• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GLOBAL SMOOTH SOLUTIONS TO THE 1-D COMPRESSIBLE NAVIER-STOKES-KORTEWEG SYSTEM WITH LARGE INITIAL DATA

    2017-01-19 06:08:56CHENTingtingCHENZhichunCHENZhengzheng
    數(shù)學(xué)雜志 2017年1期
    關(guān)鍵詞:安徽大學(xué)初值毛細(xì)

    CHEN Ting-ting,CHEN Zhi-chun,CHEN Zheng-zheng

    (School of Mathematical Sciences,Anhui University,Hefei 230601,China )

    GLOBAL SMOOTH SOLUTIONS TO THE 1-D COMPRESSIBLE NAVIER-STOKES-KORTEWEG SYSTEM WITH LARGE INITIAL DATA

    CHEN Ting-ting,CHEN Zhi-chun,CHEN Zheng-zheng

    (School of Mathematical Sciences,Anhui University,Hefei 230601,China )

    This paper is concerned with the Cauchy problem of the one-dimensional isothermal compressible Navier-Stokes-Korteweg system when the viscosity coefficient and capillarity coefficient are general smooth functions of the density.By using the elementary energy method and Kanel’s technique[25],we obtain the global existence and time-asymptotic behavior of smooth non-vacuum solutions with large initial data,which improves the previous ones in the literature.

    compressible Navier-Stokes-Korteweg system;global existence;time-asymptotic behavior;large initial data

    1 Introduction

    This paper is concerned with the Cauchy problem of the one-dimensional isothermal compressible Navier-Stokes-Korteweg system with density-dependent viscosity coefficient and capillarity coefficient in the Eulerian coordinates

    with the initial data

    here t and x represent the time variable and the spatial variable,respectively,K is the Korteweg tensor given by

    The unknown functions ρ>0,u,P=P(ρ)denote the density,the velocity,and the pressure of the fluids respectively.μ=μ(ρ)>0 and κ=κ(ρ)>0 are the viscosity coefficient and the capillarity coefficient,respectively,and>0 is a given constant.Throughout this paper, we assume that

    System(1.1)can be used to model the motions of compressible isothermal viscous fluids with internal capillarity,see[1–3]for its derivations.Notice that when κ=0,system(1.1) is reduced to the compressible Navier-Stokes system.

    There were extensive studies on the mathematical aspects on the compressible Navier-Stokes-Korteweg system.For small initial data,we refer to[8,9,13–15,19–23]for the global existence and large time behavior of smooth solutions in Sobolev space,[5,7,11]for the global existence and uniqueness of strong solutions in Besov space,and[5,6]for the global existence of weak solutions near constant states in the whole space R2.

    For large initial data,Kotschote[12],Hattori and Li[10]proved the local existence of strong solutions.Bresch et al.[4]investigated the global existence of weak solutions for an isothermal fluid with the viscosity coefficientsμ(ρ)=ρ,λ(ρ)=0 and the capillarity coefficient κ(ρ)≡in a periodic domain Td(d=2,3),where>0 are positive constants. Later,such a result was improved by Haspot[6]to some more general density-dependent viscosity coefficients.Tsyganov[16]studied the global existence and time-asymptotic convergence of weak solutions for an isothermal compressible Navier-Stokes-Korteweg system with the viscosity coefficientμ(ρ)≡1 and the capillarity coefficient κ(ρ)=ρ-5on the interval[0,1].Charve and Haspot[17]showed the global existence of strong solutions to system (1.1)withμ(ρ)=ερ and κ(ρ)=ε2ρ-1.Recently,Germain and LeFloch[18]studied the global existence of weak solutions to the Cauchy problem(1.1)–(1.2)with general densitydependent viscosity and capillarity coefficients.Both the vacuum and non-vacuum weak solutions were obtained in[18].Moreover,Chen et al.[23,24]discussed the global existence and large time behavior of smooth and non-vacuum solutions to the Cauchy problem of system(1.1)with the viscosity and capillarity coefficients being some power functions of the density.

