, 1997-2009. Rev Cubana Med Trop 2010; 62(3): 217-223.

    [10] Trilles BL, Bombarda I, Bouraima-Madjebi S, Raharivelomanana P,Bianchi JP, Gaydou EM. Ocurrence of various chemotypes in naiouli(Melaleuca quinquinervia (Cav) S.T. Blake) essential oil from New Caledonia. Flav Frag J 2006; 21: 677-682.

    [11] Wheeler GS, Pratt PD, Giblin-Davis RM, Ordung KM. Intraespecific variation of Melaleuca quinquinervia leaf oils in its naturalized range in Florida, the Caribbean and Hawaii. Biochem Systc Ecology 2007; 35: 489-500.

    [12] Silva CJ. Morfoanatomia foliar e composi??o química dos oleos essências de sete espécies de Melaleuca L. (Myrtacea) cultivadas em Brasil. [master's thesis]. Universidad Federal de Vi?osa, Brasil; 2007.

    [13] Quintana F, Navarro P, Gonzáles I. Melaleuca quinquinervia Cav(cayeput): Utilización económica y control. Manual técnico informativo. Grupo Agricultura y Naturaleza de la Organización e Integración para el Bienestar Social. 2014; Available from: www.oibs.cu.

    [14] Rodríguez-Pérez M, Martínez JM, Rivero LR, álvarez HMH, Valdez AFC, Rodríguez DA, et al. Evaluación de la actividad antimalárica de algunas plantas utilizadas en la medicina tradicional cubana. Rev Cienc Farm Básica Aplic 2006; 27(3): 197-205.

    [15] Fernández-Calienes A, Mendiola J, Scull R, Vermeersch M, Cos P,Maes L. In vitro anti-microbial activity of the Cuban medicinal plants Simarouba glauca DC, Melaleuca leucadendron L. and Artemisia absinthium L. Mem Inst Oswaldo Cruz 2008; 103(6): 615-618.

    [16] Guevara- Pérez E, Cabrera- Dorta T, Pe?a- Ruiz T, Fernández- Rodríguez CJ, Quintana-Guevara I, Fernández-Rodríguez E. Efecto antimicrobiano de hojas de Melaleuca leucadendron L, que crece en la Ciénaga de Zapata. Rev Méd Elect 2010; 32(4). Aviliable from: http://scielo.sld.cu/ pdf/rme/v32n4/spu04410.pdf

    [17] Leyva M, Castex M, Montada D, Quintana D, Lezcano D, Marquetti MC, et al. Actividad repelente de formulaciones del aceite esencial de Melaleuca quinquenervia (Cav.) S.T. Blake (Myrtales: Myrtaceae) en mosquitos. Anales de Biología 2012; 34: 47-56.

    [18] Pérez O, Bisset JA, Leyva M, Rodríguez J, Fuentes O, García I, et al. Manual de Indicaciones Técnicas para Insectarios. La Habana: Editorial Ciencias Médicas; 2004, p. 16-53.

    [19] WHO. Instructions for determining the susceptibility or resistance of mosquito larvae Aedes to insecticides. Geneva: WHO/VBC/81.807; 1981. p. 1-6.

    [20] CDC. Guideline for evaluating insecticide resistance in vectors using the CDC bottle bioassay. 1st edition. Centers for Disease Control and Prevention; 2010. Aviliable from: http://www.cdc.gov/malaria.

    [21] Brundtland Report. 20 March 1987. ONU. Aviliable from: http://www. cfr.org/economic-development/report-world-commission-environmentdevelopment-our-common-future-brundtland-report/p26349.

    [22] Oviedo R, Gonzalez L. Lista nacional de las plantas Invasoras y potencialmente invasoras en la República de Cuba. Bissea 2015; 9(2): 90

    [23] Noleto Diaz C, Fernandez D. Essential oils and their compounds as Aedes aegypti L. (Díptera Culicidae) larvicides: review. Parasitol Res 2013. doi. 10.1007/s00436-013-3687-6.

