• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theory on Structure and Coloring of Maximal Planar Graphs(1)Recursion Formulae of Chromatic Polynomial and Four-Color Conjecture

    2016-10-13 17:21:35XUJin
    電子與信息學(xué)報 2016年4期

    XU Jin

    ?

    Theory on Structure and Coloring of Maximal Planar Graphs(1)Recursion Formulae of Chromatic Polynomial and Four-Color Conjecture

    XU Jin*

    (School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China)(Key Laboratory of High Confidence Software Technologies, Peking University, Beijing 100871, China)

    In this paper, two recursion formulae of chromatic polynomial of a maximal planar graphare obtained: when, letbe a 4-wheel ofwith wheel-centerand wheel-cycle, then; when, leta 5-wheel ofwith wheel-centerand wheel-cycle, then,,, where“”denotes the operation of vertex contraction. Moreover, the application of the above formulae to the proof of Four-Color Conjecture is investigated. By using these formulae, the proof of Four-Color Conjecture boils down to the study on a special class of graphs, viz., 4-chromatic-funnel pseudo uniquely-4-colorable maximal planar graphs.

    Four-Color Conjecture; Maximal planar graphs; Chromatic polynomial; Pseudo uniquely-4-colorable planar graphs; 4-chromatic-funnel

    1 Introduction

    All graphs considered in this paper are finite, simple, and undirected. For a given graph, we use,,, andto denote the vertex set, the edge set, the degree of, and the neighborhood ofin(the set of neighbors of), respectively, which can be written as,,, andfor short. The order ofis the number of its vertices. A graphis a subgraph ofifand. For a subgraphof, wheneverare adjacent in, they are also adjacent in, thenis an induced subgraph ofor a subgraph ofinduced by, denoted by. Two graphsandare disjoint if they have no vertex in common. By starting with a disjoint union ofand, and adding edges joining every vertex ofto every vertex of, one obtains the join ofand, denoted by. We writeandfor the complete graph and cycle of order, respectively. The joinof a cycle and a single vertex is referred to as a wheel, denoted by(the examplesare shown in Fig. 1, whereis called the cycle ofand the vertex ofis called the center of. If, we also denote the cycle ofby. A graph is-regular if all of its vertices have the same degree. A 3-regular graph is usually called a cubic graph.

    Fig. 1 Three wheels

    A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. Such a drawing is called a planar embedding of the graph. Any planar graph considered in the paper is under its planar embedding. A maximal planar graph is a planar graph to which no new edges can be added without violating planarity. A triangulation is a planar graph in which every face is bounded by three edges (including its infinite face). It can be easily proved that maximal planar graphs are triangulations, and vice versa.

    The planar graph is a very important class of graphs no matter which aspect, theoretical or practical, is concerned. In theory, there are many famous conjectures that have very significant effect on graph theory, even mathematics, such as the Four-Color Conjecture, the Uniquely Four- Colorable Planar Graphs Conjecture, the Nine- Color Conjecture, Three-Color Problem,[1]. In application, planar graphs can be directly applied to the study of layout problems[2], information science[3],.

    Because the studying object of the well-known Four-Color Conjecture can be confined to maximal planar graphs, many scholars have been strongly attracted to the study of this typical topic. They did research on maximal planar graphs from a number of different standpoints, such as degree sequence, construction, coloring, traversability, generating operations,[4]. Moreover, many new conjectures on maximal planar graphs have been proposed, for instance, Uniquely Four-Colorable Planar Graphs Conjecture and Nine-Color Conjecture. These conjectures have gradually become the essential topics on maximal planar graphs.

    In the process of studying Four-Color Conjecture, one important method, finding an unavoidable set of reducible configurations, was proposed. This method has been used in Kempe’s “proof”[5], Heawood’s counterexample[6], and the computer-assisted proof due to Appel and Haken. Using this method, Appel and Haken found an unavoidable set containing 1936 reducible configurations and proved Four-Color Conjecture. In 1997, Robertson,.[10,11]gave a simplified proof. They found an unavoidable set containing only 633 reducible configurations.

