鄧 釧,尹 力,葛曉陵
(華東理工大學(xué) 機(jī)械與動(dòng)力工程學(xué)院 超細(xì)粉碎分級(jí)技術(shù)中心,上海 200237)
?
連續(xù)穩(wěn)定分散狀態(tài)下制備石墨烯*
鄧釧,尹力,葛曉陵
(華東理工大學(xué) 機(jī)械與動(dòng)力工程學(xué)院 超細(xì)粉碎分級(jí)技術(shù)中心,上海 200237)
為了研究并消除石墨團(tuán)聚對(duì)石墨烯產(chǎn)量的影響,在連續(xù)性穩(wěn)定分散狀態(tài)和非連續(xù)性穩(wěn)定分散狀態(tài)下采用機(jī)械剝離法制備了石墨烯溶液,通過zeta電位表征了制備過程中石墨的團(tuán)聚情況,利用吸光度測試研究了石墨溶液的分散狀態(tài),并通過原子力顯微鏡表征了制備出的石墨烯結(jié)構(gòu)。結(jié)果表明,石墨片層結(jié)構(gòu)被剝離使石墨表面積被釋放,導(dǎo)致石墨的團(tuán)聚勢能增加,剝離效果和石墨烯產(chǎn)率下降;連續(xù)性穩(wěn)定分散狀態(tài)克服了隨剝離過程劇增的團(tuán)聚勢能,經(jīng)4 h機(jī)械剝離制備,上層清液石墨烯產(chǎn)量提高率達(dá)到21.9%;制備出的厚度為1~2 nm的單層石墨烯結(jié)構(gòu)完好且處于良好分散狀態(tài);該方法為大規(guī)模制備石墨烯提供理論和工程指導(dǎo)。
石墨烯制備;團(tuán)聚;連續(xù)穩(wěn)定分散;石墨烯產(chǎn)量
自2004年發(fā)現(xiàn)石墨烯[1]以來,其大規(guī)模制備方法一直受到國內(nèi)外學(xué)者的廣泛關(guān)注。目前制備石墨烯的方法有化學(xué)方法,如外延生長法[2-3]、化學(xué)氣相沉積法[4-6]和氧化還原法[7-8],以及機(jī)械方法如機(jī)械剝離法[1,9-13]。機(jī)械方法相對(duì)于化學(xué)方法可以大批量地處理石墨,且制備工藝條件相對(duì)簡單[7-8,11-12]。Catharina Knieke等利用機(jī)械剝離法獲得的石墨烯產(chǎn)率是5%~10%[9],Cornelia Damm等獲得的產(chǎn)率是4.3%[10]。目前該方法仍不能實(shí)現(xiàn)大規(guī)模制備石墨烯,除了由于機(jī)械方法中作用力場的復(fù)雜性導(dǎo)致單層石墨片未能被完好地剝離[14],石墨結(jié)構(gòu)間存在的團(tuán)聚勢能使其在剝離過程中無法保持連續(xù)穩(wěn)定分散狀態(tài),也是限制大規(guī)模制備石墨烯的重要因素[9-18]??朔膱F(tuán)聚問題是大規(guī)模制備石墨烯必須解決的首要問題之一。很多學(xué)者研究了不同分散環(huán)境對(duì)石墨烯制備的影響,如十二烷基硫酸鈉表面活性劑[9]、N-甲基吡咯烷酮[10]、十二烷基苯磺酸鈉[15]和1-萘甲酸[16]對(duì)石墨水分散液穩(wěn)定性的影響,但團(tuán)聚特性的影響沒有被完全消除,石墨烯的產(chǎn)量并未得到提升。很重要的原因在于大多數(shù)學(xué)者的研究都集中在靜態(tài)或定點(diǎn)條件下對(duì)石墨團(tuán)聚特性的控制[9-18],然而團(tuán)聚過程的動(dòng)態(tài)特性沒有得到重視。本文將研究石墨在剝離過程中團(tuán)聚的動(dòng)態(tài)特性,并基于動(dòng)態(tài)團(tuán)聚特性,研究使石墨溶液處于連續(xù)性穩(wěn)定分散狀態(tài)下提高石墨烯產(chǎn)量的方法。
1.1材料及設(shè)備
采用純度為99.5%的超細(xì)天然石墨作為原材料,目數(shù)<10 000目。分散劑由去離子水和十二烷基硫酸鈉(SDBS,上海凌峰化學(xué)試劑有限公司)組成。機(jī)械剝離設(shè)備采用介質(zhì)研磨機(jī)“SFJ-400”,上?,F(xiàn)代環(huán)境工程技術(shù)有限公司。剝離介質(zhì)為尺寸100 μm的氧化釔穩(wěn)定二氧化鋯珠,密度為6 050 kg/m3,化學(xué)成分為95% ZrO2和5%Y2O3。石墨溶液的離心沉降采用TL-5.0W臺(tái)式離心機(jī),上海市離心機(jī)械研究所。
