• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GLOBAL SMOOTH SOLUTIONS TO THE 1-D COMPRESSIBLE NAVIER-STOKES-KORTEWEG SYSTEM WITH LARGE INITIAL DATA

    2017-01-19 06:08:56CHENTingtingCHENZhichunCHENZhengzheng
    數(shù)學(xué)雜志 2017年1期
    關(guān)鍵詞:安徽大學(xué)初值毛細(xì)

    CHEN Ting-ting,CHEN Zhi-chun,CHEN Zheng-zheng

    (School of Mathematical Sciences,Anhui University,Hefei 230601,China )

    GLOBAL SMOOTH SOLUTIONS TO THE 1-D COMPRESSIBLE NAVIER-STOKES-KORTEWEG SYSTEM WITH LARGE INITIAL DATA

    CHEN Ting-ting,CHEN Zhi-chun,CHEN Zheng-zheng

    (School of Mathematical Sciences,Anhui University,Hefei 230601,China )

    This paper is concerned with the Cauchy problem of the one-dimensional isothermal compressible Navier-Stokes-Korteweg system when the viscosity coefficient and capillarity coefficient are general smooth functions of the density.By using the elementary energy method and Kanel’s technique[25],we obtain the global existence and time-asymptotic behavior of smooth non-vacuum solutions with large initial data,which improves the previous ones in the literature.

    compressible Navier-Stokes-Korteweg system;global existence;time-asymptotic behavior;large initial data

    1 Introduction

    This paper is concerned with the Cauchy problem of the one-dimensional isothermal compressible Navier-Stokes-Korteweg system with density-dependent viscosity coefficient and capillarity coefficient in the Eulerian coordinates

    with the initial data

    here t and x represent the time variable and the spatial variable,respectively,K is the Korteweg tensor given by

    The unknown functions ρ>0,u,P=P(ρ)denote the density,the velocity,and the pressure of the fluids respectively.μ=μ(ρ)>0 and κ=κ(ρ)>0 are the viscosity coefficient and the capillarity coefficient,respectively,and>0 is a given constant.Throughout this paper, we assume that

    System(1.1)can be used to model the motions of compressible isothermal viscous fluids with internal capillarity,see[1–3]for its derivations.Notice that when κ=0,system(1.1) is reduced to the compressible Navier-Stokes system.

    There were extensive studies on the mathematical aspects on the compressible Navier-Stokes-Korteweg system.For small initial data,we refer to[8,9,13–15,19–23]for the global existence and large time behavior of smooth solutions in Sobolev space,[5,7,11]for the global existence and uniqueness of strong solutions in Besov space,and[5,6]for the global existence of weak solutions near constant states in the whole space R2.

    For large initial data,Kotschote[12],Hattori and Li[10]proved the local existence of strong solutions.Bresch et al.[4]investigated the global existence of weak solutions for an isothermal fluid with the viscosity coefficientsμ(ρ)=ρ,λ(ρ)=0 and the capillarity coefficient κ(ρ)≡in a periodic domain Td(d=2,3),where>0 are positive constants. Later,such a result was improved by Haspot[6]to some more general density-dependent viscosity coefficients.Tsyganov[16]studied the global existence and time-asymptotic convergence of weak solutions for an isothermal compressible Navier-Stokes-Korteweg system with the viscosity coefficientμ(ρ)≡1 and the capillarity coefficient κ(ρ)=ρ-5on the interval[0,1].Charve and Haspot[17]showed the global existence of strong solutions to system (1.1)withμ(ρ)=ερ and κ(ρ)=ε2ρ-1.Recently,Germain and LeFloch[18]studied the global existence of weak solutions to the Cauchy problem(1.1)–(1.2)with general densitydependent viscosity and capillarity coefficients.Both the vacuum and non-vacuum weak solutions were obtained in[18].Moreover,Chen et al.[23,24]discussed the global existence and large time behavior of smooth and non-vacuum solutions to the Cauchy problem of system(1.1)with the viscosity and capillarity coefficients being some power functions of the density.

    However,few results were obtained for the global smooth,large solutions of the isothermal compressible Navier-Stokes-Korteweg system with general density-dependent viscosity coefficient and capillarity coefficient up to now.This paper is devoted to this problem,and we are concerned with the global existence and large time behavior of smooth,non-vacuum solutions to the Cauchy problems(1.1)–(1.2)when the the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are general smooth functions of the density ρ.

    The main result of this paper is stated as follows.

    Theorem 1.1Suppose the following conditions hold:

    (i)The initial data(ρ0(x)-,u0(x))∈H4(R)×H3(R),and there exist two positive constants m0,m1such that m0≤ρ0(x)≤m1for all x∈R.

    (ii)The smooth functionsμ(ρ)and κ(ρ)satisfyμ(ρ),κ(ρ)>0 for ρ>0,and one of the following two conditions hold:

    and the time-asymptotic behavior

    here C1is a positive constant depending only on m0,m1,and C2is a positive constant depending only on m0,m1,

    When the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are given by

    where α,β∈R are some constants,condition(ii)of Theorem 1.1 corresponds to

    while condition(iii)of Theorem 1.1 is equivalent to

    or

    Thus from Theorem 1.1,we have the following corollary.

    Corollary 1.1Let condition(i)of Theorem 1.1 holds.Suppose that the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are given by(1.7)and the constants α,β satisfy one of the following conditions:

    then the same conclusions of Theorem 1.1 hold.