    The research on unavoidable sets originated from Wernicke’s work[12]in 1904. The concept of reducibility was introduced by Birkhoff[13]in 1913. On the research for finding an unavoidable set of reducible configurations, the great contribution was made by German mathematician Heesch[14]. He introduced a method “discharging” to find an unavoidable set of a maximal planar graph, which lied the foundation for solving Four-Color Conjecture by electronic computer in 1976. Moreover, many researchers studied Four-Color Problem by this method, such as Franklin[15,16], Reynolds[17], Winn[18], Ore and Stemple[19], and Mayer[20].

    However, these proofs were all computer- assisted and hard to be checked one by one by hand. Therefore, finding a mathematical method to concisely solve the Four-Color Problem is still an open hard problem.

    Another incorrect proof of Four-Color problem[21]was given by Tait in 1880. His proof was based on an assumption: each 3-connected cubic plane graph was Hamiltonian. Because this assumption is incorrect, Tait’s proof is incorrect. Although the error in his proof was found by Petersen[22]in 1898, the counterexample was not given until 1946[23]. Then, in 1968, Grinberg[24]obtained a necessary condition, thus producing many non-Hamiltonian cubic planar graphs of 3-connected. Although the proof of Tait was incorrect, his work had a strong influence on the research on Graph Theory, especially edge-coloring theory.

    In order to calculate the chromatic polynomial of a given graph, the basic tool is the Deletion- Contract Edge Formula.

    The Deletion-contract Edge Formula. For a given graphand an edge, we have

    Moreover, XU etal.[32,33]obtained a recursion formula of chromatic polynomial by vertex deletion and a chromatic polynomial between a graph and its complement.

    Perhaps for the perfect degree of Tutte’s work and his highly status in academia, once upon a time, it was thought that to attack the Four-Color Problem by chromatic polynomial is impossible. Nevertheless, our work below gives a new hope to solve the Four-Color Problem by chromatic polynomial.

    2 Recursion Formulae of Chromatic Polynomial by Contracting Wheels

    We first give two useful lemmas as follows.

    Lemma 1[26]For any planar graph, it is 4-colorable if and only if

    Lemma 2[25,27]Letbe the union of two subgraphsand, whose intersection is a complete graph of order. Then

    Fig. 2 A maximal planar graph with a 4-degree vertex

    Proof In the following derivation, we representby. Now we first compute the chromatic polynomial of the graphby the Deletion-Contract Edge Formula. For the sake of understanding clearly, a method introduced by Zykov[34]is used here, where the chromatic polynomials are represented by the corresponding graphical graphs without. Notice that if there are at least two edges adjacent to two vertices, then only one remains and others are deleted excluding.

    By Lemma 2, the chromatic polynomial of the first subgraph in Formula (4) is. Therefore,

    Notice that the two graphs in Formula (6) denoteand, respectively. It is easily proved that they are both maximal planar graphs of order. Thus, we obtain that

    namely

    Fig. 3 A maximal planar graph with a 5-degree vertex

    By Lemma 2, the chromatic polynomial of the first graph in Formula (10) is. Therefore, we can obtain that

    Notice that the fourth graph in Formula (12), denoted by, contains a subgraph, and so. Thus, we can obtain that

    Actually, the first graph in the first bracket of Formula (13) is; the first graph in the second bracket is; and the first graph in the third bracket is. The proof is completed.

    3 Two Mathematical Ideas for Attacking Four-Color Conjecture Based on Theorem 2

    It is well-known that mathematical induction is an effective method to prove Four-Color Conjecture, in which maximal planar graphs are classified into three cases by their minimum degrees. The case of minimum degree 3 or 4 is easy to prove by induction, but for the case of minimum degree 5 no mathematical method has been found. Based on Theorems 1 and 2, we give a new method to prove Four-Color Conjecture as follows.

    By the induction hypothesis,. Thus,.

    Hence, the result is true when.

    The key ingredient of the proof is the following Case 3.