    [24] George D, Finn R, Graham K, Sparango O. Present and future potentialof plant-derived products to control arthropods of veterinary and medical significance. Parasit Vectors 2014; 7: 28

    [25] Granados-Echegoyen C, Pérez-Pacheco R, Alonso-Hernández N,Vásquez-López A, Lagunez-Rivera L, Rojas-Olivos A. Chemical characterization and mosquito larvicidal activity of essential oil from leaves of Persea americana Mill (Lauraceae) against Culex quinquefasciatus (Say). Asian Pac J Trop Dis 2015; 5(6): 463-467.

    [26] Innocent E, Hassanali ,Kisinza W, Mutalemwa P, Magesa S, Kayombo. E Anti-mosquito plants as an alternative or incremental method for malaria vector control among rural communities of Bagamoyo District, Tanzania. J Ethnob Ethnom 2014; 10: 56.

    [27] Perumalsamy H, Jin JM, Kim J, Kadarkarai M, Young-Joon A. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasit Vectors 2015; 8: 237.

    [28] Komalamisra N, Trongtokit Y, Rongsriyam Y, Apiwathnarson C. Screening for larvicidal activity in some Thai plants against four mosquitoes vector species. S Asian J Trop Med Public Health 2005;36(2): 1412-1422.

    [29] Ravi-Kiran S, Bhavani P, Sita -Devi BR, Rajeswara R, Janardahan K. Composition and larvicidal activity of leaves an steam essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensis. Biores Techn 2006; 97(18): 2481-2484.

    [30] Elango G, Rahuman A, Kamaraj C, Bagavan A, Zahir A. Adult emergence inhibition and adulticidal activity of leaf crude extracts against Japanese encephalitis vector, Culex quinquefascitus. J King Saud Univ Sci 2012; 24: 73-80.

    [31] Dua V, Kumar A, Pandey A, Kumar S. Insecticidal and genotoxic activity of Psoralea corylifolia Linn (Fabaceae) against Culex quinquefasciatus say 1823. Parasit Vectors 2013; 6: 30.

    [32] Smith S, Zambrano D, Mendez-Sanchez S, Rodriguez-Sanabria F,Stashenko E, Duque JE. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitol Res 2014; 113: 2647-2654. doi: 10.10007/s00436-014-3917-6.

    [33] Gemeda N, Mokonnene W, Lemma H, Tadele A, Urga K, Addis G, et al. Insecticidal activity of some traditionally used Ethiopian medicinal plants against sheep ked Melophags ovinus. J Parasitol Res 2014; 2014: 978537. doi: 10.1155/2014/978537.

    [34] Rattan RS. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 2010; 29: 913-920.

    [35] El-Wakeil N. Botanical pesticides and their mode de action. Gesunde Pflanzen 2013; 65: 125-149.

    [36] Morales Rico CL, Marrero-Delange D, González-Canavaciolo VL,Quintana F, Camejo I. Composición química del aceite esencial de las partes aéreas de Melaleuca quinquinervia. Rev CENIC Cienc Quím 2012;43: 1-2.

    [37] Koutsaviti K, Giatropoulus A, Piatrokili D, Paachristos D, Michaelakis A,Tzakou O. Greek Pinus essential oils: larvicidal activity and repellency against Aedes albopictus (Diptera : Culicidae). Parasitol Res 2014; 114(2): 583-592. doi: 10.1007/s00436-014-4220-2

    [38] Pavela R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol Res 2015; 14: 3835-3853.

    [39] Giatropoulus A, Papachristos D, Kimbaris A, Koliopoulus G, Polissiou M, Emmanouel N, et al. Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their componentes enantiomeric distribution. Parasitol Res 2012; 111(6): 2253-2263. doi: 10.1007/s00436-012-3074-8.

    [40] Kim NJ, Byun SG, Cho JE, Chung K, Anh YJ. Larvicidal activity of essential oils extracted from commonly used herbs in Lebanon against the seaside mosquito Ochlerotatus caspius. Bio Technnol 2008; 99: 763-768.

    [41] Zaharan HEDM, Abdelgaleil S. Insecticidal and development inhibitory properties of monoterpenes on Culex pipiens (Diptera: Culicidae). J Asia Pac Entomol 2011; 14: 46-51.

