• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Robust Multiple Antenna Blind Spectrum Sensing Algorithm Based on Rank Criterion in Cognitive Radio*

    2016-10-17 07:28:02ZHANGJunYANGXiWANGXiangmingCollegeofInformationScienceandEngineeringJishouUniversityJishouHunan46000ChinaShanghaiStockExchangeTechnologyCoLtdShanghai000China
    傳感技術(shù)學(xué)報(bào) 2016年7期
    關(guān)鍵詞:協(xié)方差頻譜準(zhǔn)則

    ZHANG Jun,YANG Xi*,WANG Xiangming(.College of Information Science and Engineering,Jishou University,Jishou Hu'nan 46000,China;.Shanghai Stock Exchange Technology Co.,Ltd,Shanghai 000,China)

    A Robust Multiple Antenna Blind Spectrum Sensing Algorithm Based on Rank Criterion in Cognitive Radio*

    ZHANG Jun1,YANG Xi1*,WANG Xiangming2
    (1.College of Information Science and Engineering,Jishou University,Jishou Hu'nan 416000,China;2.Shanghai Stock Exchange Technology Co.,Ltd,Shanghai 200120,China)

    In the multiple antenna sensing scenarios,the sensing performance of the classical energy detection(ED)method shows the instability owing to the noise uncertainties phenomenon.Using the fact that the statistical covariance matrix of the multiantenna received signal is a rank-1 matrix,this paper presents a new spectrum sensing method based on the rank criterion.In the new algorithm,the sample covariance matrix of the received signal is firstly divided into an unknown ideal matrix and a perturbed matrix,and then the rank detection criterion is used to estimate the optimal dimension of the received signal space,and finally the estimated value is used to decide the channel state.Compared with the ED method,the proposed method is robust to noise uncertainty and belongs to blind detection.Specifically,the new algorithm does not need to use noise variance,the statistical characteristic of the primary user signal and the wireless channel to make a right decision.Simulation results verify the effectiveness of the proposed rank criterion based multiantenna spectrum sensing algorithm.

    blind spectrum sensing algorithm;noise uncertainty;blind rank criterion detection(BRCD);energy detection(ED);the sample covariance matrix

    EEACC:6140doi:10.3969/j.issn.1004-1699.2016.07.025

    Cognitive radio is considered as one of the most promising solutions to deal with the conflict between the enormous spectrum demands and the scarcity of the radio spectrum resources[1-3].It is well known that effective spectrum sensing algorithm is one of the fundamental and challenging tasks in cognitive radio.Classical spectrum sensing algorithms include cyclostationary detection(CD),energy detection(ED),and matched filtering(MF).Among them,the ED method is widely used in spectrum sensing applications due to its simplicity and effectiveness[4-7].However,the performance of the ED method and the ED-based cooperative schemes are degraded due to the noise uncertainty phenomenon,which is inevitable in practical sensing environment and eventually results in“SNR wall”problem[8].In addition,ED is the optimal sensing scheme for detecting the zero mean independent and identically distributed received signal,but not for the correlated received signal[9].Theoretical analysis has indicated that,to achieve the same detection performance,the required number of samples for ED neglecting the signal correlation is much larger than that of the sensing scheme fully exploiting the signal correlation.

    To overcome shortcomings of the ED method,we introduce a new blind spectrum sensing method based on the rank criterion detection,which does not depend on the noise power and the prior information of primary user signal and wireless channel.Simulation results verify the effectiveness and superiority of the proposed algorithm.

    Fig.1 Rank criterion based multiantenna spectrum sensing model

    The rest of the paper is organized as follows.In section 1,the multiantenna spectrum sensing system model is introduced.In section 2,the multiantenna spectrum sensing algorithm based on rank criterion is proposed.Simulation results are given in Section 3 and conclusions are drawn in section 4.

    The notations are shown as follows.Vectors are column vectors denoted in lower case bold,e.g.x.Matrices are denoted by upper case bold,e.g.A.IQdenote the Q×Q identity matrix.The superscript“T”means transpose operator.det(A)is the determinant of A.E{}denotes expectation operator of a random variable.

    1 System Model

    A typical multiple antenna spectrum sensing scenarios is described in Fig.1[4].Suppose that Q antennas are equipped at the secondary user andNsamples are obtained at each antenna.The Q×1 received signal vector and noise vector are respectively defined by

    Noting that the received signal vector can be written as

    where theQ×1vectorh=[h1,h2,…,hQ]expresses the flat fading channel gain between the primary user and the M antennas.The binary hypothesis testing problem for spectrum sensing can then be represented as

    where H0indicates the primary signal does not appear,and H1indicates the primary user signal exists.Here,the primary user signal samples are assumed to be statistical independent Gaussian random variables with zero mean and varianceThis assumption is valid for an orthogonal frequency division multiplexing(OFDM)signal in which each carrier is modulated by independent data streams.In addition,the noise sample vectorη(n)are zero mean white Gaussian process with covariance matrixWithout loss of generality,the primary signal and the noise are assumed to be statistically independent.Therefore,the statistical covariance matrix of the received signal under hypothesis H1can be written as

    Using the fact that hhHisrank-1 matrix,we can conclude that

    Letρ1≥ρ2≥…≥ρQdenote the eigenvalues of the statistical covariance matrix Rx.According to(6),the eigenvalues of Rxunder hypothesis H1can be shown as