    The maximal planar graph of minimum degree 5 with fewest vertices is the icosahedron, depicted in Fig. 4(a), which has 12 vertices. Obviously, the icosahedron is 4-colorable. There is no maximal planar graph of minimum degree 5 with 13 vertices. Notice that for any maximal planar graphof order at least 14 and minimum degree 5, there exists a vertexsuch thatand, where(see Fig. 3). Hence, the graphin Theorem 2 is a 4-colorable maximal planar graph of minimum degree at least 4. Based on this evidence, we give two mathematical ideas to proveas follows.

    The first idea is based on the fact that the value of each square bracket in Formula (9) is no less than zero. Hence, the Four-Color Conjecture can be proved if any square bracket’s value is greater than zero. The value of the first square bracket is greater than zero if and only if there existssuch thator. Therefore,if and only if each square bracket in Formula (9) is equal to zero. Moreover, the value of the first square bracket is zero if and only if for any,and, that is, for any, the colors of vertices of the funnel shown in Fig. 4(b) are pairwise different. Such maximal planar graphs are called 4-chromatic-funnel pseudo uniquely-4-colorable maximal planar graphs. For instance, each graph in Fig. 5 is a 4-chromatic- funnel pseudo-uniquely 4-colorable maximal planar graph.

    Fig. 5 Three 4-chromatic-funnel pseudo uniquely-

    4-colorable maximal planar graphs

    Now we give the second idea to prove. The maximal planar graphs,, andin Theorem 2 can be regarded as the graphs obtained fromby deleting a 5-degree vertexand contracting,, andinto a single vertex, respectively (see Fig. 6). Moreover, the 5-cycle consisting of the neighbors ofinis contracted to a funnel subgraphin,in, andin, respectively, where,, andare the new vertices obtained by contractingandrespectively.

    Fig. 6 The processes of generating the three funnel subgraphs

    By the induction hypothesis,,, andare 4-colorable. In order to prove, it is needed to prove that at least one of the funnel subgraphs,, andis not 4-chromatic.

    Therefore, the second idea is to prove that for any maximal planar graphof minimum degree 5, there exists a 5-wheelinsuch that at least one of the funnel subgraphs,, andcorresponding to,, andis not a 4- chromatic-funnel. For instance, the graph in Fig. 5(a) can be regarded as the maximal planar graph obtained from the graph in Fig. 7 by the operation shown in Fig. 6. It is not difficult to prove that the other two graphs obtained from Fig. 7 by the operation shown in Fig. 6 have no 4-chromatic- funnel.

    4 Conclusion

    In this paper, we give two recursion formulae of chromatic polynomial on maximal planar graphs. Based on these formulae, we find: (1) two mathematical ideas for attacking Four-Color Conjecture; (2) a method to generate maximal planar graphs, called contracting and extending operational system, which establishes a relation between the structure and colorings of a maximal planar graph. For instance, the maximal planar graph in Fig. 5(a) can be obtained from the graph in Fig. 7 by the extending 5-wheel operation, in other words, the maximal planar graph in Fig. 7 can be obtained from the graph in Fig. 5(a) by the contracting 5-wheel operation. A detailed research on contracting and extending operational system of maximal planar graphs will be given in later articles.

    Fig. 7 A maximal planar graph that can be contracted to the graph in Fig. 5(a)