1.2石墨烯分散液的制備
通過磁力攪拌12 h去離子水和十二烷基硫酸鈉,配置濃度范圍為0.1~10 mg/mL的SDBS溶液。再將一定濃度下的石墨和SDBS溶液置于介質(zhì)研磨機(jī)中進(jìn)行機(jī)械剝離,研磨機(jī)轉(zhuǎn)速為1 000 r/min,經(jīng)過一定的時(shí)間(以1 h為單位),將獲得石墨溶液在2 500 r/min的轉(zhuǎn)速下進(jìn)行離心沉降10 min,取15 mL離心后的上層清液作為石墨烯分散液樣品。
1.3表征方法
采用紫外-可見近紅外分光光度計(jì)cary 500(美國瓦里安公司)測石墨烯分散液的吸光度。采用Zetasizer Nano ZS(Marvern Instrument)測石墨溶液的zeta電位。通過原子力顯微鏡“NanoScope III”(Digital Instruments/Veeco)表征經(jīng)機(jī)械剝離后的石墨片厚度及對(duì)應(yīng)的側(cè)向尺寸。原子力顯微鏡的探針用硅為針尖,共振頻率為320 kHz,以輕敲模式檢測。
2.1最佳制備條件
首先研究石墨濃度和分散劑濃度對(duì)石墨烯產(chǎn)量的影響。由于上層石墨清液中層數(shù)≤5的石墨片占40%[15],層數(shù)≤10占80%以上[9],可將上層15 mL清液中的石墨含量用于評(píng)價(jià)石墨烯的產(chǎn)量。上層清液中的石墨烯濃度(上石墨烯濃度)的確定:將上層清液噴涂于用去離子水洗凈的石英薄膜,在60℃真空下烘干20 h,再通過微天平測量凈石墨含量,以該含量的80%確定出上石墨烯濃度[15]。上石墨烯濃度與吸光度滿足Larnbert-Beer定律
(1)
式中,A為吸光度,α為吸光率,C為上石墨烯濃度,λ為入射光波長。為了得到系數(shù)α,將不同濃度的石墨分散液離心沉降取上層清液,測量它們的濃度(即上石墨烯濃度)和吸光度。圖1為上石墨烯濃度CG與單位波長吸光度A/λ的關(guān)系。圖1中插圖(a)為離心前的石墨分散液樣品;(b)為離心后的上層清液樣品。
圖1上石墨烯濃度CG的單位波長吸光度
Fig 1 The absorbance per unitlength A/λas a function of graphene concentration(top)CG
上石墨烯濃度CG與單位波長吸光度A/λ滿足線性關(guān)系
(2)
其中,A/λSDBS是分散劑SDBS在入射光為660 nm處的吸光度,其值0.68755 m-1與Mustafa Lotya等[15]的測試結(jié)果0.72 m-1接近。利用該線性關(guān)系,可以通過測定石墨烯分散液的吸光度確定出石墨烯產(chǎn)量。
圖2為不同石墨濃度和SDBS濃度剝離獲得的石墨烯產(chǎn)率CG/CG,I,CG,i為機(jī)械剝離過程中的石墨濃度。CG,i與CG滿足近似直線關(guān)系
CG=2.98×10-4CG,i+0.00171(mg/mL)
(3)
由圖2插圖(下)可知,在CSDBS=3 mg/mL條件下,當(dāng)CG,i=0.1 mg/mL時(shí),CG/CG,i達(dá)到最大。由圖2插圖(上)可知,在CSDBS=0.48 mg/mL,CG,i=0.1 mg/mL時(shí),CG/CG,i達(dá)到最大。因此制備石墨烯效果最佳條件下的石墨濃度和SDBS濃度分別為0.1和0.48 mg/mL。該條件濃度與制備碳納米管的石墨濃度0.1 mg/mL[19]以及通過液相剝離制備石墨烯的最佳穩(wěn)定分散劑濃度0.5 mg/mL非常接近[21]。圖2中插圖為CG/CG,i與CSDBS、CG,i的關(guān)系。
圖2 石墨濃度CG,i對(duì)應(yīng)的上石墨烯濃度CG
Fig 2 The relationship between thegraphene concentration CGand the graphite concentration CG,iand CG/CG,Ias a functuion of CSDBSand CG,i
2.2團(tuán)聚性能
在液相環(huán)境中,石墨被視為膠體顆粒,膠體之間存在團(tuán)聚勢能[15,19-21]。根據(jù)DLVO理論,石墨表面上的離子發(fā)生溶解、吸附和解離,同時(shí)石墨表面對(duì)液相中的反號(hào)離子進(jìn)行靜電吸附,對(duì)同號(hào)離子進(jìn)行靜電排斥,其結(jié)果在固液相界面兩側(cè)出現(xiàn)電荷符號(hào)相反、數(shù)量相等的電荷分布的雙電層[22]。片層石墨單位面積下的團(tuán)聚勢能為排斥作用能和范德華吸附作用能之和,計(jì)算式如下