    Remark 1.1Some remarks on Theorem 1.1 and Corollary 1.1 are given as follows:

    (1)Conditions(ii)and(iii)of Theorem 1.1 are used to deduce the positive lower and upper bounds of the density ρ(t,x),see Lemmas 2.3–2.5 for details.

    (2)In Theorem 1.1,the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are general smooth functions of ρ satisfying conditions(ii)and(iii)of Theorem 1.1,which are more general than those in[23,24],where only some power like density-dependent viscosity and capillarity coefficients are studied.

    On the other hand,Germain and LeFloch[18]also discussed the global existence of weak solutions away from vacuum for problems(1.1)–(1.2)withμ(ρ)=ραand κ(ρ)=ρβunder the condition that

    or

    which means that 0≤α<1.From condition(A)of Corollary 1.1,we see that α∈thus Corollary 1.1 also improves the results of[18]to the case α∈Moreover,case (B)of Corollary 1.1 is completely new compared to the results in[18,23,24].Thus in these sense,our main result Theorem 1.1 can be viewed as an extension of the works[18,23,24].

    Now we make some comments on the analysis of this paper.The proof of Theorem 1.1 is motivated by the previous works[18,23,24].When the viscosity coefficientμ(ρ) and the capillarity coefficient κ(ρ)are some power functions of the density,the authors in [23,24]studied the global existence and large time behavior of smooth solutions away from vacuum to the Cauchy problem of system(1.1)with large initial data in the Lagrangian coordinates.However,for the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ) being some general smooth functions of the density,it is much more easier for us to study such a problem in the Eulerian coordinates rather than the Lagrangian coordinates.To prove Theorem 1.1,we mainly use the method of Kanel[25]and the energy estimates.The key step is to derive the positive lower and upper bounds for the density ρ(t,x).First,due to effect of the Korteweg tensor,an estimate ofappears in the basic energy estimate(see Lemma 2.1).Based on this and a new inequality for the renormalized internal energy(see Lemma 2.2),the lower and upper bounds of ρ(t,x)for cases(ii)(a)of Theorem 1.1 can be derived easily by applying Kanel’s method[25](see Lemma 2.3).Second,we perform an uniform-in-time estimate onunder condition(iii)of Theorem 1.1(see Lemma 2.4).We remark that Lemma 2.4 is proved by using the approach of Kanel[25],rather than introducing the effective velocity as[4,17,18].Then by employing Kanel’s method[25]againand Lemmas 2.1,2.2 and 2.4,the lower and upper bounds of ρ(t,x)for the cases(ii)(b)of Theorem 1.1 follows immediately(see Lemma 2.5).Having obtained the lower and upper bounds on ρ(t,x),the higher order energy estimates of solutions to the Cauchy problem (1.1)–(1.2)can be deduced by using the lower order estimates and Gronwall’s inequality, and then Theorem 1.1 follows by the standard continuation argument.In the next section, we will give the proof of Theorem 1.1.

    NotationsThroughout this paper,C denotes some generic constant which may vary in different estimates.If the dependence needs to be explicitly pointed out,the notation C(·,···,·)or Ci(·,···,·)(i∈N)is used.f′(ρ)denotes the derivative of the function f(ρ) with respect to ρ.For function spaces,Lp(R)(1≤p≤+∞)is the standard Lebesgue space with the norm‖·‖Lp,and Hl(R)stands for the usual l-th order Sobolev space with its norm

    2 Proof of Theorem 1.1

    This section is devoted to proving Theorem 1.1.To do this,we seek the solutions of the Cauchy problems(1.1)–(1.2)in the following set of functions

    where M≥m>0 and T>0 are some positive constants.

    Under the assumptions of Theorem 1.1,we have the following local existence result.

    Proposition 2.1(Local existence)Under the assumptions of Theorem 1.1,there exists a sufficiently small positive constant t1depending only on m0,m1,such that the Cauchy problems(1.1)–(1.2)admits a unique smooth solution(ρ,u)(t,x)∈

    where b>1 is a positive constant depending only on m0,m1.

    The proof of Proposition 2.1 can be done by using the dual argument and iteration technique,which is similar to that of Theorem 1.1 in[10]and thus omitted here for brevity. Suppose that the local solution(ρ,u)(t,x)obtained in Proposition 2.1 has been extended to the time step t=T≥t1for some positive constant T>0.To prove Theorem 1.1,one needs only to show the following a priori estimates.

    Proposition 2.2(A priori estimates)Under the assumptions of Theorem 1.1,suppose that(ρ,u)(t,x)∈X(0,T;M0,M1)is a solution of the Cauchy problem(1.1)–(1.2)for somepositive constants T and M0,M1>0.Then there exist two positive constants C1and C2which are independent of T,M0,M1such that the following estimates hold:

    Proposition 2.2 can be obtained by a series of lemmas below.We first give the following key lemma.

    Lemma 2.1(Basic energy estimates)Under the assumptions of Proposition 2.2,it holds that

    for all t∈[0,T],where the functionis defined by

    ProofIn view of the continuity equation(1.1)1,we have

    On the other hand,by using(1.1)1again,the movement equation(1.1)2can be rewritten as

    Substituting(2.6)into(2.5),we get

    Here and hereafter,{···}xdenotes the terms which will disappear after integrating with respect to x.

    Moreover,it follows from(1.1)1that

    Combining(2.7)and(2.8),and integrating the resultant equation with respect to t and x over[0,t]×R,we can get(2.3).This completes the proof of Lemma 2.1.