    Noting that all eigenvalues of the statistical covari-ance matrix are equal to the noise power.Combining(7)and(8),the binary hypothesis model for multiantenna spectrum sensing can then be rewritten as

    From(9),it is not difficult to show that the multiantenna spectrum sensing problem is equivalent to confirm the existence and uniqueness of the maximum eigenvalue of the statistical covariance matrix.If the largest eigenvalue exists and is unique,we can conclude that the primary signal appears;if all eigenvalues are equal,then the primary signal does not appear and the spectrum hole exists.Because the statistical covariance matrix of the received signal is usually unknown,the statistical covariance matrix is approximated by the sample covariance matrix(SCM)based on the received signal vectors in practical applications which is defined as

    2 Proposed Rank Criterion Based Multiple Antenna Spectrum Sensing Algorithm

    To overcome the limitations of the sensing algorithm based on the ED method,this paper introduces the rank detection criterion,which has been widely used to effectively estimated the channel order[10],to deal with the multiple antenna spectrum sensing problem.The main idea of this method is summarized as follows:Firstly,based on the idea of subspace decomposition,the received signal space is decomposed to the sum of ideal signal subspace and noise subspace,which are orthogonal to each other and are spanned by the eigenvectors corresponding to the sample covariance matrix.Secondly,by introducing a perturbation to the received signal space to generate a perturbed signal subspace,we then measure the space distance between the estimated signal subspace and the perturbed signal subspace.Finally,according to the rank detection criterion function,we determine the optimal rank estimation of the sample covariance matrix and decide the state of the authorized spectrum.

    2.1Principle of the Proposed Algorithm Based on Rank Criterion

    As for the proposed rank criterion based multiantenna spectrum sensing algorithm,the sample covariance matrix is firstly decomposed into the sum of an ideal matrix Ridealand a perturbation matrix Rpertur

    where Ridealis a rank-q matrix associates with the significant part of the primary users signal,and Rperturis mainly composed of the influence including of white or colored additive channel noise and the numerical error caused by the inexact estimation to the sample covariance matrix.The spectral decomposition of the sample covariance matrix is denoted as

    where the eigenvalues ρi(i=1,2,…,Q)are sorted in descending order.The estimated signal subspace φsis spanned by the feature vectors corresponding to q largest eigenvalues according to(12),and noise subspace φeis spanned by the feature vectors corresponding to the rest Q-q smallest eigenvalues.Here,the estimated signal matrix is defined as

    The ideal signal subspace is an unknown q-dimensional subspace spanned by the columns of Rideal.If φsis used to approximate the ideal signal subspace,we can then conclude a 2-norm lower bounds of matrix Rpertur[10]

    From(14),we known that the ideal signal subspace and the estimated signal subspace are related through Rpertur.Using M to denote some perturbation matrix with minimum 2-norm,that is

    When φsis insensitive to M,it is reasonable to consider that φsis close to the unknown ideal signal subspace;otherwise the two subspaces may be far away from each other[11].In other words,the rank q makes the estimated matrix corresponding to Ridealbe insensitive to the perturbation matrix M.Now,we consider the problem that the sample covariance matrix is perturbed by the perturbation matrix M,i.e.,

    and denoting the spectral decomposition of ψ as

    where the eigenvalues are sorted in descending order.Then the perturbed signal subspace φs_perturis spanned by the feature vectors corresponding to q largest eigenvalues of ψ.According to the matrix perturbation theory,the distance between φsand φs_perturcan be defined as the sine of their canonical angles.Invoking the results of[10],the upper bound of the distance measure can be written as

    Formula(18)implies that the sensitivity of the estimated signal subspace φsto M is governed by the separation of the eigenvalues ρqand ρq+1.IfΩ(q)?1,then φsis insensitive to the perturbation matrix M.At this time,we can consider that φsis close to the ideal signal subspace.Therefore,the optimal rank estimation is obtained through minimizing(18)as follows

    In multiple antenna spectrum sensing scenarios depicted in Fig.1,as analyzed in Section 1,the rank of Ridealshould equals to 1 under H1,which means.On the other hand,Ridealequals to zero matrix and so the rank of it is zero,which meansTherefore,combing(18)and(19),the decision rule for the proposed algorithm based on rank criterion can be rewritten as

    2.2Sensing Steps of the Proposed Algorithm Based on Rank Criterion

    From(20),it can be seen that the decision rule only depends on the eigenvalues of the sample covariance matrix.Therefore,compared with the ED method,the proposed multiantenna spectrum sensing algorithm based on rank criterion is robust to noise uncertainty and belongs to blind detection.Specifically,the new algorithm does not need to use noise variance,the statistical characteristic of the primary user signal and the wireless channel to make a right decision.From above analysis,the algorithm process can be summarized as follows

    Step 1Compute the sample covariance matrix using(10);

    Step 2Perform the eigenvalue decomposition for the sample covariance matrix according to(12),andobtainQeigenvaluesindescendingorder ρ1≥ρ2≥…≥ρQ;

    Step 3Compute the distance upper bound(q=1,2,…,Q)between the estimated signal subspace and the perturbed signal subspace according to(18);

    Step 4Decide the authorized channel state:estimate the optimal rank using(19).If,then the channel is occupied;if,then the channel is vacant.