    [42] Noleto C, Lima LP, da Franca KA, Aranha MC, Dos Santos C, Medocca de Amaral FM, et al. Chemical Composition and larvicidal activity of essential oils extracted from brazilian legal amazon plants against Aedes aegypti L. (Diptera: Culicidae). Evid-Bas Complem Alternative Med 2015;2015: 490765. doi: 10.1155/2015/490765.

    [43] Da Silva AC, Lagos K, Maia FC, Vilmar L, Tadei W, Pohlit AM. Adulticidal activity of dillapiol and semisynthetic derivatives of dillapiol against Aedes aegypti (L). J Mosquito Res 2012; 2(1): 1-7.

    [44] Cárdenas E, Riveros I, Lugo L. Efecto insecticida de cuatro aceites esenciales sobre adultos de Aedes aegypti y Anopheles albimanus en condiciones experimentales. Entomotrópica 2013; 28(1): 1-10.

    [45] Bakar A , Sulaiman S , Mat Ali Omar. Evaluation of Melaleuca cajuputi(Family: Myrtaceae) essential oil in aerosol spray cans against dengue vectors in low cost Housing Flats. J Arthropod Borne Dis 2012; 6(1): 28-35.

    [46] Leyva M, French L, Marquetti MC, Montada D, Santos D, Hernandez A, et al. Insecticidal activity of modified turpentine oil in Culex quinquefasciatus and Aedes albopictus (Diptera: Culicidae). Rev Cubana Med Trop 2015; 67(3). Available from: http://scielo.sld.cu/scielo. php?script=sci_arttext&pid=S0375-07602015000300004&lng=en&nrm =iso&tlng=es.

    [47] Cordeiro A, Napole?o T , Viana E, de Lima N , Andrade L, Fontes de Oliveira CM, et al. Effect of Moringa oleifera lectins on survival and enzyme activities of Aedes aegypti larvae susceptible and resistant to organophosphate. Parasitol Res 2013; 113(1): 175-184. doi 10.1007/ s00436-013-3640-8.

    [48] Salazar J, Torres P, Serrato B, Dominguez M, Alarcón J, Céspedes C. Insect Growth Regulator (IGR) effects of Eucalyptus citriodora Hook(Myrtaceae). Bol Lat Caribe Plant Med Arom 2015; 14(5): 403-422.

    [49] Céspedes C, Molina SC, Mu?oz E, Lamilla C, Alarcon J, Palacios SM,et al. The insecticidal, molting disruption and insect growth inhibitory activity of extracts from Condalia microphylla Cav. (Rhamnaceae). Ind Crops and Prod 2013; 42: 78-86.

    22 May 2016

    ?First and corresponding author: Maureen Leyva, Institute Tropical Medicine ‘Pedro Kouri' Autopista Novia del Mediodía km 6 1/2, La Lisa PO Box 601, Marianao 13,La Habana 11400, Cuba.