    In order to apply Kanel’s method[25]to show the lower and upper bound of the density ρ(t,x),we need to establish the following lemma.

    Lemma 2.2There exists a uniform positive constant c0such that

    ProofUsing the L’Hospital rule,we obtain

    Consequently,there exist a sufficiently small constant δ and a large constantsuch that

    and c0=minwe have(2.9)holds.This completes the proof of Lemma 2.2.

    Based on Lemmas 2.1–2.2,we now show the lower and upper bounds of ρ(t,x)by using Kanel’s method[25].

    Lemma 2.3(Lower and upper bounds of ρ(t,x)for the cases(ii)(a)of Theorem 1.1)Under the assumptions of Proposition 2.2,if the capillarity coefficient κ(ρ)satisfies the condition(ii)(a)of Theorem 1.1,then there exists a positive constant C3depending only

    for all(t,x)∈[0,T]×R.

    ProofLet

    then under the condition(ii)(a)of Theorem 1.1,we have

    On the other hand,we deduce from Lemmas 2.1–2.2 that

    (2.13)thus follows from(2.14)and(2.15)immediately.This completes the proof of Lemma 2.3.

    Next,we give the estimate on

    Lemma 2.4Let condition(i)of Theorem 1.1 holds and

    Then if f(ρ)≤0,there exists a positive constant C4depending only on m0,m1and‖(ρ0-

    ProofFirst,by the continuity equation(1.1)1,we have

    where we have used the fact that

    Putting(2.17)into(2.6),and multiplying the resultant equation by

    A direct calculation yields that

    Combining(2.19)and(2.20),and integrating the resultant equation in t and x over[0,t]×R, we have

    where we have used the fact that

    By employing integrations by parts,we obtain

    Inserting(2.22)–(2.23)into(2.21),and using(2.3),we arrive at

    (2.24)together with the assumption that f(ρ)≤0 implies(2.16)immediately.This completes the proof of Lemma 2.4.

    Lemma 2.5Let conditions(i)and(ii)(b)of Theorem 1.1 hold and f(ρ)≤0,then there exists a positive constant C5depending only on m0,m1andthat

    for all(t,x)∈[0,T]×R.

    ProofSet

    then it follows from assumption(ii)(b)of Theorem 1.1 that

    On the other hand,Lemmas 2.1 and 2.4 imply that

    From(2.26)and(2.27),we have(2.25)at once.This completes the proof Lemma 2.5.

    As a consequence of Lemmas 2.3–2.5,we have

    Corollary 2.1Under the assumptions of Lemmas 2.3–2.5,it holds that for 0≤t≤T,

    where C6>0 is a constant depending only on m0,m1and

    The next lemma gives an estimate on

    Lemma 2.6There exists a positive constant C7depending only on m0,m1and‖(ρ0-such that for 0≤t≤T,

    ProofWe derive from Lemmas 2.3–2.5 that

    On the other hand,Lemmas 2.3–2.5 also imply that

    From the Cauchy equality and(2.30),we infer that

    Then(2.29)follows from(2.31)and(2.32)immediately.This completes the proof of Lemma 2.6.

    For the estimate on‖ux(t)‖2,we have

    Lemma 2.7There exists a positive constant C8depending only on m0,m1and‖(ρ0-such that for 0≤t≤T,

    ProofMultiplying(2.6)by-uxx,and using the continuity equation(1.1)1,we have

    Integrating(2.34)in t and x over[0,t]×R gives

    where

    It follows from the Cauchy inequality,the Sobolev inequality,the Young inequality,

    Lemmas 2.3 and 2.5,and Corollary 2.1 that

    Putting(2.36)–(2.37)into(2.35),and using Growwall’s equality,we obtain(2.33).This completes the proof of Lemma 2.7.

    Finally,we estimate the term

    Lemma 2.8There exists a positive constant C9depending only on m0,m1,and‖u0‖1such that for t∈[0,T],

    ProofDifferentiating(1.1)2once with respect to x,then multiplying the resultant equation by ρxx,and using equation(1.1)1,we have

    Integrating(2.39)with respect to t and x over[0,t]×R,using the Cauchy inequality,the Sobolev inequality,Lemmas 2.3–2.7 and Corollary 2.1,we can get Lemma 2.8,the proof is similar to Lemma 2.7 and thus omitted here.This completes the proof of Lemma 2.8.

    It follows from Corollary 2.1,and Lemmas 2.6–2.8 that there exists a positive constant C10depending only on m0,m1,and‖u0‖1such that for 0≤t≤T,

    Similarly,we can also obtain

    where C11is a positive constant depending only on m0,m1,

    Proof of Proposition 2.2Proposition 2.2 follows from(2.40)and(2.41)immediately.

    Proof of Theorem 1.1By Propositions 2.1–2.2 and the standard continuity argument,we can extend the local-in-time smooth solution to be a global one(i.e.,T=+∞). Thus(1.4)and(1.5)follows from(2.1)and(2.2),respectively.Moreover,estimate(2.2)and system(1.1)imply that

    which implies that

    Furthermore,we deduce from(2.2),(2.43)and the Sobolev inequality that

    From(2.43)and(2.44),we have(1.6)at once.This completes the proof of Theorem 1.1.

    [1]Van der Waals J D.Thermodynamische theorie der Kapillaritt unter Voraussetzung stetiger Dichtenderung[J].Z.Phys.Chem.,1894,13:657–725.

    [2]Korteweg D J.Sur la forme que prennent lesquations des mouvement des fluids si l’on tient comple des forces capillaries par des variations de densit[J].Arch.Neerl.Sci.Exactes Nat.Ser.II,1901,6: 1–24.