    久久久国产一区二区| 国产真实伦视频高清在线观看| 男女那种视频在线观看| 热99国产精品久久久久久7| 听说在线观看完整版免费高清| 免费高清在线观看视频在线观看| av在线亚洲专区| 成人亚洲精品av一区二区| 国产在视频线精品| av在线播放精品| 激情五月婷婷亚洲| 一级a做视频免费观看| 在线观看一区二区三区| av网站免费在线观看视频| 国产黄片美女视频| 少妇高潮的动态图| 国模一区二区三区四区视频| 欧美bdsm另类| 三级经典国产精品| 午夜免费男女啪啪视频观看| tube8黄色片| 99热这里只有是精品在线观看| 午夜福利视频1000在线观看| 国产亚洲午夜精品一区二区久久 | 久久综合国产亚洲精品| 国产精品爽爽va在线观看网站| 少妇人妻一区二区三区视频| 在线精品无人区一区二区三 | 特大巨黑吊av在线直播| 国产乱来视频区| 国产免费一区二区三区四区乱码| 亚洲一级一片aⅴ在线观看| 欧美区成人在线视频| 欧美老熟妇乱子伦牲交| 老女人水多毛片| 久久精品国产亚洲网站| 性插视频无遮挡在线免费观看| 男女边吃奶边做爰视频| 久久久成人免费电影| 国产爱豆传媒在线观看| 美女脱内裤让男人舔精品视频| 九草在线视频观看| 在线播放无遮挡| 欧美老熟妇乱子伦牲交| 国产精品99久久久久久久久| 亚洲,欧美,日韩| 日韩国内少妇激情av| 亚洲,欧美,日韩| 十八禁网站网址无遮挡 | 麻豆久久精品国产亚洲av| 大香蕉久久网| 久久精品熟女亚洲av麻豆精品| 涩涩av久久男人的天堂| 最近中文字幕高清免费大全6| xxx大片免费视频| 久久人人爽人人爽人人片va| 少妇人妻一区二区三区视频| 网址你懂的国产日韩在线| 99热这里只有是精品50| 又爽又黄无遮挡网站| 婷婷色综合www| 卡戴珊不雅视频在线播放| 久久久精品94久久精品| 麻豆国产97在线/欧美| 最新中文字幕久久久久| 看非洲黑人一级黄片| 街头女战士在线观看网站| 1000部很黄的大片| 亚洲丝袜综合中文字幕| 亚洲人成网站在线播| 少妇熟女欧美另类| 插阴视频在线观看视频| 久久久久久国产a免费观看| 亚洲国产精品专区欧美| 蜜臀久久99精品久久宅男| 欧美三级亚洲精品| 精品酒店卫生间| 国产伦理片在线播放av一区| 日韩视频在线欧美| 尤物成人国产欧美一区二区三区| 中文字幕制服av| 日韩一区二区三区影片| 色婷婷久久久亚洲欧美| 噜噜噜噜噜久久久久久91| 欧美精品国产亚洲| 高清日韩中文字幕在线| 国产亚洲91精品色在线| av播播在线观看一区| 亚洲国产高清在线一区二区三| 人妻制服诱惑在线中文字幕| 国产在线男女| 成年女人在线观看亚洲视频 | 三级国产精品欧美在线观看| 国产女主播在线喷水免费视频网站| 亚洲欧美一区二区三区黑人 | 麻豆乱淫一区二区| 简卡轻食公司| 日韩欧美精品免费久久| 狂野欧美激情性xxxx在线观看| 国产精品一及| 国产一区二区在线观看日韩| 蜜臀久久99精品久久宅男| 国内少妇人妻偷人精品xxx网站| 国产黄片美女视频| 大香蕉久久网| 看十八女毛片水多多多| 香蕉精品网在线| 中文乱码字字幕精品一区二区三区| 精品一区二区三区视频在线| 嫩草影院入口| 搡老乐熟女国产| 日韩大片免费观看网站| 成人综合一区亚洲| 蜜桃久久精品国产亚洲av| 国产v大片淫在线免费观看| 亚洲精品中文字幕在线视频 | 免费黄频网站在线观看国产| 久久精品久久久久久久性| 国产精品99久久99久久久不卡 | 亚洲精品456在线播放app| 精品久久久精品久久久| 