    However,few results were obtained for the global smooth,large solutions of the isothermal compressible Navier-Stokes-Korteweg system with general density-dependent viscosity coefficient and capillarity coefficient up to now.This paper is devoted to this problem,and we are concerned with the global existence and large time behavior of smooth,non-vacuum solutions to the Cauchy problems(1.1)–(1.2)when the the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are general smooth functions of the density ρ.

    The main result of this paper is stated as follows.

    Theorem 1.1Suppose the following conditions hold:

    (i)The initial data(ρ0(x)-,u0(x))∈H4(R)×H3(R),and there exist two positive constants m0,m1such that m0≤ρ0(x)≤m1for all x∈R.

    (ii)The smooth functionsμ(ρ)and κ(ρ)satisfyμ(ρ),κ(ρ)>0 for ρ>0,and one of the following two conditions hold:

    and the time-asymptotic behavior

    here C1is a positive constant depending only on m0,m1,and C2is a positive constant depending only on m0,m1,

    When the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are given by

    where α,β∈R are some constants,condition(ii)of Theorem 1.1 corresponds to

    while condition(iii)of Theorem 1.1 is equivalent to

    or

    Thus from Theorem 1.1,we have the following corollary.

    Corollary 1.1Let condition(i)of Theorem 1.1 holds.Suppose that the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are given by(1.7)and the constants α,β satisfy one of the following conditions:

    then the same conclusions of Theorem 1.1 hold.

    Remark 1.1Some remarks on Theorem 1.1 and Corollary 1.1 are given as follows:

    (1)Conditions(ii)and(iii)of Theorem 1.1 are used to deduce the positive lower and upper bounds of the density ρ(t,x),see Lemmas 2.3–2.5 for details.

    (2)In Theorem 1.1,the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are general smooth functions of ρ satisfying conditions(ii)and(iii)of Theorem 1.1,which are more general than those in[23,24],where only some power like density-dependent viscosity and capillarity coefficients are studied.

    On the other hand,Germain and LeFloch[18]also discussed the global existence of weak solutions away from vacuum for problems(1.1)–(1.2)withμ(ρ)=ραand κ(ρ)=ρβunder the condition that

    or

    which means that 0≤α<1.From condition(A)of Corollary 1.1,we see that α∈thus Corollary 1.1 also improves the results of[18]to the case α∈Moreover,case (B)of Corollary 1.1 is completely new compared to the results in[18,23,24].Thus in these sense,our main result Theorem 1.1 can be viewed as an extension of the works[18,23,24].

    Now we make some comments on the analysis of this paper.The proof of Theorem 1.1 is motivated by the previous works[18,23,24].When the viscosity coefficientμ(ρ) and the capillarity coefficient κ(ρ)are some power functions of the density,the authors in [23,24]studied the global existence and large time behavior of smooth solutions away from vacuum to the Cauchy problem of system(1.1)with large initial data in the Lagrangian coordinates.However,for the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ) being some general smooth functions of the density,it is much more easier for us to study such a problem in the Eulerian coordinates rather than the Lagrangian coordinates.To prove Theorem 1.1,we mainly use the method of Kanel[25]and the energy estimates.The key step is to derive the positive lower and upper bounds for the density ρ(t,x).First,due to effect of the Korteweg tensor,an estimate ofappears in the basic energy estimate(see Lemma 2.1).Based on this and a new inequality for the renormalized internal energy(see Lemma 2.2),the lower and upper bounds of ρ(t,x)for cases(ii)(a)of Theorem 1.1 can be derived easily by applying Kanel’s method[25](see Lemma 2.3).Second,we perform an uniform-in-time estimate onunder condition(iii)of Theorem 1.1(see Lemma 2.4).We remark that Lemma 2.4 is proved by using the approach of Kanel[25],rather than introducing the effective velocity as[4,17,18].Then by employing Kanel’s method[25]againand Lemmas 2.1,2.2 and 2.4,the lower and upper bounds of ρ(t,x)for the cases(ii)(b)of Theorem 1.1 follows immediately(see Lemma 2.5).Having obtained the lower and upper bounds on ρ(t,x),the higher order energy estimates of solutions to the Cauchy problem (1.1)–(1.2)can be deduced by using the lower order estimates and Gronwall’s inequality, and then Theorem 1.1 follows by the standard continuation argument.In the next section, we will give the proof of Theorem 1.1.