    Correspondingly,the realization of the proposed algorithm based on rank criterion is described in Fig.2.

    Fig.2 Implementation flowchart of the new algorithm

    3 Numerical Simulation and Analysis

    We consider a multiantenna sensing scenario as in Fig.1.The independent binary phase shift keying(BPSK)signals are transmitted by the primary user.In a realistic environment,the accurate noise variance is not available due to noise uncertainty.To evaluate the real sensing performance of the ED and the proposed BRCD methods,an estimation errorδ[dB]followed a uniform distribution in[-A,A]is added in noise variance[12],where A denotes the maximum value of noise uncertainty.The real noise variancein each simulation is

    In the following,ED-x dB and BRCD-x dB denote the ED and the BRCD methods with x dB noise uncertainties,respectively.In Table 1 and Table 2,we investigate the actual false alarm performances of the ED and BRCD methods by setting different values of predefined false alarm probabilities(PFA)and the noise uncertainty level.It can be seen that the proposed method perform excellent false alarm performance,however,the actual false alarm probabilities for the ED method far exceeds the predefined values due to noise uncertainty.Combining Table 1and Table 2,we observe that all actual false alarm probabilities of the ED method are greater than 0.3 for all predefined false alarm probabilities(PFA=0.01,0.05,0.1).This means that the detection performance of ED method is very unreliable in practical situations when the noise uncertainty phenomenon exists.Meanwhile,a high false alarm probability means that the reduction of the chance for the cognitive users to use the idle spectrum in CR.That is to say,compared with the BRCD method,the ED method dramatically reduces the spectrum efficiency of the cognitive users due to the existence of noise uncertainty.

    Table 1 Actual probabilities of false alarm comparison between BRCD and ED when noise uncertainty is 1 dB

    Table 2 Actual probabilities of false alarm comparison between BRCD and ED when noise uncertainty is 2 dB

    The actual detection performances of the ED and BRCD are evaluated in Fig.3.Firstly,we observe that with the increasing of predefined false alarm probabilities and noise uncertainty,the detection probabilities of the BRCD method keep almost the same.In contrast,the detection probabilities of the ED method have larger fluctuation in all simulation scenarios,which indicates that the BRCD method is more robust to noise uncertainty.Secondly,we also see that the BRCD method performs better detection performance in the relatively high signal-to-noise ratio(SNR)region,while shows relatively lower probability than the ED method in the low SNR region.However,it is also worth pointing out that the actual high false alarm probability of the ED method increases its detection probability in all SNR regions and leads to an unreliable detection result.

    The detection performances of the BRCD method for different sample sizes are presented in Fig.4.Here,we fix P=12,and vary the sample size from N=100 to N=1 500.With the increase of sample size the detection probability of the BRCD method increases yet.For example,the detection probability increases from 90% to 100%when the sample size N increases from 100 to 1 500,while SNR is set to-9 dB.

    When antenna number changes,the sensing performance of the new algorithm is investigated in Fig.5. As expected,we observe that the sensing performance of the proposed BRCD algorithm benefits from increasing antenna number.For example,when SNR equals-9 dB,with increasing the antennas number P from 2 to 8,the detection probabilities increase from 85%to 97%.

    Fig.3 Probabilities of detection comparison between BSED and ED when different noise uncertainties are given(N=200,P=12)

    Fig.4 Sensing performance of the BRCD for different sample sizes(2 dB noise uncertainty)

    Fig.5 Sensing performance of the BRCD for different numbers of antennas(N=200,2dB noise uncertainty)

    4 Conclusion

    This paper introduces a new blind spectrum sensing algorithm based on the rank criterion,which does not need to set the false alarm probability and compute the decision threshold.In the sensing scenarios without any information about the noise variance,the primary signal and the wireless channel,compared with the classical ED method,the BRCD method is more robust to noise uncertainty.Simulation results verify the effectiveness of the proposed sensing method.

    [1] Akhtar A M,Wang X,Hanzo L.Synergistic Spectrum Sharing in 5G HetNets:A Harmonized SDN-Enabled Approach[J].IEEE Communications Magazine,2016,54(1):40-47.

    [2] Wei M,Lian Q S.The Wideband Spectrum Covariance Sensing Algorithm Based on Compressed Sensing[J].Chinese Journal of Sensors and Actuators,2011,24(7):1022-1026.

    [3] Zhou F,Beaulieu N C,Li Z,et al.Energy-Efficient Optimal Power Allocation for Fading Cognitive Radio Channels:Ergodic Capacity,Outage Capacity,and Minimum-Rate Capacity[J].IEEE Communications Magazine,2016,15(4):2741-2755.

    [4] Abbas Taherpour,Masoumeh Nasiri-Kenari,Saeed Gazor.Multple Antenna Spectrum Sensing in Cognitive Radios[J].IEEE Transactions on Wireless Communications,2010,9(2):814-823.

    [5] Pan C,Wang J,Zhang W,et al.Power Minimization in Multi-Band Multi-Antenna Cognitive Radio Networks[J].IEEE Trans. Wireless Commun.,2014,13(9),pp.5056-5069.