(4)
式中,εr為相對(duì)介電常數(shù);ε0為介電常數(shù);ξ為zeta電位;e為單位電荷;D為團(tuán)聚時(shí)石墨的層間距離,是石墨層間作用能的平衡距離0.335 nm[22];κ為Debye常數(shù)的倒數(shù)
(5)
n0為溶液中電解質(zhì)濃度,mol/m3;T為絕對(duì)溫度;k為Boltzmann常數(shù)??紤]到石墨的表面能約為70 mJ/m2[21-22],取ρ2C為6.69×10-40J/m-2。
zeta電位是表征膠體電荷環(huán)境的一個(gè)重要參數(shù)。通過表征在無分散狀態(tài)下和初始最佳分散狀態(tài)(CSDBS=0.48 mg/mL,CG,i=0.1 mg/mL)下機(jī)械剝離制備石墨烯過程中液相環(huán)境的zeta電位,根據(jù)式(4)計(jì)算了剝離過程中單位面積石墨的團(tuán)聚勢能,結(jié)果如圖3所示。圖3中插圖為無分散狀態(tài)和最佳分散狀態(tài)下石墨溶液的zeta電位變化。
圖3中,無分散狀態(tài)和初始最佳分散狀態(tài)的石墨的zeta電位均在下降,且在初始最佳分散狀態(tài)下的下降的幅度更大,所導(dǎo)致的石墨單位面積團(tuán)聚勢能均增加,且在初始最佳分散狀態(tài)下的增加幅度更大。這是由于隨著石墨片層被剝離,更多的石墨表面積被釋放,使液相環(huán)境中固液相界面的雙電層分布增大,液相電荷環(huán)境的電勢差變大,因而導(dǎo)致了zeta電位均下降。而初始最佳分散狀態(tài)下石墨的分散效果更好,團(tuán)聚程度小,剝離石墨的效果更佳,使得雙電層分布和液相電荷環(huán)境變化的更劇烈,所以石墨單位面積團(tuán)聚勢能增加幅度大于無分散狀態(tài)。同時(shí),隨著剝離的進(jìn)行,團(tuán)聚勢能增加,初始最佳分散狀態(tài)也將轉(zhuǎn)變?yōu)榉亲罴逊稚顟B(tài)。
圖3無分散劑石墨(a)和初始最佳分散石墨(b)的單位面積團(tuán)聚勢能隨石墨層間距離的變化
Fig 3 The potential energy of aggregation of graphite without surfactant(a)and within surfactant at initiative state(b)as a function of graphite sheet separation D
2.3連續(xù)穩(wěn)定分散狀態(tài)制備石墨烯
為了克服石墨團(tuán)聚隨剝離過程增加的特性,需要研究使石墨在剝離過程中保持連續(xù)穩(wěn)定分散狀態(tài)的方法??赏ㄟ^圖1中上石墨烯濃度CG的單位波長吸光度A/l的線性關(guān)系確定出不同時(shí)刻達(dá)到最佳分散狀態(tài)時(shí)的分散劑濃度:將CSDBS=0.48 mg/mL,CG,i=0.1 mg/mL的溶液連續(xù)剝離6 h,1 h時(shí)取上層清液,調(diào)整SDBS的濃度后進(jìn)行吸光度測試,確定出最佳CSDBS(CG最大時(shí),即A/l最大時(shí))。并將剝離設(shè)備中的SBDS濃度調(diào)為該最佳CSDBS。以同樣方式依次確定經(jīng)2,3,4,5和6 h剝離石墨的最佳分散濃度,使石墨在剝離過程中保持連續(xù)分散。1~6 h連續(xù)最佳分散狀態(tài)和初始最佳分散狀態(tài)剝離石墨的上層清液的吸光度變化如圖4所示。圖4插圖為初始最佳分散和(a)連續(xù)最佳分散(b)狀態(tài)經(jīng)1~6 h(從左至右)剝離制備的石墨烯上層清液。
圖4中,連續(xù)最佳分散狀態(tài)下制備出的上層清液吸光度相對(duì)于初始最佳分散狀態(tài)得到很大提升,這是因?yàn)樽罴逊稚顟B(tài)克服了石墨團(tuán)聚增加的特性,使剝離效果達(dá)到最佳。同時(shí),發(fā)現(xiàn)最佳分散濃度與時(shí)間滿足一定的線性關(guān)系(如圖5)。因此,為了克服團(tuán)聚隨剝離過程進(jìn)行而增加的特性,應(yīng)使分散劑濃度處于動(dòng)態(tài)變化狀態(tài)