91精品伊人久久大香线蕉| 亚洲欧美日韩卡通动漫| 久久久久久久精品精品| 久久6这里有精品| 卡戴珊不雅视频在线播放| av卡一久久| 国产成人免费无遮挡视频| av在线播放精品| 免费观看的影片在线观看| 丝袜美腿在线中文| 国精品久久久久久国模美| 欧美性感艳星| 日本一二三区视频观看| 最近2019中文字幕mv第一页| 亚洲天堂国产精品一区在线| 丝瓜视频免费看黄片| 三级国产精品片| 亚洲人成网站在线播| 黄色欧美视频在线观看| 人人妻人人看人人澡| 特级一级黄色大片| 人妻制服诱惑在线中文字幕| 久久鲁丝午夜福利片| 国产探花极品一区二区| 波野结衣二区三区在线| 制服丝袜香蕉在线| 亚洲欧美精品专区久久| 亚洲欧美日韩无卡精品| 国产一区二区三区av在线| 国产真实伦视频高清在线观看| 中文字幕av成人在线电影| 国产永久视频网站| 汤姆久久久久久久影院中文字幕| 久久99精品国语久久久| 国产 一区精品| 少妇被粗大猛烈的视频| 26uuu在线亚洲综合色| 最新中文字幕久久久久| 搡女人真爽免费视频火全软件| 搡女人真爽免费视频火全软件| 少妇人妻久久综合中文| 国产精品久久久久久精品电影| 亚洲内射少妇av| 亚洲国产精品成人综合色| 麻豆成人午夜福利视频| 热re99久久精品国产66热6| 国产乱人偷精品视频| 欧美一级a爱片免费观看看| 久久久久久久久久成人| 欧美三级亚洲精品| 日本与韩国留学比较| 国产精品久久久久久精品电影| 99热网站在线观看| 亚洲内射少妇av| 午夜免费鲁丝| 91精品伊人久久大香线蕉| 狂野欧美白嫩少妇大欣赏| 男女无遮挡免费网站观看| 免费人成在线观看视频色| 国产探花极品一区二区| 国产老妇女一区| 精华霜和精华液先用哪个| 亚洲激情五月婷婷啪啪| 国产精品一区二区性色av| 日韩人妻高清精品专区| 精华霜和精华液先用哪个| 日本wwww免费看| 亚洲综合色惰| 一本色道久久久久久精品综合| 亚洲伊人久久精品综合| 亚洲欧洲日产国产| 欧美xxxx黑人xx丫x性爽| 男人和女人高潮做爰伦理| 老司机影院成人| 欧美xxxx性猛交bbbb| 啦啦啦啦在线视频资源| 欧美高清性xxxxhd video| av在线老鸭窝| av在线老鸭窝| 国产欧美亚洲国产| 天堂中文最新版在线下载 | 2022亚洲国产成人精品| 91久久精品电影网| 中文字幕av成人在线电影| 少妇丰满av| 国产视频首页在线观看| 国产亚洲午夜精品一区二区久久 | kizo精华| av天堂中文字幕网| 国产高潮美女av| 亚洲av成人精品一二三区| 国产高清国产精品国产三级 | 中文欧美无线码| 精品久久久久久久久av| 2021少妇久久久久久久久久久| 欧美日韩亚洲高清精品| 亚洲av成人精品一区久久| 尾随美女入室| 九九在线视频观看精品| 国产永久视频网站| 美女主播在线视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99久久中文字幕三级久久日本| 国产亚洲最大av| 国产成人免费无遮挡视频| 久久久久网色| 国产精品99久久99久久久不卡 | 夫妻性生交免费视频一级片| 欧美三级亚洲精品| 2021天堂中文幕一二区在线观| 一级毛片 在线播放| 搡老乐熟女国产| 久久午夜福利片| 51国产日韩欧美| 亚洲人成网站在线播| 亚洲丝袜综合中文字幕| 亚洲色图av天堂| 国产精品福利在线免费观看| 黑人高潮一二区| 天天躁日日操中文字幕| 水蜜桃什么品种好| 三级国产精品片| 国产色爽女视频免费观看| kizo精华| 