    [3]Dunn J E,Serrin J.On the thermodynamics of interstital working[J].Arch.Rat.Mech.Anal.,1985, 88:95–133.

    [4]Bresch D,Desjardins B,Lin C K.On some compressible fluid models:Korteweg,lubrication and shallow water systems[J].Comm.Part.Diff.Equa.,2003,28:843–868.

    [5]Danchin R,Desjardins B.Existence of solutions for compressible fluid models of Korteweg type[J]. Ann.Inst.Henri PoincarAnal.Non.Linaire,2001,18:97–133.

    [6]Haspot B.Existence of global weak solution for compressible fluid models of Korteweg type[J].J. Math.Fluid Mech.,2011,13:223–249.

    [7]Haspot B.Existence of strong solutions for nonisothermal Korteweg system[J].Annales Math.Blaise Pascal,2009,16:431–481.

    [8]Hattori H,Li D.Golobal solutions of a high dimensional system for Korteweg materials[J].J.Math. Anal.Appl.,1996,198:84–97.

    [9]Hattori H,Li D.The existence of global solutions to a fluid dynamic model for materials for Korteweg type[J].J.Part.Diff.Equ.,1996,9:323–342.

    [10]Hattori H,Li D.Solutions for two dimensional system for materials of Korteweg type[J].SIAM J. Math.Anal.,1994,25:85–98.

    [11]Kotschote M.Existence and time-asymptotics of global strong solutions to dynamic Korteweg models[J].Indiana Univ.Math.J.,2014,63(1):21–51.

    [12]Kotschote M.Strong solutions for a compressible fluid model of Korteweg type[J].Ann.Inst.Henri PoincarAnal.Non.Linaire,2008,25:679–696.

    [13]Wang Y J,Tan Z.Optimal decay rates for the compressible fluid models of Korteweg type[J].J. Math.Anal.Appl.,2011,379:256–271.

    [14]Li Y P.Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force[J].J.Math.Anal.Appl.,2012,388:1218–1232.

    [15]Wang W J,Wang W K.Decay rate of the compressible Navier-Stokes-Korteweg equations with potential force[J].Discrete Contin.Dyn.Syst.,2015,35(1):513–536.

    [16]Tsyganov E.Global existence and asymptotic convergence of weak solutions for the one-dimensional Navier-Stokes equations with capillarity and nonmonotonic pressure[J].J.Diff.Equ.,2008,245: 3936–3955.

    [17]Charve F,Haspot B.Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system[J].SIMA J.Math.Anal.,2014,45(2):469–494.

    [18]Germain P,LeFloch P G.Finite energy method for compressible fluids:the Navier-Stokes-Korteweg model[J].Comm.Pure Appl.Math.,2016,69(1):3–61.

    [19]Chen Z Z.Asymptotic stability of strong rarefaction waves for the compressible fluid models of Korteweg type[J].J.Math.Anal.Appl.,2012,394:438–448.

    [20]Chen Z Z,Xiao Q H.Nonlinear stability of viscous contact wave for the one-dimensional compressible fluid models of Korteweg type[J].Math.Meth.Appl.Sci.,2013,36(17):2265–2279.

    [21]Chen Z Z,He L,Zhao H J.Nonlinear stability of traveling wave solutions for the compressible fluid models of Korteweg type[J].J.Math.Anal.Appl.,2015,422:1213–1234.

    [22]Chen Z Z,Zhao H J.Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system[J].J.Math.Pur.Appl.,2014,101:330–371.

    [23]Chen Z Z,Chai X J,Dong B Q,Zhao H J.Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data[J].J.Diff.Equ.,2015,259:4376–4411.

    [24]Chen Z Z.Large-time behavior of smooth solutions to the isothermal compressible fluid models of Korteweg type with large initial data[J].Nonl.Anal.,2016,144:139–156.

    [25]Kanel’Y.On a model system of equations of one-dimensional gas motion(in Russian)[J].Diff. Uravn.,1968,4:374–380.

    一維可壓縮Navier-Stokes-Korteweg方程組的大初值整體光滑解

    陳婷婷,陳志春,陳正爭

    (安徽大學(xué)數(shù)學(xué)科學(xué)學(xué)院,安徽合肥230601)

    本文研究了當(dāng)粘性系數(shù)和毛細(xì)系數(shù)是密度函數(shù)的一般光滑函數(shù)時,一維等溫的可壓縮Navier-Stokes-Korteweg方程的Cauchy問題.利用基本能量方法和Kanel的技巧,得到了大初值、非真空光滑解的整體存在性與時間漸近行為.本文結(jié)果推廣了已有文獻(xiàn)中的結(jié)論.

    可壓縮Navier-Stokes-Korteweg方程;整體存在性;時間漸近行為;大初值

    O175.29

    tion:35Q35;35L65;35B40

    A

    0255-7797(2017)01-0091-16

    ?Received date:2016-04-09Accepted date:2016-04-20

    Foundation item:Supported by National Natural Science Foundation of China(11426031)and Undergraduate Scientific Research Training Program of Anhui University(ZLTS2015141).

    Biography:Chen Tingting(1995–),female,born at Tongling,Anhui,undergraduate,major in partial differential equation.

    Chen Zhengzheng.