CSDBS=0.33036t+1.1175(mg/mL)
(6)
2.4石墨烯結(jié)構(gòu)表征及產(chǎn)量的提升率
將制備的上層石墨烯分散液稀釋120倍后旋涂于300 nm厚的SiO2硅基底上,并在120℃環(huán)境下烘干1 h,通過原子力顯微鏡表征石墨烯的結(jié)構(gòu)(如圖6所示),發(fā)現(xiàn)較多厚度為1~2 nm的石墨烯結(jié)構(gòu),可認(rèn)為是單層石墨烯[24-26]。且單層結(jié)構(gòu)沒有出現(xiàn)明顯的團(tuán)聚現(xiàn)象,說明在最佳分散狀態(tài)下制備的石墨烯分散良好。
圖4石墨烯的上層清液在不同CSDBS下的單位吸光度隨研磨時(shí)間的變化
Fig 4 The absorbance per unit length of the top graphene dispersion under different CSDBSas a function of peeling time
圖5保持連續(xù)最佳分散狀態(tài)時(shí)分散劑濃度隨時(shí)間變化關(guān)系
Fig 5 The surfactant concentration as a funtion of peeling time in keeping the continues stableast state of graphite dispersion
上層清液中層數(shù)≤5的石墨片占到40%以上[15],層數(shù)≤10占80%以上[9]。根據(jù)圖1得到的上石墨烯濃度CG與單位波長吸光度A/λ滿足直線關(guān)系
(7)
以及圖4中所測出的最佳分散狀態(tài)和非最佳分散狀態(tài)下制備石墨烯上層清液吸光度,可以得出在連續(xù)最佳分散狀態(tài)下的石墨烯產(chǎn)量相對(duì)于非最佳分散狀態(tài)下的產(chǎn)量的提高率,如圖7所示??梢园l(fā)現(xiàn),經(jīng)6 h機(jī)械剝離后產(chǎn)生的上層清液中石墨烯含量提高了16.8%,而在4 h剝離的上層清液石墨烯含量提高率最高為21.9%。因此,連續(xù)穩(wěn)定分散條件大大提高了石墨烯的產(chǎn)量,為大規(guī)模制備石墨烯提供理論的指導(dǎo)。
圖6 原子力顯微鏡表征上層石墨烯分散液中的石墨烯結(jié)構(gòu)
圖7上層清液中石墨濃度和石墨烯產(chǎn)量提升率隨研磨時(shí)間的變化
Fig 7 The graphite concentration and its growth rate in top graphene dispersion as a funntion of peeling time
通過保持石墨分散液的連續(xù)最佳分散狀態(tài),克服了石墨片層結(jié)構(gòu)隨剝離進(jìn)行而劇增的團(tuán)聚勢能,使上層清液中石墨烯產(chǎn)量相對(duì)于非連續(xù)最佳分散狀態(tài)提升21.9%。石墨表面積隨著石墨片層結(jié)構(gòu)被剝離而釋放,是導(dǎo)致團(tuán)聚勢能增加的主要原因。原子力顯微鏡表征出厚度為1~2 nm的單層石墨烯結(jié)構(gòu)完好且分散良好,表明利用本方法可大大提升石墨烯的制備效果,為大規(guī)模制備石墨烯提供理論和工程指導(dǎo)。
[1]Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5296):666-669.
[2]Charrier A,Coati A,Argunova T,et al.Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films[J].Journal of Applied Physics,2002,92(5):2479-2484.
[3]Berger C,Song Z,Li T,et al.Ultrathin epitaxial graphite:2D electron gas properties and aroute toward graphene-based nanoelectronics[J].The Journal of Physical Chemistry B,2004,108(52):19912-19916.