三级经典国产精品| 国产精品一区二区性色av| 日韩中字成人| 久久久精品94久久精品| 久久久久网色| 91精品国产九色| 精品视频人人做人人爽| www.av在线官网国产| 22中文网久久字幕| 日韩精品有码人妻一区| 久久久国产一区二区| 日日摸夜夜添夜夜爱| 水蜜桃什么品种好| 乱码一卡2卡4卡精品| av在线亚洲专区| 日韩av在线免费看完整版不卡| 97超视频在线观看视频| 69人妻影院| 国产精品久久久久久精品电影小说 | 国内精品美女久久久久久| 久久久久精品久久久久真实原创| 青春草亚洲视频在线观看| 国产淫片久久久久久久久| tube8黄色片| 成人亚洲欧美一区二区av| 五月伊人婷婷丁香| 夫妻午夜视频| 一本一本综合久久| 中文字幕制服av| 精品视频人人做人人爽| 肉色欧美久久久久久久蜜桃 | 午夜福利视频1000在线观看| 国产美女午夜福利| 国产爽快片一区二区三区| tube8黄色片| 日日摸夜夜添夜夜添av毛片| 日本免费在线观看一区| 97人妻精品一区二区三区麻豆| 舔av片在线| 亚洲精品成人av观看孕妇| 亚洲人成网站高清观看| 不卡视频在线观看欧美| 日本-黄色视频高清免费观看| 中文字幕av成人在线电影| 国产精品人妻久久久影院| 久久午夜福利片| 亚洲久久久久久中文字幕| 国产探花在线观看一区二区| 网址你懂的国产日韩在线| 自拍偷自拍亚洲精品老妇| 久久人人爽人人爽人人片va| 欧美xxxx黑人xx丫x性爽| 一级av片app| 看黄色毛片网站| 你懂的网址亚洲精品在线观看| 亚洲成人精品中文字幕电影| 日本猛色少妇xxxxx猛交久久| 99九九线精品视频在线观看视频| 亚洲va在线va天堂va国产| 国产91av在线免费观看| 免费看不卡的av| 国产精品久久久久久久电影| 九九久久精品国产亚洲av麻豆| 国产av国产精品国产| 亚洲精品成人av观看孕妇| 特级一级黄色大片| 久久久久久九九精品二区国产| 国产真实伦视频高清在线观看| 一本色道久久久久久精品综合| 亚洲精品影视一区二区三区av| 日韩欧美精品v在线| 一本色道久久久久久精品综合| 久久午夜福利片| 丝袜喷水一区| 网址你懂的国产日韩在线| 亚洲欧美日韩无卡精品| 夫妻午夜视频| 亚洲va在线va天堂va国产| 亚洲在线观看片| 成人亚洲欧美一区二区av| 国产精品偷伦视频观看了| 97在线视频观看| 亚洲欧美中文字幕日韩二区| 中文在线观看免费www的网站| 白带黄色成豆腐渣| 国产 一区精品| 欧美性感艳星| 午夜激情福利司机影院| 成年女人在线观看亚洲视频 | 国产高清国产精品国产三级 | 人妻系列 视频| 91狼人影院| 黄片wwwwww| 久久影院123| 国产精品久久久久久精品古装| 在线播放无遮挡| 久久久久久九九精品二区国产| av一本久久久久| 在线免费观看不下载黄p国产| 人妻一区二区av| 深夜a级毛片| 久久久久久国产a免费观看| 亚洲欧美日韩另类电影网站 | 国产精品久久久久久精品电影小说 | 成人漫画全彩无遮挡| 国产中年淑女户外野战色| 小蜜桃在线观看免费完整版高清| 久久精品人妻少妇| 久久人人爽人人爽人人片va| 日韩 亚洲 欧美在线| 亚洲av在线观看美女高潮| 老师上课跳d突然被开到最大视频| 亚洲最大成人中文| 日韩制服骚丝袜av| 最近手机中文字幕大全| 亚洲av中文字字幕乱码综合| 亚洲成人av在线免费| 国产精品秋霞免费鲁丝片| 欧美激情在线99| 欧美成人精品欧美一级黄| 午夜免费男女啪啪视频观看| 大话2 