    [6] Quan Z,Cui S,Sayed A H.Optimal Linear Cooperation for Spectrum Sensing in Cognitive Radio Networks[J].IEEE J Select Topics Signal Processing,2008,2(1):28-40.

    [7] Qing H B,Liu Y N,Xie G.Smart Antennas Aided Wideband Detection for Spectrum Sensing in Cognitive Radio Networks[J]. Electronics Letters,2014,50(7):490-492.

    [8] Tandra R,Sahai A.SNR Walls for Signal Detection[J].IEEE J Select Topics in Signal Processing,2008,2(1):4-17.

    [9] Lei K J,Yang X,Peng S L,et al.Eigenvalues Detection Based Spectrum Sensing Algorithm for Cognitive Radio[J].Chinese Journal of Sensors and Actuators,2012,25(6):771-777.

    [10]Liavas A P,Regalia P A,Delmas J P.Blind Channel Approximation:Effective Channel Order Determination[J].IEEE Transactions on Signal Processing[J].1999,47(12):3336-3344.

    [11]Haykin Simon.Adaptive Filter Theory(5th Edition)[M].USA:Prentice Hall,2013.

    [12]Zeng Y H,Liang Y C.Spectrum-Sensing Algorithms for Cognitive Radio Based on Statistical Covariances[J].IEEE Transactions on Vehicular Technology,2009,58(4):1804-1815.

    Zhang Jun(1979-),is a graduate student in the college of the information science and engineering,Jishou University. His current research interests include statistical signal processing theory and it's applications in cognitive radio;

    Yang Xi(1978-)is an associate professor in the college of the information science and engineering,Jishou University,obtained doctor's degree in communication and infomation system from Southeast University in 2014.His current research interestsincludewirelesscommunications theory and applications,statistical signal processing and cognitive radio.E-mail:ynkej@163.com;

    Wang Xiangming(1964-)is manager of Shanghai Stock Exchange Technology Co.,Ltd.(SSE Tech),obtained master's degree in communication and electronic system from Southeast University in 1988,has been engaging in communication network for SSE Tech(The former name is Shanghai StockCommunicationCo.,Ltd.)since2000.

    認(rèn)知無(wú)線電中一種基于秩準(zhǔn)則的魯棒多天線盲頻譜感知算法*

    張軍1,楊喜1*,王向明2
    (1.吉首大學(xué)信息科學(xué)與工程學(xué)院,湖南吉首416000;2.上交所技術(shù)有限責(zé)任公司,上海200120)

    在多天線感知場(chǎng)景中,噪聲不確定的存在使得經(jīng)典的能量檢測(cè)算法的感知性能表現(xiàn)出不穩(wěn)定性。基于多天線接收信號(hào)的統(tǒng)計(jì)協(xié)方差矩陣為秩-1矩陣這一事實(shí),提出一種基于秩準(zhǔn)則的頻譜感知方法。該方法首先將取樣協(xié)方差矩陣分解為具有未知秩的理想信號(hào)矩陣和噪聲擾動(dòng)矩陣之和,然后采用秩檢測(cè)準(zhǔn)則估計(jì)接收信號(hào)子空間的最佳維數(shù),最后利用該值判斷信道的狀態(tài)。與經(jīng)典的能量檢測(cè)方法相比,新方法對(duì)噪聲不確定性具有良好的魯棒性,且屬于全盲檢測(cè)方法。具體而言,新方法在感知判決過(guò)程中,無(wú)需事先知道噪聲方差以及主用戶信號(hào)和無(wú)線信道的統(tǒng)計(jì)特征。仿真結(jié)果驗(yàn)證了基于秩準(zhǔn)則的多天線頻譜感知算法的有效性。

    盲頻譜感知算法;噪聲不確定性;盲秩準(zhǔn)則檢測(cè);能量檢測(cè);取樣協(xié)方差矩陣

    TN92

    A

    1004-1699(2016)07-1102-07

    2016-05-25修改日期:2016-06-14

    項(xiàng)目來(lái)源:國(guó)家自然科學(xué)基金項(xiàng)目(61362018,61102089);湖南省科技計(jì)劃項(xiàng)目(2015GK3032);中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目;江蘇省博士后科研計(jì)劃項(xiàng)目(1402041B)