    Tel: (53)72553626

    Fax: 53-7-2046051; 53-7-2020633

    E-mail: maureen@ipk.sld.cu

    a 毛片基地| 美女脱内裤让男人舔精品视频| 视频在线观看一区二区三区| 高清av免费在线| 精品少妇内射三级| 韩国精品一区二区三区| 国产精品一区二区在线观看99| 最新的欧美精品一区二区| 久久久久国产一级毛片高清牌| 热re99久久国产66热| 国产无遮挡羞羞视频在线观看| 久久久精品免费免费高清| 老司机影院毛片| 1024视频免费在线观看| 免费av中文字幕在线| 日本欧美国产在线视频| 久久精品熟女亚洲av麻豆精品| 成年人免费黄色播放视频| 亚洲人成电影观看| 在线观看国产h片| a 毛片基地| 青春草视频在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 日韩一卡2卡3卡4卡2021年| av在线播放精品| 天堂俺去俺来也www色官网| 亚洲国产看品久久| 老鸭窝网址在线观看| 啦啦啦在线观看免费高清www| 人妻人人澡人人爽人人| 搡老岳熟女国产| 最近中文字幕2019免费版| 少妇人妻 视频| 亚洲精品久久午夜乱码| 久久久久久人人人人人| 看免费成人av毛片| 香蕉国产在线看| 欧美大码av| a级毛片黄视频| 亚洲国产毛片av蜜桃av| 亚洲欧美精品自产自拍| 亚洲精品乱久久久久久| 在线 av 中文字幕| 美女中出高潮动态图| 久久精品国产亚洲av高清一级| 首页视频小说图片口味搜索 | 久久狼人影院| 国产免费福利视频在线观看| √禁漫天堂资源中文www| 97人妻天天添夜夜摸| 美女中出高潮动态图| 99国产精品一区二区蜜桃av | 高潮久久久久久久久久久不卡| 久久国产精品影院| 久久亚洲国产成人精品v| 1024视频免费在线观看| 亚洲情色 制服丝袜| 激情视频va一区二区三区| 亚洲,欧美精品.| 国产精品国产三级专区第一集| 久久久精品94久久精品| 亚洲精品成人av观看孕妇| 久久精品aⅴ一区二区三区四区| 永久免费av网站大全| 啦啦啦在线观看免费高清www| 在现免费观看毛片| 亚洲第一青青草原| 国产熟女午夜一区二区三区| 国产免费视频播放在线视频| 丁香六月天网| 国产福利在线免费观看视频| 一级片'在线观看视频| 在线 av 中文字幕| 另类亚洲欧美激情| 免费观看a级毛片全部| 亚洲精品久久午夜乱码| 国产精品久久久久久精品古装| 宅男免费午夜| 欧美日韩一级在线毛片| 91九色精品人成在线观看| 极品少妇高潮喷水抽搐| 亚洲一码二码三码区别大吗| 男女国产视频网站| 每晚都被弄得嗷嗷叫到高潮| 久久国产精品大桥未久av| 亚洲免费av在线视频| 一本久久精品| 精品视频人人做人人爽| 丝袜人妻中文字幕| 国产av国产精品国产| 亚洲国产成人一精品久久久| 午夜福利在线免费观看网站| 首页视频小说图片口味搜索 | 国产色视频综合| 久久综合国产亚洲精品| 日韩制服丝袜自拍偷拍| 肉色欧美久久久久久久蜜桃| 欧美少妇被猛烈插入视频| 午夜两性在线视频| 国产在线视频一区二区| 免费在线观看黄色视频的| 亚洲国产欧美网| 国产日韩欧美亚洲二区| 国产福利在线免费观看视频| 久久久久久久久免费视频了| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产精品一区二区三区在线| 国产精品一区二区在线不卡| 婷婷成人精品国产| 亚洲九九香蕉| 丰满人妻熟妇乱又伦精品不卡| 九色亚洲精品在线播放| 捣出白浆h1v1| 精品久久久久久电影网| 亚洲午夜精品一区,二区,三区| 国产av一区二区精品久久| 