    猜你喜歡
    安徽大學(xué)初值毛細(xì)
    “毛細(xì)”政務(wù)號關(guān)停背后
    廉政瞭望(2024年5期)2024-05-26 13:21:07
    具非定常數(shù)初值的全變差方程解的漸近性
    多孔建筑材料毛細(xì)吸水系數(shù)連續(xù)測量的方法
    能源工程(2020年6期)2021-01-26 00:55:16
    一種適用于平動點(diǎn)周期軌道初值計算的簡化路徑搜索修正法
    讀《安徽大學(xué)藏戰(zhàn)國竹簡》(一)札記
    三維擬線性波方程的小初值光滑解
    秦曉玥作品
    出現(xiàn)憋喘 可能是毛細(xì)支氣管炎!
    媽媽寶寶(2017年3期)2017-02-21 01:22:16
    L'examen dans l'antiquitéet de nos jours
    高滲鹽水霧化吸入治療毛細(xì)支氣管炎的療效觀察
    三级国产精品欧美在线观看| 91在线精品国自产拍蜜月| 日日摸夜夜添夜夜添av毛片| 久久久久精品性色| 最近中文字幕高清免费大全6| 欧美国产精品一级二级三级 | 国产精品久久久久久久电影| 麻豆成人av视频| 国产v大片淫在线免费观看| 免费大片18禁| 一级二级三级毛片免费看| 黄片wwwwww| 精品国产露脸久久av麻豆| 中文字幕免费在线视频6| 在线免费观看不下载黄p国产| 精品久久久久久久末码| 成人漫画全彩无遮挡| 免费不卡的大黄色大毛片视频在线观看| 精品国产乱码久久久久久小说| 中文欧美无线码| 亚洲精品自拍成人| 国产高潮美女av| 在线看a的网站| 欧美三级亚洲精品| 成人亚洲精品一区在线观看 | 欧美区成人在线视频| 美女脱内裤让男人舔精品视频| 亚洲经典国产精华液单| 伊人久久精品亚洲午夜| 女性生殖器流出的白浆| av天堂中文字幕网| 十八禁网站网址无遮挡 | 乱码一卡2卡4卡精品| 久久久久久久久久久丰满| 亚洲精品中文字幕在线视频 | 国产精品欧美亚洲77777| 99热网站在线观看| 免费观看a级毛片全部| av网站免费在线观看视频| 欧美区成人在线视频| 国产精品久久久久久久电影| 夜夜看夜夜爽夜夜摸| 人体艺术视频欧美日本| 亚洲av二区三区四区| 少妇的逼水好多| 99久久精品一区二区三区| 亚洲精品一区蜜桃| 欧美极品一区二区三区四区| 妹子高潮喷水视频| 久久久久网色| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区四区激情视频| 久久6这里有精品| 91精品国产国语对白视频| 久久97久久精品| 一二三四中文在线观看免费高清| 少妇裸体淫交视频免费看高清| 看非洲黑人一级黄片| 天堂中文最新版在线下载| 人人妻人人澡人人爽人人夜夜| 国产白丝娇喘喷水9色精品| 免费av不卡在线播放| 九草在线视频观看| 国产伦在线观看视频一区| 欧美老熟妇乱子伦牲交| 久久亚洲国产成人精品v| 日日摸夜夜添夜夜添av毛片| 人人妻人人爽人人添夜夜欢视频 | 亚洲四区av| 国产淫片久久久久久久久| 国产精品久久久久成人av| 亚洲国产最新在线播放| 六月丁香七月| 一二三四中文在线观看免费高清| 黄色怎么调成土黄色| 免费观看无遮挡的男女| 国产免费一区二区三区四区乱码| 嫩草影院入口| 久久午夜福利片| 中文字幕精品免费在线观看视频 | 亚洲av福利一区| 各种免费的搞黄视频| 久久久久久伊人网av| av免费在线看不卡| 精品午夜福利在线看| av一本久久久久| 国产综合精华液| 黄色怎么调成土黄色| 毛片一级片免费看久久久久| 大片免费播放器 马上看| 精品久久久久久久久av| 亚洲自偷自拍三级| 亚洲精品色激情综合| 中文精品一卡2卡3卡4更新| 成人国产av品久久久| 高清不卡的av网站| 麻豆国产97在线/欧美| 免费av中文字幕在线| 中国国产av一级| 偷拍熟女少妇极品色| 超碰av人人做人人爽久久| 搡老乐熟女国产| 亚洲成人手机| 丰满少妇做爰视频| 亚洲精品日本国产第一区| 妹子高潮喷水视频| 久久久久久人妻| 国产欧美日韩精品一区二区| 在线播放无遮挡| 伦精品一区二区三区| 亚洲国产日韩一区二区| 色网站视频免费| 永久网站在线| 交换朋友夫妻互换小说| 日韩人妻高清精品专区| 亚洲精品亚洲一区二区| 高清黄色对白视频在线免费看 | 一个人看的www免费观看视频| 国产在线免费精品| 人人妻人人澡人人爽人人夜夜| 国产高潮美女av| 91aial.com中文字幕在线观看| 少妇人妻一区二区三区视频| 黄片无遮挡物在线观看| 亚洲综合色惰| 国产欧美另类精品又又久久亚洲欧美| 