    猜你喜歡
    協(xié)方差頻譜準(zhǔn)則
    一種用于深空探測(cè)的Chirp變換頻譜分析儀設(shè)計(jì)與實(shí)現(xiàn)
    具非線性中立項(xiàng)的二階延遲微分方程的Philos型準(zhǔn)則
    一種基于稀疏度估計(jì)的自適應(yīng)壓縮頻譜感知算法
    基于Canny振蕩抑制準(zhǔn)則的改進(jìn)匹配濾波器
    不確定系統(tǒng)改進(jìn)的魯棒協(xié)方差交叉融合穩(wěn)態(tài)Kalman預(yù)報(bào)器
    認(rèn)知無(wú)線電頻譜感知技術(shù)綜述
    一種基于廣義協(xié)方差矩陣的欠定盲辨識(shí)方法
    一圖讀懂《中國(guó)共產(chǎn)黨廉潔自律準(zhǔn)則》
    混凝土強(qiáng)度準(zhǔn)則(破壞準(zhǔn)則)在水利工程中的應(yīng)用
    一種基于功率限制下的認(rèn)知無(wú)線電的頻譜感知模型
    桃色一区二区三区在线观看| 国产真实乱freesex| 两性夫妻黄色片| 亚洲成av人片免费观看| 51午夜福利影视在线观看| 欧美性猛交╳xxx乱大交人| 久久久久久国产a免费观看| 国产午夜精品久久久久久| 淫秽高清视频在线观看| 18禁国产床啪视频网站| 国产91精品成人一区二区三区| 亚洲第一青青草原| 他把我摸到了高潮在线观看| 免费高清视频大片| 天堂√8在线中文| 超碰成人久久| 亚洲精品久久成人aⅴ小说| 久久国产乱子伦精品免费另类| 嫩草影视91久久| 色在线成人网| 最好的美女福利视频网| 男女午夜视频在线观看| 午夜福利在线在线| www.自偷自拍.com| 99国产极品粉嫩在线观看| 97碰自拍视频| 伊人久久大香线蕉亚洲五| 伊人久久大香线蕉亚洲五| 天天躁夜夜躁狠狠躁躁| 少妇粗大呻吟视频| av中文乱码字幕在线| 黄色视频不卡| 精品无人区乱码1区二区| 黄色a级毛片大全视频| 亚洲人成网站在线播放欧美日韩| 久久亚洲精品不卡| 欧美成人一区二区免费高清观看 | 99国产综合亚洲精品| 欧美成狂野欧美在线观看| 中文资源天堂在线| 免费在线观看影片大全网站| 女性生殖器流出的白浆| 精品熟女少妇八av免费久了| 成人精品一区二区免费| av天堂在线播放| 欧美性猛交黑人性爽| 国产麻豆成人av免费视频| 欧美最黄视频在线播放免费| 好男人电影高清在线观看| 亚洲精品粉嫩美女一区| 国产极品粉嫩免费观看在线| 在线观看舔阴道视频| 999久久久国产精品视频| 天堂√8在线中文| 午夜亚洲福利在线播放| 99在线视频只有这里精品首页| 国产亚洲欧美精品永久| 中文字幕最新亚洲高清| 久久久久久人人人人人| 久久香蕉国产精品| 久久久精品国产亚洲av高清涩受| 搞女人的毛片| 在线视频色国产色| 一夜夜www| 成年女人毛片免费观看观看9| 国产亚洲精品一区二区www| 妹子高潮喷水视频| 长腿黑丝高跟| 免费在线观看黄色视频的| 亚洲精品av麻豆狂野| 少妇粗大呻吟视频| 日韩视频一区二区在线观看| 在线观看免费午夜福利视频| 欧美日本视频| 丁香欧美五月| 欧美zozozo另类| 老司机午夜十八禁免费视频| av电影中文网址| 最好的美女福利视频网| 欧美黑人巨大hd| 日韩欧美在线二视频| 侵犯人妻中文字幕一二三四区| 草草在线视频免费看| 一级片免费观看大全| 午夜成年电影在线免费观看| 亚洲熟女毛片儿| 在线免费观看的www视频| tocl精华| av电影中文网址| 搡老岳熟女国产| 两个人视频免费观看高清| 特大巨黑吊av在线直播 | 一本久久中文字幕| 中文字幕av电影在线播放| 日韩精品青青久久久久久| 99在线视频只有这里精品首页| 丁香六月欧美| 亚洲自拍偷在线| 性色av乱码一区二区三区2| 特大巨黑吊av在线直播 | 99在线视频只有这里精品首页| 窝窝影院91人妻| 日韩免费av在线播放| 精品久久久久久久毛片微露脸| 很黄的视频免费| 欧美日本视频| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲色图 男人天堂 中文字幕| 人人澡人人妻人| 成人av一区二区三区在线看| 久久久久久久午夜电影| 色av中文字幕| 亚洲精品在线美女| 久久久久久国产a免费观看| 老司机午夜十八禁免费视频| 久久精品亚洲精品国产色婷小说| 日本 av在线| 亚洲精品久久国产高清桃花| 精品一区二区三区av网在线观看| 在线观看免费视频日本深夜| 久久久久久久久久黄片| 国产极品粉嫩免费观看在线| 欧美不卡视频在线免费观看 | 国产黄色小视频在线观看| 日本撒尿小便嘘嘘汇集6| 成人欧美大片| 男人舔女人下体高潮全视频| 亚洲一卡2卡3卡4卡5卡精品中文| 精品卡一卡二卡四卡免费| 男人舔奶头视频| 国产精品精品国产色婷婷| 国产日本99.