男鬼变身卡| 国产成年人精品一区二区| 99久国产av精品国产电影| 中文字幕亚洲精品专区| 女人久久www免费人成看片| 精品一区二区免费观看| 美女cb高潮喷水在线观看| 97在线人人人人妻| 成年女人看的毛片在线观看| 精品国产三级普通话版| 国产精品久久久久久av不卡| 高清毛片免费看| 在线a可以看的网站| 亚洲伊人久久精品综合| 日本一二三区视频观看| 男人添女人高潮全过程视频| 亚洲精品aⅴ在线观看| 啦啦啦在线观看免费高清www| 久久久久网色| 精品久久久久久久人妻蜜臀av| 午夜福利在线在线| 综合色丁香网| 亚洲精品国产av蜜桃| 精品国产一区二区三区久久久樱花 | 99久国产av精品国产电影| 国产在线男女| 99热国产这里只有精品6| 婷婷色综合www| 亚洲精品一二三| 视频区图区小说| 春色校园在线视频观看| a级一级毛片免费在线观看| 街头女战士在线观看网站| 精品久久久久久久末码| 精品视频人人做人人爽| 2021天堂中文幕一二区在线观| 亚洲精品国产色婷婷电影| 亚洲av不卡在线观看| 色网站视频免费| 一级毛片电影观看| 又爽又黄无遮挡网站| 网址你懂的国产日韩在线| 亚洲国产精品专区欧美| 国产精品久久久久久av不卡| 又黄又爽又刺激的免费视频.| 免费高清在线观看视频在线观看| 超碰av人人做人人爽久久| 直男gayav资源| 婷婷色麻豆天堂久久| 在线观看免费高清a一片| 免费少妇av软件| 日韩一本色道免费dvd| 亚洲av一区综合| 欧美高清性xxxxhd video| 欧美三级亚洲精品| 麻豆国产97在线/欧美| 亚洲精品成人av观看孕妇| 天天一区二区日本电影三级| 亚洲av男天堂| 亚洲精品第二区| 色网站视频免费| 久久久精品94久久精品| 蜜桃亚洲精品一区二区三区| av福利片在线观看| 九色成人免费人妻av| 日本黄色片子视频| 久久久久久久久久久免费av| 国产成年人精品一区二区| 一级黄片播放器| av天堂中文字幕网| 麻豆国产97在线/欧美| 国产欧美日韩一区二区三区在线 | 欧美精品人与动牲交sv欧美| 亚洲,一卡二卡三卡| 亚洲在线观看片| 免费观看a级毛片全部| 国产免费一区二区三区四区乱码| 尤物成人国产欧美一区二区三区| 国内少妇人妻偷人精品xxx网站| 亚洲aⅴ乱码一区二区在线播放| 中文字幕久久专区| 日本与韩国留学比较| 熟女人妻精品中文字幕| 看免费成人av毛片| 国产av不卡久久| 香蕉精品网在线| 国产高潮美女av| 男插女下体视频免费在线播放| 国产综合懂色| 国产精品福利在线免费观看| 精品熟女少妇av免费看| 国产毛片a区久久久久| 日韩三级伦理在线观看| 欧美 日韩 精品 国产| 亚洲自拍偷在线| 人妻少妇偷人精品九色| 三级经典国产精品| 丰满乱子伦码专区| 中文字幕人妻熟人妻熟丝袜美| 国产精品偷伦视频观看了| 亚洲最大成人手机在线| 大香蕉久久网| 18禁在线播放成人免费| 国产免费又黄又爽又色| 欧美日韩视频精品一区| 久久久久网色| 国产成人精品福利久久| 少妇人妻久久综合中文| 久久99热6这里只有精品| 午夜福利高清视频| 成人无遮挡网站| 人妻一区二区av| 成人黄色视频免费在线看| 国产片特级美女逼逼视频| 色综合色国产| 综合色av麻豆| 国产色婷婷99| 亚洲欧美成人综合另类久久久| 少妇人妻精品综合一区二区| 欧美区成人在线视频| 偷拍熟女少妇极品色| 亚洲人成网站高清观看| 免费观看a级毛片全部| 在线免费十八禁| 网址你懂的国产日韩在线| 97在线视频观看| 精品人妻一区二区三区麻豆| 只有这里有精品99| 国产亚洲av嫩草精品影院| 国产成人一区二区在线| 亚洲国产欧美在线一区| 国产精品久久久久久久久免| 成人毛片60女人毛片免费| 欧美zozozo另类| 欧美变态另类bdsm刘玥| www.