免费高清在线观看视频在线观看| 黄色怎么调成土黄色| 18禁观看日本| 男女免费视频国产| 黄色a级毛片大全视频| 国产爽快片一区二区三区| 久久国产精品大桥未久av| 亚洲国产欧美在线一区| 欧美日韩黄片免| 五月开心婷婷网| 亚洲av男天堂| 少妇 在线观看| 人人妻人人爽人人添夜夜欢视频| 久久这里只有精品19| 国产在视频线精品| 国产91精品成人一区二区三区 | 日韩大码丰满熟妇| 亚洲 欧美一区二区三区| 精品人妻1区二区| 久久99一区二区三区| 亚洲欧洲精品一区二区精品久久久| 亚洲精品国产区一区二| 精品国产乱码久久久久久男人| www.精华液| 国产亚洲一区二区精品| 午夜福利在线免费观看网站| 免费av中文字幕在线| 超碰97精品在线观看| 色94色欧美一区二区| 国产成人欧美在线观看 | 精品国产乱码久久久久久小说| 天天躁日日躁夜夜躁夜夜| 国产精品香港三级国产av潘金莲 | 日本五十路高清| 日本a在线网址| av天堂久久9| 18禁观看日本| 久久久亚洲精品成人影院| 久久久久久久久免费视频了| 国产日韩欧美在线精品| 中文字幕人妻熟女乱码| 曰老女人黄片| 看免费成人av毛片| 欧美日韩亚洲国产一区二区在线观看 | 丰满饥渴人妻一区二区三| 九草在线视频观看| 中文精品一卡2卡3卡4更新| 亚洲欧美精品综合一区二区三区| 成人亚洲精品一区在线观看| 激情五月婷婷亚洲| 99久久人妻综合| 高清黄色对白视频在线免费看| 中文字幕最新亚洲高清| 精品人妻1区二区| 母亲3免费完整高清在线观看| 黄片播放在线免费| av在线老鸭窝| 亚洲色图 男人天堂 中文字幕| 欧美日韩国产mv在线观看视频| 国产xxxxx性猛交| 中文欧美无线码| 好男人视频免费观看在线| 日韩 欧美 亚洲 中文字幕| 中文欧美无线码| 一区二区三区乱码不卡18| 午夜免费观看性视频| 波多野结衣一区麻豆| 高清欧美精品videossex| 国产91精品成人一区二区三区 | 如日韩欧美国产精品一区二区三区| 午夜日韩欧美国产| 国产精品国产av在线观看| 亚洲av成人精品一二三区| 下体分泌物呈黄色| 九草在线视频观看| 又粗又硬又长又爽又黄的视频| 韩国高清视频一区二区三区| 男女下面插进去视频免费观看| 久久久久久久久免费视频了| 美女午夜性视频免费| 亚洲熟女精品中文字幕| 最近手机中文字幕大全| 国产又色又爽无遮挡免| 99热网站在线观看| 久久精品久久久久久久性| 黑丝袜美女国产一区| av一本久久久久| 国产在线一区二区三区精| 男女边摸边吃奶| 国产成人免费无遮挡视频| 色94色欧美一区二区| 国产男女内射视频| 晚上一个人看的免费电影| 性色av乱码一区二区三区2| 国产一区二区 视频在线| 女人高潮潮喷娇喘18禁视频| 国产成人影院久久av| 王馨瑶露胸无遮挡在线观看| 欧美黑人欧美精品刺激| 成年女人毛片免费观看观看9 | 国产成人精品无人区| 色视频在线一区二区三区| tube8黄色片| 亚洲美女黄色视频免费看| 婷婷色综合www| 黄片小视频在线播放| 国产精品亚洲av一区麻豆| 久久久久久免费高清国产稀缺| 免费观看人在逋| 亚洲精品国产一区二区精华液| 每晚都被弄得嗷嗷叫到高潮| 欧美亚洲 丝袜 人妻 在线| 精品卡一卡二卡四卡免费| 成人午夜精彩视频在线观看| 欧美黄色淫秽网站| 嫩草影视91久久| 99国产精品一区二区蜜桃av | 满18在线观看网站| 99久久综合免费| 少妇被粗大的猛进出69影院| 亚洲精品乱久久久久久| 久久精品国产a三级三级三级| 日韩人妻精品一区2区三区| 真人做人爱边吃奶动态| 亚洲男人天堂网一区| 亚洲国产欧美在线一区| 涩涩av久久男人的天堂| 