免费观看| 又黄又粗又硬又大视频| 国产又爽黄色视频| 国产精品 国内视频| 国产又黄又爽又无遮挡在线| 神马国产精品三级电影在线观看 | 十分钟在线观看高清视频www| 在线十欧美十亚洲十日本专区| 国产高清激情床上av| a在线观看视频网站| 高潮久久久久久久久久久不卡| 18禁观看日本| 一级片免费观看大全| 久久国产精品人妻蜜桃| 国产精品影院久久| 日韩av在线大香蕉| 国产精品电影一区二区三区| 亚洲真实伦在线观看| av在线天堂中文字幕| 精品久久久久久成人av| 熟女电影av网| 99国产综合亚洲精品| 老司机福利观看| 少妇 在线观看| 亚洲国产欧洲综合997久久, | 中文字幕人成人乱码亚洲影| 男人操女人黄网站| 国产亚洲精品综合一区在线观看 | 听说在线观看完整版免费高清| 午夜老司机福利片| 亚洲国产中文字幕在线视频| 黑人巨大精品欧美一区二区mp4| 亚洲成av片中文字幕在线观看| 国产熟女午夜一区二区三区| 亚洲专区字幕在线| 美女大奶头视频| 麻豆av在线久日| 亚洲精品av麻豆狂野| 在线视频色国产色| 制服诱惑二区| 少妇熟女aⅴ在线视频| 免费av毛片视频| 国产真实乱freesex| 亚洲专区字幕在线| 久久天堂一区二区三区四区| 97超级碰碰碰精品色视频在线观看| 欧美激情久久久久久爽电影| 亚洲国产欧洲综合997久久, | 国产欧美日韩一区二区三| 99在线视频只有这里精品首页| 国产精品亚洲美女久久久| 久热这里只有精品99| 青草久久国产| 在线十欧美十亚洲十日本专区| 日韩欧美三级三区| 免费在线观看亚洲国产| 午夜激情av网站| 免费电影在线观看免费观看| 国产单亲对白刺激| 女同久久另类99精品国产91| 欧美黑人精品巨大| 亚洲精品久久国产高清桃花| 麻豆一二三区av精品| 全区人妻精品视频| 露出奶头的视频| 欧美极品一区二区三区四区| 国产精品久久久久久亚洲av鲁大| 久久午夜福利片| 天堂av国产一区二区熟女人妻| 18禁黄网站禁片免费观看直播| 午夜福利视频1000在线观看| 精品少妇黑人巨大在线播放 | 菩萨蛮人人尽说江南好唐韦庄 | 嫩草影院精品99| 内地一区二区视频在线| 国内少妇人妻偷人精品xxx网站| 日本免费a在线| 丝袜喷水一区| avwww免费| 麻豆国产av国片精品| 亚洲欧美日韩东京热| 亚州av有码| 亚洲人与动物交配视频| 国产精品国产高清国产av| 十八禁网站免费在线| 性欧美人与动物交配| 亚洲国产高清在线一区二区三| 黄色视频,在线免费观看| 色尼玛亚洲综合影院| 日韩精品青青久久久久久| 久久午夜福利片| 国产亚洲精品av在线| 国产私拍福利视频在线观看| 欧美成人免费av一区二区三区| 国产免费一级a男人的天堂| 一区二区三区四区激情视频 | 国产三级中文精品| 性插视频无遮挡在线免费观看| 亚洲人成网站在线观看播放| 亚洲熟妇中文字幕五十中出| 又爽又黄a免费视频| 蜜臀久久99精品久久宅男| 男女视频在线观看网站免费| 在线播放无遮挡| 国产精品免费一区二区三区在线| 国产单亲对白刺激| 亚洲欧美精品自产自拍| 精品免费久久久久久久清纯| 亚洲成av人片在线播放无| 国产精品,欧美在线| 国产亚洲欧美98| av.在线天堂| 91久久精品国产一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲乱码一区二区免费版| 亚洲精品国产av成人精品 | 六月丁香七月| 欧美日本视频| 久久久久久久午夜电影| 亚洲国产精品国产精品| 人人妻人人澡欧美一区二区| 午夜爱爱视频在线播放| 日本成人三级电影网站| 舔av片在线| 成人美女网站在线观看视频| 久久99热这里只有精品18| 夜夜夜夜夜久久久久| 永久网站在线| 俺也久久电影网| 国产探花极品一区二区| 精品久久国产蜜桃| 欧美国产日韩亚洲一区| 亚洲成人精品中文字幕电影| 麻豆乱淫一区二区| 国产午夜福利久久久久久| 丝袜美腿在线中文| 成人精品一区二区免费| 日韩欧美三级三区| 校园春色视频在线观看| 亚洲激情五月婷婷啪啪| 美女cb高潮喷水在线观看| 又黄又爽又免费观看的视频| 校园人妻丝袜中文字幕| a级一级毛片免费在线观看| 久久精品国产清高在天天线| 亚洲国产精品久久男人天堂| 少妇丰满av| 欧美色欧美亚洲另类二区| 亚洲一区二区三区色噜噜| 性插视频无遮挡在线免费观看| 日日摸夜夜添夜夜添av毛片| 国产男人的电影天堂91| 亚洲人成网站在线播| 亚洲真实伦在线观看| 亚洲国产色片| 免费在线观看影片大全网站| 久久久色成人| 