亚洲av福利一区| 亚洲av男天堂| 亚洲精品国产成人久久av| 91精品国产国语对白视频| 亚洲国产精品成人久久小说| 国产 精品1| 久久综合国产亚洲精品| 久久国产乱子免费精品| 99视频精品全部免费 在线| 久久精品熟女亚洲av麻豆精品| 亚洲人与动物交配视频| 99九九线精品视频在线观看视频| 国产精品福利在线免费观看| 亚洲av二区三区四区| 丝瓜视频免费看黄片| 欧美性感艳星| 日韩一本色道免费dvd| 十八禁网站网址无遮挡 | 亚洲自偷自拍三级| 另类亚洲欧美激情| 久久久久久久精品精品| 欧美性感艳星| 亚洲aⅴ乱码一区二区在线播放| 五月天丁香电影| 免费黄频网站在线观看国产| 欧美变态另类bdsm刘玥| 色网站视频免费| 欧美日韩一区二区视频在线观看视频在线| 免费大片黄手机在线观看| 黄色一级大片看看| 人妻夜夜爽99麻豆av| 人妻夜夜爽99麻豆av| 久久99精品国语久久久| 亚洲国产高清在线一区二区三| 日韩,欧美,国产一区二区三区| 免费av不卡在线播放| 1000部很黄的大片| 一区在线观看完整版| 国产精品一及| 国产视频首页在线观看| 欧美zozozo另类| 在现免费观看毛片| 欧美成人精品欧美一级黄| 精品亚洲成国产av| 黄色欧美视频在线观看| 日韩国内少妇激情av| 亚洲欧美精品自产自拍| 欧美三级亚洲精品| 欧美+日韩+精品| 寂寞人妻少妇视频99o| 亚洲av欧美aⅴ国产| 国产午夜精品久久久久久一区二区三区| 中文精品一卡2卡3卡4更新| 亚洲精品久久午夜乱码| 卡戴珊不雅视频在线播放| 男男h啪啪无遮挡| 色视频在线一区二区三区| 欧美日韩亚洲高清精品| 成人无遮挡网站| 99热全是精品| 国产精品麻豆人妻色哟哟久久| 免费大片黄手机在线观看| 久久人妻熟女aⅴ| 欧美三级亚洲精品| 深夜a级毛片| 一级毛片电影观看| 欧美日韩国产mv在线观看视频 | 99精国产麻豆久久婷婷| 亚洲真实伦在线观看| 看非洲黑人一级黄片| 国产爱豆传媒在线观看| 久久精品国产自在天天线| 各种免费的搞黄视频| 国产一区二区在线观看日韩| 美女国产视频在线观看| 观看av在线不卡| 日本av免费视频播放| 亚洲内射少妇av| 国精品久久久久久国模美| 超碰97精品在线观看| 亚洲人成网站高清观看| 麻豆成人av视频| 国产精品国产三级专区第一集| 一本—道久久a久久精品蜜桃钙片| 男女边吃奶边做爰视频| 欧美日韩国产mv在线观看视频 | 亚洲av国产av综合av卡| 一区二区av电影网| 天堂8中文在线网| 18禁裸乳无遮挡免费网站照片| 狠狠精品人妻久久久久久综合| 国产成人精品一,二区| 亚洲在久久综合| h日本视频在线播放| 日产精品乱码卡一卡2卡三| 国产精品国产三级国产av玫瑰| 久久韩国三级中文字幕| 热re99久久精品国产66热6| h视频一区二区三区| 女人久久www免费人成看片| 久久久午夜欧美精品| 日韩三级伦理在线观看| 国产高清有码在线观看视频| av不卡在线播放| 国产乱人偷精品视频| 久久av网站| 美女脱内裤让男人舔精品视频| 中文欧美无线码| 91久久精品国产一区二区三区| 99久久精品国产国产毛片| 国产在线一区二区三区精| 看免费成人av毛片| 日韩人妻高清精品专区| 亚洲国产精品专区欧美| 在线观看美女被高潮喷水网站| 下体分泌物呈黄色| 最近最新中文字幕大全电影3| 精品酒店卫生间| 最新中文字幕久久久久| 国精品久久久久久国模美| 国产乱来视频区| 美女中出高潮动态图| 免费观看av网站的网址| 国内揄拍国产精品人妻在线| 久久久久久久精品精品| 狂野欧美激情性bbbbbb| 成年女人在线观看亚洲视频| 欧美日韩综合久久久久久| www.av在线官网国产| 日韩一本色道免费dvd| 男女边吃奶边做爰视频| 国产黄色视频一区二区在线观看| 国产色爽女视频免费观看| 久久鲁丝午夜福利片| 边亲边吃奶的免费视频| 少妇人妻久久综合中文| 高清不卡的av网站| 国产91av在线免费观看| 成人一区二区视频在线观看| 久久人妻熟女aⅴ| 七月丁香在线播放| 国产精品女同一区二区软件| 日韩 亚洲 欧美在线| 男人添女人高潮全过程视频| 你懂的网址亚洲精品在线观看| 亚洲伊人久久精品综合| 国产免费视频播放在线视频| 成人二区视频| 欧美老熟妇乱子伦牲交| 久久久久久九九精品二区国产| 日本猛色少妇xxxxx猛交久久| 亚洲成人手机| 99热这里只有精品一区| 亚洲欧美成人精品一区二区| 日本-黄色视频高清免费观看| 国产精品秋霞免费鲁丝片| 免费观看无遮挡的男女| 亚洲精品国产av蜜桃| 麻豆成人av视频| 国产亚洲5aaaaa淫片| 欧美少妇被猛烈插入视频| 夜夜骑夜夜射夜夜干| 