[4]Reina A,Jia X,Ho J,et al.Large area,few-layer graphene films on arbitrary substrates by chemical vapor deposition[J].Nano Letters,2008,9(1):30-35.
[5]Li X,Cai W,An J,et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J].Science,2009,324(5932):1312-1314.
[6]Wei D,Wu B,Guo Y,et al.Controllable chemical vapor deposition growth of few layer graphene for electronic devices[J].Accounts of Chemical Research,2012,46(1):106-115.
[7]Englert J M,Hirsch A,Feng X,et al.Chemical methods for the generation of graphenes and graphene nanoribbons[J].Angewandte Chemie Interinational Edition in English,2011,50(37):17-24.
[8]Eigler S,Enzelberger-Heim M,Grimm S,et al.Wet chemical synthesis of graphene[J].Advanced Materials,2013,25(26):3583-3587.
[9]Catharina K,Angela B,Michael V,et al.Scalable production of graphene sheets by mechanical delamination[J].Carbon,2010,48(11):3196-3204.
[10]Cornelia D,Thomas J N,Wolfgang P.Quantitative evaluation of delamination of graphite by wet media milling[J].Carbon,2015,81:284-294.
[11]Khan U,O’Neill A,Porwal H,et al.Size selection of dispersed,exfoliated graphene flakes by controlled centrifugation[J].Carbon,2012,50(2):470-475.
[12]Hernandez Y,Lotya M,Rickard D,et al.Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery[J].Langmuir,2010,26(5):3208-3213.
[13]Antisari M V,Montone A,Jovic N,et al.Low energy pure shear milling:a method for the preparation of graphite nano-sheets[J].Scripta Materialia,2006,55(11):1047-1050.
[14]Hennart S L A,Wildeboer W J,Van Hee P,et al.Identification of the grinding mechanisms and their origin in a stirred ball mill using population balances[J].Chemical Engineering Science,2009,64(19):4123-4130.
[15]Mustafa L,Yenny H,Paul J K,et al.Liquid phase production of graphene by delamination of graphite in surfactant/water solutions[J].Journal American Chemistry Society,2009,131(10):3611-3620.