国产一级毛片七仙女欲春2| 免费人成视频x8x8入口观看| 日日摸夜夜添夜夜添av毛片| 淫秽高清视频在线观看| 日韩大尺度精品在线看网址| 国产成年人精品一区二区| 色av中文字幕| 国产一区二区在线观看日韩| 国产69精品久久久久777片| 日本免费一区二区三区高清不卡| 久久九九热精品免费| 久久久久国产网址| 欧美性猛交╳xxx乱大交人| 成人一区二区视频在线观看| 黑人高潮一二区| 精品99又大又爽又粗少妇毛片| 国产精品久久久久久亚洲av鲁大| 亚洲国产色片| 国产高潮美女av| 日本一二三区视频观看| 亚洲色图av天堂| 嫩草影院新地址| 在线国产一区二区在线| 变态另类丝袜制服| 男女那种视频在线观看| 国产伦精品一区二区三区视频9| 亚洲一区高清亚洲精品| 神马国产精品三级电影在线观看| 在线免费观看不下载黄p国产| 悠悠久久av| 插阴视频在线观看视频| 国语自产精品视频在线第100页| 欧美一区二区亚洲| 日日摸夜夜添夜夜添小说| 亚洲一级一片aⅴ在线观看| 亚洲图色成人| 久久这里只有精品中国| 成年女人毛片免费观看观看9| 日日啪夜夜撸| 久久久久性生活片| 国产高清视频在线播放一区| 可以在线观看的亚洲视频| 身体一侧抽搐| 久久久色成人| 国产高潮美女av| 久久午夜亚洲精品久久| 熟女电影av网| 亚洲最大成人手机在线| 欧美区成人在线视频| av卡一久久| 国产毛片a区久久久久| 嫩草影院新地址| 国产伦在线观看视频一区| or卡值多少钱| 赤兔流量卡办理| 男女边吃奶边做爰视频| 啦啦啦韩国在线观看视频| 在线免费观看的www视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美成人综合另类久久久 | 久久人人爽人人片av| 天天躁夜夜躁狠狠久久av| 亚洲国产精品成人久久小说 | 国产成人福利小说| 午夜精品一区二区三区免费看| 在线免费观看的www视频| 中文在线观看免费www的网站| 国产高清激情床上av| 成熟少妇高潮喷水视频| 国产 一区精品| 国产亚洲欧美98| 最好的美女福利视频网| 麻豆精品久久久久久蜜桃| 久久精品人妻少妇| 久99久视频精品免费| 成人av一区二区三区在线看| 狂野欧美白嫩少妇大欣赏| 午夜福利在线在线| 精品一区二区三区视频在线| 日本免费一区二区三区高清不卡| 精品无人区乱码1区二区| 国产三级中文精品| 中文字幕精品亚洲无线码一区| 国产爱豆传媒在线观看| 国产精品美女特级片免费视频播放器| 在线观看av片永久免费下载| 麻豆精品久久久久久蜜桃| 亚洲真实伦在线观看| 日本撒尿小便嘘嘘汇集6| av在线观看视频网站免费| 国产视频内射| 国产一区二区三区av在线 | 人妻制服诱惑在线中文字幕| 亚洲av熟女| 亚洲欧美日韩东京热| 亚洲欧美日韩卡通动漫| 老熟妇乱子伦视频在线观看| 最后的刺客免费高清国语| 亚洲成人av在线免费| 插阴视频在线观看视频| 欧美三级亚洲精品| 久久九九热精品免费| 色哟哟哟哟哟哟| 久久午夜亚洲精品久久| 两个人的视频大全免费| 国产精品美女特级片免费视频播放器| 99国产极品粉嫩在线观看| 国产亚洲欧美98| 成人三级黄色视频| 欧美极品一区二区三区四区| 久久久久久久久大av| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产三级国产av玫瑰| 久久久久久久亚洲中文字幕| 国产av不卡久久| 日日摸夜夜添夜夜添小说| 成人特级av手机在线观看| 午夜日韩欧美国产| 我要搜黄色片| 日韩精品中文字幕看吧| 国产精品久久视频播放| 欧美日韩一区二区视频在线观看视频在线 | 欧美另类亚洲清纯唯美| 午夜a级毛片| 亚洲人成网站在线播| 国产蜜桃级精品一区二区三区| 一本精品99久久精品77| 在线免费观看的www视频| 啦啦啦观看免费观看视频高清| 久久久久久国产a免费观看| 亚洲成av人片在线播放无| 观看美女的网站| 少妇熟女aⅴ在线视频| 毛片一级片免费看久久久久| 中文亚洲av片在线观看爽| 禁无遮挡网站| 亚洲精品亚洲一区二区| 成年免费大片在线观看| 看非洲黑人一级黄片| 别揉我奶头 嗯啊视频| 国产精品一及| 国产伦精品一区二区三区四那| 激情 狠狠 欧美| 久久久久免费精品人妻一区二区| 亚洲av熟女| 女同久久另类99精品国产91| 国产人妻一区二区三区在| 欧美又色又爽又黄视频| 国产v大片淫在线免费观看| 男女做爰动态图高潮gif福利片| 国产久久久一区二区三区| 在线免费观看的www视频| 免费人成在线观看视频色| 色综合站精品国产| 国产成人一区二区在线| 免费搜索国产男女视频| 国产精品亚洲一级av第二区| 国产亚洲av嫩草精品影院| 不卡一级毛片| aaaaa片日本免费| 