晚上一个人看的免费电影| 久久久久久久久久成人| 在线观看av片永久免费下载| 国产一区二区三区av在线| 伊人久久精品亚洲午夜| 免费高清在线观看视频在线观看| 国产一区亚洲一区在线观看| 下体分泌物呈黄色| av播播在线观看一区| 亚洲精品久久久久久婷婷小说| 免费久久久久久久精品成人欧美视频 | 久久久久久久大尺度免费视频| 日韩,欧美,国产一区二区三区| 一区在线观看完整版| 国产成人免费无遮挡视频| 国产深夜福利视频在线观看| 一个人看的www免费观看视频| 少妇丰满av| 亚洲精品久久午夜乱码| 亚洲国产成人一精品久久久| 久久鲁丝午夜福利片| 26uuu在线亚洲综合色| 视频中文字幕在线观看| 熟女人妻精品中文字幕| 午夜免费观看性视频| 成人毛片60女人毛片免费| 高清日韩中文字幕在线| 亚洲欧美清纯卡通| 成人一区二区视频在线观看| 22中文网久久字幕| 成人18禁高潮啪啪吃奶动态图 | 女人久久www免费人成看片| 欧美日韩精品成人综合77777| av国产精品久久久久影院| 男人狂女人下面高潮的视频| 大香蕉久久网| 少妇被粗大猛烈的视频| 久久99热这里只频精品6学生| 亚洲人成网站在线播| 国产成人freesex在线| 成人国产麻豆网| 毛片女人毛片| 一级爰片在线观看| 亚洲av日韩在线播放| 777米奇影视久久| 国产老妇伦熟女老妇高清| 99久久精品一区二区三区| av.在线天堂| 亚州av有码| 丝袜脚勾引网站| 青春草视频在线免费观看| 欧美xxⅹ黑人| 欧美另类一区| 国产乱来视频区| 日韩国内少妇激情av| 亚洲怡红院男人天堂| 夜夜骑夜夜射夜夜干| 久热这里只有精品99| 中文字幕av成人在线电影| 欧美另类一区| 美女视频免费永久观看网站| 国产精品.久久久| 色吧在线观看| 热99国产精品久久久久久7| 久久久精品免费免费高清| 日韩一本色道免费dvd| 91久久精品国产一区二区三区| 一本一本综合久久| 精品一品国产午夜福利视频| 国产 一区精品| 少妇猛男粗大的猛烈进出视频| 一个人免费看片子| 精品人妻偷拍中文字幕| 深爱激情五月婷婷| 97在线人人人人妻| 寂寞人妻少妇视频99o| 在线观看国产h片| 欧美高清性xxxxhd video| 亚洲成人av在线免费| 少妇的逼好多水| 91精品国产九色| 国产在线免费精品| 精品久久久久久电影网| 国产精品熟女久久久久浪| 国产一区有黄有色的免费视频| 国产高潮美女av| 国产视频首页在线观看| 国产黄色视频一区二区在线观看| 又黄又爽又刺激的免费视频.| 在线天堂最新版资源| 亚洲av成人精品一二三区| 中文字幕精品免费在线观看视频 | 黑丝袜美女国产一区| 国产男人的电影天堂91| 97精品久久久久久久久久精品| 中国美白少妇内射xxxbb| 最黄视频免费看| 老司机影院成人| 麻豆成人av视频| 少妇人妻 视频| 成年人午夜在线观看视频| 午夜免费观看性视频| 亚洲熟女精品中文字幕| 夜夜骑夜夜射夜夜干| 国产精品国产av在线观看| 国产成人免费观看mmmm| 老司机影院成人| 十八禁网站网址无遮挡 | 亚洲国产欧美在线一区| 秋霞在线观看毛片| 九草在线视频观看| 一本—道久久a久久精品蜜桃钙片| 国产乱来视频区| 日本-黄色视频高清免费观看| 久久精品久久精品一区二区三区| 又爽又黄a免费视频| 午夜日本视频在线| 欧美成人a在线观看| 欧美一级a爱片免费观看看| 在线观看免费日韩欧美大片 | 插逼视频在线观看| 偷拍熟女少妇极品色| 少妇精品久久久久久久| 黄片wwwwww| 精品人妻熟女av久视频| 亚洲国产精品999| 丰满人妻一区二区三区视频av| 韩国高清视频一区二区三区| 国产精品一区二区三区四区免费观看| 18禁裸乳无遮挡动漫免费视频| 建设人人有责人人尽责人人享有的 | 国产精品99久久久久久久久| 日韩三级伦理在线观看| 久久99热6这里只有精品| 最近中文字幕2019免费版| 久久99热这里只频精品6学生| 在线观看人妻少妇| 国产极品天堂在线| 一区二区三区免费毛片| 成人综合一区亚洲| 日韩精品有码人妻一区| 人妻少妇偷人精品九色| 三级经典国产精品| 亚洲自偷自拍三级| 国产精品久久久久久久久免| 在线看a的网站| 91精品国产国语对白视频| 亚洲精品一二三| 少妇人妻久久综合中文| 久久99热6这里只有精品| 亚洲电影在线观看av| 天美传媒精品一区二区| 亚洲国产毛片av蜜桃av| 国产亚洲5aaaaa淫片| 高清欧美精品videossex| 久久亚洲国产成人精品v| 亚洲自偷自拍三级| 中文字幕制服av| 日韩人妻高清精品专区| 男男h啪啪无遮挡| 在线观看免费视频网站a站| 搡女人真爽免费视频火全软件| 亚洲欧美一区二区三区国产| 久久久久久久久久人人人人人人| 搡老乐熟女国产| 老女人水多毛片| av国产免费在线观看| 国产精品99久久99久久久不卡 | 久久99蜜桃精品久久| 一本久久精品| 国产伦理片在线播放av一区| 久久久久视频综合| 久热久热在线精品观看| 午夜视频国产福利| 国内少妇人妻偷人精品xxx网站| 国产成人免费无遮挡视频| 亚洲人成网站在线观看播放| www.