[16]Li Huanhuan,Peng Chuanqian,Liu Qiang.Tuning the electronic and magnetic properties of graphenenanoribbons through chemical edge modification[J].Journal of Chongqing University of Technology(Natural Science),2014,(7):86-91.
李歡歡,彭川黔,劉強(qiáng).邊緣修飾對(duì)石墨烯納米帶電子和磁性性質(zhì)的影響[J].重慶理工大學(xué)學(xué)報(bào),2014,(7):86-91.
[17]Wang H F,Huang Y,He W,et al.Effect of CMC on stability of graphene-H2O dispersion[J].Journal of Materials & Engineering,2009,27(3):461-464.
王恒飛,黃蕓,何偉,等.CMC對(duì)石墨-H2O分散液穩(wěn)定性的影響[J].材料科學(xué)與工程學(xué)報(bào),2009,27(3):461-464.
[18]Xu N C,Song J,Wang H F,et al.Effect of CMC on stability of graphene-H2O dispersion[J].Journal of Materials & Engineering,2010,28(2):208-211.
許乃岑,宋杰,王恒飛,等.SDS對(duì)石墨-H2O分散液穩(wěn)定性的影響[J].材料科學(xué)與工程學(xué)報(bào),2010,28(2):208-211.
[19]Lockwood N A,de P J,Abbott N L.Influence of surfactant tail branching and organization on the orientation of liquid crystals at aqueous-liquid crystal interfaces[J].Langmuir,2005,21(15):6805-6814.
[20]McDonald T J,Engtrakul C,Jones M,et al.Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions[J].The Journal of Physical Chemistry B,2006,110(50):25339-25346.
[21]Hennart S L A,Wildeboer W J,van Hee P,et al.Stability of particle suspensions after fine grinding[J].Powder Technology,2010,199(3):226-231.
[22]Israelachvili J.Intermolecular and surface forces[M].New York:Academic Press,1991.
[23]Hernandez Y,Nicolosi V,Lotya M,et al.High-yield production of graphene by liquid-phase exfoliation of graphite[J].Nature Nanotechnology,2008,3(3):563-568.
[24]Lee C,Wei X,Kysar J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
[25]Ishigami M,Chen J H,Cullen W G,et al.Atomic structure of graphene on SiO2[J].Nano Letters,2007,7(6):1643-1648.
[26]Nemes-Incze P,Osváth Z,Kamarás K,et al.Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy[J].Carbon,2008,46(11):1435-1442.
Preparation of graphene under the continues stable disperse state
DENG Chuan,YIN Li,GE Xiaoling
(School of Mechanical and Power Engineering,Engineering Research Center of Ultrafine Comminution And Classfication,East China University of Science and Technology,Shanghai 200237,China)
In order to analyze and eliminate the effect of aggregation of graphite to the yield of graphene,the graphene dispersion were prepared under the continues stable disperse state and non-continues stable disperse state.The aggregation of graphite during the preparation process was characterized by zeta potential.The disperse state of graphite dispersion was studied by measuring its absorbance.And the prepared graphene structures were characterized by atomic force microscope.Results show that the surface area of graphite is increased by exfoliating the graphite sheets,leading to the increasing of potential energy of aggregation of graphite and the decrease of the efficiency of exfoliation and graphene yield.The increasing potential energy of aggregation was overcame by continues stable dispersing,and the yield growth rate of graphene in top graphene dispersion reached at 21.9% by mechanical exfoliating graphite sheets for 4 h.The monolayer graphene with thickness of 1-2 nm was prepared,which show well structural integrity and free of aggregation.The method of continues stable dispersing gives a theoretical and practical guide for high-yield preparation of graphene.
graphene; aggregation; continues stable dispering; graphene yield
1001-9731(2016)09-09171-05
2015-07-28
2016-03-23 通訊作者:尹力,E-mail:yinliecust@foxmail.com
鄧釧(1991-),男,重慶人,在讀碩士,師承葛曉陵教授,主要從事石墨烯制備方法的研究。
O613.71
ADOI:10.3969/j.issn.1001-9731.2016.09.033