色视频.com| 男人狂女人下面高潮的视频| 日韩人妻高清精品专区| 禁无遮挡网站| 色网站视频免费| 亚洲高清免费不卡视频| 亚洲在久久综合| 国产黄a三级三级三级人| 又爽又黄a免费视频| 99热国产这里只有精品6| 建设人人有责人人尽责人人享有的 | 国产av不卡久久| 新久久久久国产一级毛片| 少妇人妻一区二区三区视频| 天堂俺去俺来也www色官网| 91午夜精品亚洲一区二区三区| 在现免费观看毛片| 成人亚洲欧美一区二区av| 一二三四中文在线观看免费高清| 国产精品人妻久久久久久| 有码 亚洲区| tube8黄色片| 亚洲av男天堂| 国产久久久一区二区三区| 亚洲自拍偷在线| 超碰97精品在线观看| 日日啪夜夜撸| 最近的中文字幕免费完整| 免费观看av网站的网址| 久久韩国三级中文字幕| 特级一级黄色大片| av一本久久久久| 免费人成在线观看视频色| 黑人高潮一二区| 国产成人精品一,二区| 一本色道久久久久久精品综合| 国产久久久一区二区三区| av在线观看视频网站免费| 黄色视频在线播放观看不卡| 欧美日韩一区二区视频在线观看视频在线 | 99久久精品热视频| 精品99又大又爽又粗少妇毛片| 国产精品偷伦视频观看了| 水蜜桃什么品种好| 亚洲第一区二区三区不卡| 一区二区三区免费毛片| 欧美激情久久久久久爽电影| 美女xxoo啪啪120秒动态图| av专区在线播放| 亚洲国产欧美在线一区| 涩涩av久久男人的天堂| 亚洲欧洲国产日韩| 如何舔出高潮| 欧美日韩视频精品一区| 色视频www国产| freevideosex欧美| 秋霞在线观看毛片| av国产免费在线观看| 久久精品国产鲁丝片午夜精品| av免费在线看不卡| 亚洲精品一区蜜桃| 免费播放大片免费观看视频在线观看| 女人被狂操c到高潮| 国产精品福利在线免费观看| 日韩一区二区三区影片| 久久精品人妻少妇| 午夜爱爱视频在线播放| 国产女主播在线喷水免费视频网站| 国内精品宾馆在线| 免费观看av网站的网址| 亚洲欧美清纯卡通| 全区人妻精品视频| 亚洲精品影视一区二区三区av| 五月开心婷婷网| 一二三四中文在线观看免费高清| 不卡视频在线观看欧美| 69人妻影院| 日本熟妇午夜| 69av精品久久久久久| 国产精品一区二区在线观看99| 欧美成人a在线观看| av福利片在线观看| 免费观看的影片在线观看| 三级国产精品欧美在线观看| 国产精品嫩草影院av在线观看| 人妻夜夜爽99麻豆av| 成年人午夜在线观看视频| 91午夜精品亚洲一区二区三区| 欧美xxxx性猛交bbbb| freevideosex欧美| 成年免费大片在线观看| 国产精品福利在线免费观看| 国产乱来视频区| 亚洲精品久久久久久婷婷小说| 国产一级毛片在线| 婷婷色综合大香蕉| 亚洲人成网站在线播| 久久久久久久亚洲中文字幕| 国产精品秋霞免费鲁丝片| 亚洲精品一区蜜桃| 亚洲av男天堂| 中文在线观看免费www的网站| 97超视频在线观看视频| 久久这里有精品视频免费| 国产一区二区亚洲精品在线观看| 波多野结衣巨乳人妻| 在线观看国产h片| 日本熟妇午夜| 久久精品久久精品一区二区三区| 黄色配什么色好看| 欧美成人一区二区免费高清观看| av.在线天堂| 国产中年淑女户外野战色| 日本色播在线视频|