色视频.com| 性色av一级| 日本-黄色视频高清免费观看| 亚洲精品久久午夜乱码| 久久这里有精品视频免费| 高清日韩中文字幕在线| 欧美 日韩 精品 国产| 欧美精品人与动牲交sv欧美| 亚洲精品国产av成人精品| 日本黄色日本黄色录像| 噜噜噜噜噜久久久久久91| 欧美一级a爱片免费观看看| 人妻系列 视频| 99精国产麻豆久久婷婷| 久久97久久精品| kizo精华| 中文精品一卡2卡3卡4更新| 日日啪夜夜爽| 亚洲高清免费不卡视频| 91精品一卡2卡3卡4卡| 各种免费的搞黄视频| 亚洲不卡免费看| 欧美日韩在线观看h| 三级国产精品片| 交换朋友夫妻互换小说| 中文字幕精品免费在线观看视频 | 五月开心婷婷网| 日韩中字成人| 日韩一区二区三区影片| 亚洲欧美精品自产自拍| 久久精品久久精品一区二区三区| 国产伦精品一区二区三区四那| 五月玫瑰六月丁香| 久久久久久久国产电影| 91aial.com中文字幕在线观看| 亚洲国产精品成人久久小说| 欧美区成人在线视频| 亚洲精品久久午夜乱码| 国产伦在线观看视频一区| 精品一区在线观看国产| 久久久久久久亚洲中文字幕| 久久久久久久久大av| 中文字幕亚洲精品专区| 亚洲成人av在线免费| 美女福利国产在线 | 国产精品偷伦视频观看了| 男人和女人高潮做爰伦理| 在线天堂最新版资源| 午夜老司机福利剧场| 亚洲中文av在线| 日本爱情动作片www.在线观看| 国产精品人妻久久久久久| 欧美国产精品一级二级三级 | 精品亚洲成国产av| 草草在线视频免费看| 干丝袜人妻中文字幕| 一区二区三区精品91| 国产黄色视频一区二区在线观看| 全区人妻精品视频| av国产久精品久网站免费入址| 国产精品99久久久久久久久| 国产精品女同一区二区软件| 在线播放无遮挡| 亚洲精品国产成人久久av| 国产欧美日韩精品一区二区| 国产精品秋霞免费鲁丝片| 中文字幕免费在线视频6| 欧美日韩精品成人综合77777| 人妻系列 视频| 日韩一本色道免费dvd| 51国产日韩欧美| 交换朋友夫妻互换小说| 五月天丁香电影| 亚洲电影在线观看av| 日本一二三区视频观看| 你懂的网址亚洲精品在线观看| 亚洲va在线va天堂va国产| 人体艺术视频欧美日本| 一本久久精品| 你懂的网址亚洲精品在线观看| 最后的刺客免费高清国语| .国产精品久久| 大片免费播放器 马上看| 五月开心婷婷网| 久久韩国三级中文字幕| 女人久久www免费人成看片| 亚洲,一卡二卡三卡| 久久精品国产亚洲av涩爱| 欧美日韩视频高清一区二区三区二| 欧美日本视频| 久久影院123| 人人妻人人爽人人添夜夜欢视频 | 人妻系列 视频| 蜜臀久久99精品久久宅男| 久久人人爽人人片av| 国产黄色免费在线视频| 韩国av在线不卡| 自拍偷自拍亚洲精品老妇| 性色av一级| 少妇被粗大猛烈的视频| 国产欧美日韩一区二区三区在线 | 黄色欧美视频在线观看| 一边亲一边摸免费视频| 日韩一区二区视频免费看| 国产高清国产精品国产三级 | 91久久精品国产一区二区三区| 丝袜喷水一区| 欧美日韩视频精品一区| 亚洲欧美清纯卡通| 日本黄色日本黄色录像| 黑人猛操日本美女一级片| 国产乱人偷精品视频| 欧美日韩在线观看h| 丝袜脚勾引网站| 99精国产麻豆久久婷婷| 国精品久久久久久国模美| 18+在线观看网站| 最近最新中文字幕免费大全7| 香蕉精品网在线| 亚洲一区二区三区欧美精品| 一区二区三区免费毛片| 国产毛片在线视频| 亚洲内射少妇av| 又黄又爽又刺激的免费视频.| 在线观看一区二区三区| 免费在线观看成人毛片| 夫妻性生交免费视频一级片| 免费大片18禁| 97超碰精品成人国产| 国产男人的电影天堂91| 欧美成人午夜免费资源| 国产精品偷伦视频观看了| 我要看黄色一级片免费的| 日韩国内少妇激情av| 欧美另类一区| 在线亚洲精品国产二区图片欧美 | 亚洲欧洲日产国产| 亚洲精品一区蜜桃| 国产 一区精品| 欧美精品亚洲一区二区| 免费观看在线日韩| 欧美zozozo另类| 91狼人影院| 高清av免费在线| 丝袜喷水一区| 日韩制服骚丝袜av| 蜜桃亚洲精品一区二区三区| 午夜福利网站1000一区二区三区| 久久久久国产精品人妻一区二区| 自拍偷自拍亚洲精品老妇|