成人三级黄色视频| 午夜久久久久精精品| 亚洲18禁久久av| 久久久久久久久中文| 搡老妇女老女人老熟妇| 亚洲成人av在线免费| 99在线视频只有这里精品首页| 久久久午夜欧美精品| 中出人妻视频一区二区| 我的女老师完整版在线观看| 天堂av国产一区二区熟女人妻| 一级毛片久久久久久久久女| 看十八女毛片水多多多| 午夜福利视频1000在线观看| 国产乱人视频| 国产精品久久久久久久久免| 国产精品免费一区二区三区在线| 亚洲人成网站在线观看播放| 欧美zozozo另类| 久久精品91蜜桃| 中文字幕精品亚洲无线码一区| 国产男靠女视频免费网站| 蜜桃亚洲精品一区二区三区| 日韩欧美一区二区三区在线观看| 国产精品野战在线观看| 两个人视频免费观看高清| 在线天堂最新版资源| 一进一出抽搐动态| 一级a爱片免费观看的视频| 亚洲第一电影网av| 免费高清视频大片| 久久久久久久久久成人| 午夜福利在线观看吧| 国产高清视频在线播放一区| 中出人妻视频一区二区| 深夜精品福利| 国产伦一二天堂av在线观看| 欧美成人a在线观看| 亚洲中文字幕一区二区三区有码在线看| 最近的中文字幕免费完整| 国产 一区精品| 午夜久久久久精精品| 久久久久久国产a免费观看| 日本熟妇午夜| 午夜精品在线福利| 国产av在哪里看| 欧美国产日韩亚洲一区| 成年女人永久免费观看视频| 婷婷亚洲欧美| 简卡轻食公司| 国产不卡一卡二| 成人美女网站在线观看视频| 俄罗斯特黄特色一大片| 国产老妇女一区| 少妇人妻精品综合一区二区 | 免费电影在线观看免费观看| 亚洲成av人片在线播放无| 性插视频无遮挡在线免费观看| 12—13女人毛片做爰片一| 老司机午夜福利在线观看视频| 香蕉av资源在线| 真人做人爱边吃奶动态| 狠狠狠狠99中文字幕| 国产成人精品久久久久久| 欧美色欧美亚洲另类二区| 久久99热这里只有精品18| 日韩一区二区视频免费看| 成人午夜高清在线视频| 亚洲成人久久性| 中出人妻视频一区二区| 国产男人的电影天堂91| 日本熟妇午夜| 久久久国产成人免费| 18禁黄网站禁片免费观看直播| 亚洲人成网站高清观看| 久久综合国产亚洲精品| 欧美区成人在线视频| 99热全是精品| 国产私拍福利视频在线观看| 日韩成人伦理影院| 亚洲精品国产av成人精品 | 亚洲国产精品国产精品| 国产精品爽爽va在线观看网站| 少妇高潮的动态图| 亚洲国产色片| 午夜a级毛片| 国产伦精品一区二区三区四那| 欧美在线一区亚洲| 成人av一区二区三区在线看| 欧美另类亚洲清纯唯美| 久久久久久久午夜电影| 欧美最新免费一区二区三区| 久久人人爽人人片av| 丰满的人妻完整版| 午夜免费男女啪啪视频观看 | 嫩草影视91久久| 色尼玛亚洲综合影院| 亚洲精品国产成人久久av| 欧美最新免费一区二区三区| 99热全是精品| 国产精品免费一区二区三区在线| 欧美人与善性xxx| 一本一本综合久久| 黄片wwwwww| 国产伦精品一区二区三区四那| 男女视频在线观看网站免费| 此物有八面人人有两片| 又爽又黄a免费视频| 成人漫画全彩无遮挡| 久久精品91蜜桃| 91精品国产九色| 亚洲内射少妇av| 三级经典国产精品| 久久精品国产亚洲网站| 国产精品,欧美在线| 国产精品99久久久久久久久| 国产欧美日韩一区二区精品| 午夜a级毛片| 在线国产一区二区在线| 欧美激情在线99| av.在线天堂| 乱系列少妇在线播放| 国产av在哪里看| 久久九九热精品免费| 看片在线看免费视频| 日产精品乱码卡一卡2卡三| 中出人妻视频一区二区| 91麻豆精品激情在线观看国产| 精品国内亚洲2022精品成人| 中文字幕熟女人妻在线| 大香蕉久久网| 欧美色视频一区免费| 嫩草影视91久久| 91精品国产九色| 我的女老师完整版在线观看| 99精品在免费线老司机午夜| 免费看美女性在线毛片视频| 成人亚洲欧美一区二区av| 亚洲成人久久爱视频| 搡老岳熟女国产| 亚洲av成人精品一区久久| 亚洲性夜色夜夜综合| 成人亚洲欧美一区二区av| 欧美xxxx性猛交bbbb| 看非洲黑人一级黄片| 啦啦啦观看免费观看视频高清| 欧美性感艳星| 在线观看免费视频日本深夜| 国产人妻一区二区三区在| 亚洲精品日韩av片在线观看| 国产精品永久免费网站| 女生性感内裤真人,穿戴方法视频| 亚洲最大成人中文| 久久九九热精品免费| 国产三级在线视频| 精品久久久久久久久久久久久| 国产黄a三级三级三级人| 小蜜桃在线观看免费完整版高清| 成人午夜高清在线视频| 夜夜看夜夜爽夜夜摸| 一级黄片播放器| 热99在线观看视频| 日日摸夜夜添夜夜添小说| 亚洲欧美日韩卡通动漫| 亚洲中文字幕一区二区三区有码在线看| 美女 人体艺术 gogo| www日本黄色视频网|