欧美日韩福利视频一区二区| 热re99久久精品国产66热6| 精品免费久久久久久久清纯 | 亚洲国产精品一区二区三区在线| 99久久99久久久精品蜜桃| 久久天堂一区二区三区四区| 中文精品一卡2卡3卡4更新| 纯流量卡能插随身wifi吗| 大型av网站在线播放| 午夜福利视频精品| 99re6热这里在线精品视频| av又黄又爽大尺度在线免费看| 黄色 视频免费看| 国产成人精品无人区| 男男h啪啪无遮挡| 热99久久久久精品小说推荐| 精品久久蜜臀av无| 国产爽快片一区二区三区| 国产精品久久久久久人妻精品电影 | 两性夫妻黄色片| 超碰成人久久| 国产精品av久久久久免费| 国产男女内射视频| 波多野结衣av一区二区av| 欧美成狂野欧美在线观看| 丝袜脚勾引网站| 国产免费现黄频在线看| 国产精品一区二区免费欧美 | 天堂中文最新版在线下载| 亚洲,一卡二卡三卡| 久久精品aⅴ一区二区三区四区| 操美女的视频在线观看| 久久久久久久国产电影| 欧美精品一区二区免费开放| 精品福利观看| 成年美女黄网站色视频大全免费| 中文字幕av电影在线播放| 美女中出高潮动态图| 亚洲伊人久久精品综合| 亚洲av综合色区一区| 日韩av不卡免费在线播放| 天天躁日日躁夜夜躁夜夜| 黄色视频不卡| 青青草视频在线视频观看| 男人添女人高潮全过程视频| 成人国语在线视频| 亚洲少妇的诱惑av| 国产国语露脸激情在线看| 亚洲成人免费电影在线观看 | 另类精品久久| 亚洲七黄色美女视频| 精品少妇内射三级| 日韩熟女老妇一区二区性免费视频| 两个人看的免费小视频| 亚洲国产看品久久| 如日韩欧美国产精品一区二区三区| 中文字幕av电影在线播放| 久久精品aⅴ一区二区三区四区| 一级毛片 在线播放| 黄色 视频免费看| 欧美亚洲 丝袜 人妻 在线| a级毛片黄视频| 午夜福利在线免费观看网站| 国产一区二区 视频在线| 欧美黑人精品巨大| 啦啦啦在线观看免费高清www| 男女午夜视频在线观看| 久久这里只有精品19| 建设人人有责人人尽责人人享有的| 伊人亚洲综合成人网| 夜夜骑夜夜射夜夜干| 亚洲精品美女久久久久99蜜臀 | 久久精品国产亚洲av涩爱| 亚洲欧洲精品一区二区精品久久久| 精品国产一区二区三区四区第35| 国产一区亚洲一区在线观看| 亚洲第一av免费看| 成人三级做爰电影| 日韩电影二区| 国产亚洲午夜精品一区二区久久| 午夜影院在线不卡| av又黄又爽大尺度在线免费看| av天堂在线播放| 人人妻人人澡人人看| 欧美成人精品欧美一级黄| 十八禁人妻一区二区| 亚洲欧美一区二区三区国产| 欧美精品人与动牲交sv欧美| 丝袜脚勾引网站| 亚洲一码二码三码区别大吗| 曰老女人黄片| 亚洲国产欧美一区二区综合| 一二三四在线观看免费中文在| 天天操日日干夜夜撸| 无限看片的www在线观看| 国产男女超爽视频在线观看| 精品久久久精品久久久| 欧美激情高清一区二区三区| 99国产精品一区二区三区| 精品国产乱码久久久久久男人| 99久久99久久久精品蜜桃| videosex国产| 9191精品国产免费久久| 夫妻性生交免费视频一级片| 99久久99久久久精品蜜桃| 国产免费现黄频在线看| 欧美日韩国产mv在线观看视频| 久久女婷五月综合色啪小说| 午夜日韩欧美国产| 欧美日韩亚洲综合一区二区三区_| 午夜福利视频精品| 老司机影院毛片| 亚洲av片天天在线观看| 久久人妻福利社区极品人妻图片 | 久久精品成人免费网站| 亚洲精品第二区| 母亲3免费完整高清在线观看| 亚洲午夜精品一区,二区,三区| 久久99一区二区三区| 色婷婷久久久亚洲欧美| 美女大奶头黄色视频| 成年人午夜在线观看视频| 男女下面插进去视频免费观看| 在线 av 中文字幕| 色精品久久人妻99蜜桃| 亚洲精品成人av观看孕妇| 视频在线观看一区二区三区| 韩国高清视频一区二区三区| 国产熟女午夜一区二区三区| 自线自在国产av| 久久久精品国产亚洲av高清涩受| 国产欧美日韩一区二区三 | 真人做人爱边吃奶动态| 黑丝袜美女国产一区| av国产久精品久网站免费入址| 久久女婷五月综合色啪小说| 最近手机中文字幕大全| 在线看a的网站| 在现免费观看毛片| 色精品久久人妻99蜜桃| 精品国产超薄肉色丝袜足j| 国产精品成人在线| 午夜两性在线视频| 亚洲美女黄色视频免费看| 九色亚洲精品在线播放| 国产黄频视频在线观看| 亚洲国产欧美日韩在线播放| 又大又黄又爽视频免费| 十八禁高潮呻吟视频| 日韩一卡2卡3卡4卡2021年| 新久久久久国产一级毛片| 色婷婷av一区二区三区视频| av在线老鸭窝| 国产成人啪精品午夜网站| 午夜福利乱码中文字幕| 搡老乐熟女国产| 亚洲精品一二三| 久久人人爽av亚洲精品天堂| 日本黄色日本黄色录像| 丝袜美足系列| 男女免费视频国产| 亚洲欧美日韩另类电影网站| 欧美日韩视频精品一区| 国产爽快片一区二区三区| 国产一区二区在线观看av| 日本五十路高清| 爱豆传媒免费全集在线观看| 美女中出高潮动态图| svipshipincom国产片| av视频免费观看在线观看| 成人影院久久| 在线天堂中文资源库| 国产免费视频播放在线视频| 中文字幕人妻丝袜制服| 国产精品一区二区精品视频观看| 亚洲精品久久久久久婷婷小说| 久久久久久免费高清国产稀缺| 国产熟女午夜一区二区三区| 十八禁高潮呻吟视频| xxx大片免费视频| 久久精品熟女亚洲av麻豆精品| 精品一区在线观看国产| 国产在线视频一区二区| 欧美日韩国产mv在线观看视频| 成年美女黄网站色视频大全免费| 亚洲欧美精品综合一区二区三区| 国产一区二区三区av在线| 中文字幕亚洲精品专区| 两人在一起打扑克的视频| 天天躁狠狠躁夜夜躁狠狠躁| 成年女人毛片免费观看观看9 | 中文字幕色久视频| 亚洲精品久久成人aⅴ小说| 搡老乐熟女国产| 久久久久精品人妻al黑| 午夜91福利影院| 亚洲欧美一区二区三区黑人| 99热全是精品| 又大又黄又爽视频免费| 亚洲欧美色中文字幕在线| 亚洲av成人精品一二三区| 新久久久久国产一级毛片| 久久久久视频综合| 免费看不卡的av| 天堂8中文在线网| 欧美激情极品国产一区二区三区| 国产在视频线精品| 1024视频免费在线观看| 在线亚洲精品国产二区图片欧美| 在线av久久热| 久久天堂一区二区三区四区| 免费一级毛片在线播放高清视频 | 国产一卡二卡三卡精品| svipshipincom国产片| 日韩精品免费视频一区二区三区| 少妇的丰满在线观看| 18禁观看日本| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲午夜精品一区,二区,三区| 中文字幕另类日韩欧美亚洲嫩草| 国语对白做爰xxxⅹ性视频网站| 看十八女毛片水多多多| 免费在线观看日本一区| 深夜精品福利| 一边亲一边摸免费视频| 欧美av亚洲av综合av国产av| 久久久精品国产亚洲av高清涩受| 91字幕亚洲| 久9热在线精品视频| 国产亚洲一区二区精品| 久久精品成人免费网站| 欧美人与性动交α欧美软件| 成人免费观看视频高清| 久久99热这里只频精品6学生| 午夜福利,免费看| 中文字幕最新亚洲高清| 国产av一区二区精品久久| 国产成人欧美在线观看 | 国产高清不卡午夜福利| 精品高清国产在线一区| 美女高潮到喷水免费观看| 看免费av毛片| 国产欧美日韩精品亚洲av| 高潮久久久久久久久久久不卡| 免费在线观看完整版高清| 久久午夜综合久久蜜桃| 国产欧美日韩一区二区三 | 国产国语露脸激情在线看| 久久久久久人人人人人| 精品熟女少妇八av免费久了| 亚洲国产成人一精品久久久| 如日韩欧美国产精品一区二区三区| 一区二区三区激情视频| 99精品久久久久人妻精品| 日本91视频免费播放| 国产精品欧美亚洲77777| 黄色视频不卡| 国产片特级美女逼逼视频| 午夜av观看不卡| 午夜福利视频在线观看免费| 亚洲av电影在线观看一区二区三区| 午夜福利免费观看在线| 国产精品免费视频内射| 亚洲av成人精品一二三区| avwww免费| 午夜免费鲁丝| 51午夜福利影视在线观看| 激情视频va一区二区三区| 亚洲av男天堂| 亚洲第一青青草原| 午夜福利影视在线免费观看| 亚洲五月婷婷丁香| 国产亚洲av片在线观看秒播厂| 欧美另类一区| 国产成人精品在线电影| 一级黄色大片毛片| bbb黄色大片| 亚洲国产看品久久| 高清不卡的av网站| 母亲3免费完整高清在线观看| 国产成人欧美| 久久久国产一区二区| 亚洲精品美女久久av网站| 热99国产精品久久久久久7| 国产精品一国产av| 欧美在线黄色| 天堂8中文在线网| 精品国产一区二区三区久久久樱花| 久热爱精品视频在线9| 国产成人一区二区三区免费视频网站 | 免费观看人在逋| 建设人人有责人人尽责人人享有的| 国产成人免费观看mmmm| 欧美黄色片欧美黄色片| 免费在线观看视频国产中文字幕亚洲 | 国产成人一区二区三区免费视频网站 | 母亲3免费完整高清在线观看| 国产欧美日韩一区二区三区在线| 午夜激情久久久久久久| 国产精品九九99| 一边摸一边抽搐一进一出视频| av福利片在线| 人妻 亚洲 视频| 99国产精品99久久久久| 日韩人妻精品一区2区三区| 午夜精品国产一区二区电影| 多毛熟女@视频| 夫妻性生交免费视频一级片| 一边摸一边做爽爽视频免费| 欧美黄色淫秽网站| 99re6热这里在线精品视频| www日本在线高清视频| 男人操女人黄网站| 美女午夜性视频免费| 啦啦啦视频在线资源免费观看| 国产精品 国内视频| 亚洲国产精品国产精品| 亚洲国产精品一区三区| 肉色欧美久久久久久久蜜桃| 免费在线观看影片大全网站 | 好男人电影高清在线观看| 久久久精品94久久精品| 99精国产麻豆久久婷婷| 另类精品久久| 亚洲精品国产一区二区精华液| videosex国产| 国产无遮挡羞羞视频在线观看| 国产97色在线日韩免费| 亚洲成av片中文字幕在线观看| av不卡在线播放| 最黄视频免费看| 午夜福利乱码中文字幕| netflix在线观看网站| 国产精品偷伦视频观看了| av在线老鸭窝| 亚洲精品av麻豆狂野| 伊人亚洲综合成人网| 亚洲av在线观看美女高潮| 国产一区二区 视频在线| 亚洲国产精品一区二区三区在线| 亚洲专区中文字幕在线| 久久久精品94久久精品| 欧美日韩综合久久久久久| 欧美日韩精品网址| 99热网站在线观看| 一本一本久久a久久精品综合妖精| 色婷婷久久久亚洲欧美| 精品国产乱码久久久久久小说| 久久毛片免费看一区二区三区| 亚洲精品国产av成人精品| 日本av免费视频播放| 在线观看免费视频网站a站| 精品少妇内射三级| 青草久久国产| 男人添女人高潮全过程视频| 色播在线永久视频| 欧美精品一区二区免费开放| 巨乳人妻的诱惑在线观看| 91精品伊人久久大香线蕉| 一区二区三区精品91| 男人添女人高潮全过程视频| 亚洲国产欧美网| 如日韩欧美国产精品一区二区三区| 成年动漫av网址| 人妻人人澡人人爽人人| 99香蕉大伊视频| 久久天堂一区二区三区四区| 日本欧美国产在线视频| 久9热在线精品视频| 国产又色又爽无遮挡免| 欧美国产精品va在线观看不卡| 亚洲欧美成人综合另类久久久|