    NotationsThroughout this paper,C denotes some generic constant which may vary in different estimates.If the dependence needs to be explicitly pointed out,the notation C(·,···,·)or Ci(·,···,·)(i∈N)is used.f′(ρ)denotes the derivative of the function f(ρ) with respect to ρ.For function spaces,Lp(R)(1≤p≤+∞)is the standard Lebesgue space with the norm‖·‖Lp,and Hl(R)stands for the usual l-th order Sobolev space with its norm

    2 Proof of Theorem 1.1

    This section is devoted to proving Theorem 1.1.To do this,we seek the solutions of the Cauchy problems(1.1)–(1.2)in the following set of functions

    where M≥m>0 and T>0 are some positive constants.

    Under the assumptions of Theorem 1.1,we have the following local existence result.

    Proposition 2.1(Local existence)Under the assumptions of Theorem 1.1,there exists a sufficiently small positive constant t1depending only on m0,m1,such that the Cauchy problems(1.1)–(1.2)admits a unique smooth solution(ρ,u)(t,x)∈

    where b>1 is a positive constant depending only on m0,m1.

    The proof of Proposition 2.1 can be done by using the dual argument and iteration technique,which is similar to that of Theorem 1.1 in[10]and thus omitted here for brevity. Suppose that the local solution(ρ,u)(t,x)obtained in Proposition 2.1 has been extended to the time step t=T≥t1for some positive constant T>0.To prove Theorem 1.1,one needs only to show the following a priori estimates.

    Proposition 2.2(A priori estimates)Under the assumptions of Theorem 1.1,suppose that(ρ,u)(t,x)∈X(0,T;M0,M1)is a solution of the Cauchy problem(1.1)–(1.2)for somepositive constants T and M0,M1>0.Then there exist two positive constants C1and C2which are independent of T,M0,M1such that the following estimates hold:

    Proposition 2.2 can be obtained by a series of lemmas below.We first give the following key lemma.

    Lemma 2.1(Basic energy estimates)Under the assumptions of Proposition 2.2,it holds that

    for all t∈[0,T],where the functionis defined by

    ProofIn view of the continuity equation(1.1)1,we have

    On the other hand,by using(1.1)1again,the movement equation(1.1)2can be rewritten as

    Substituting(2.6)into(2.5),we get

    Here and hereafter,{···}xdenotes the terms which will disappear after integrating with respect to x.

    Moreover,it follows from(1.1)1that

    Combining(2.7)and(2.8),and integrating the resultant equation with respect to t and x over[0,t]×R,we can get(2.3).This completes the proof of Lemma 2.1.

    In order to apply Kanel’s method[25]to show the lower and upper bound of the density ρ(t,x),we need to establish the following lemma.

    Lemma 2.2There exists a uniform positive constant c0such that

    ProofUsing the L’Hospital rule,we obtain

    Consequently,there exist a sufficiently small constant δ and a large constantsuch that

    and c0=minwe have(2.9)holds.This completes the proof of Lemma 2.2.

    Based on Lemmas 2.1–2.2,we now show the lower and upper bounds of ρ(t,x)by using Kanel’s method[25].

    Lemma 2.3(Lower and upper bounds of ρ(t,x)for the cases(ii)(a)of Theorem 1.1)Under the assumptions of Proposition 2.2,if the capillarity coefficient κ(ρ)satisfies the condition(ii)(a)of Theorem 1.1,then there exists a positive constant C3depending only

    for all(t,x)∈[0,T]×R.

    ProofLet

    then under the condition(ii)(a)of Theorem 1.1,we have

    On the other hand,we deduce from Lemmas 2.1–2.2 that

    (2.13)thus follows from(2.14)and(2.15)immediately.This completes the proof of Lemma 2.3.

    Next,we give the estimate on

    Lemma 2.4Let condition(i)of Theorem 1.1 holds and

    Then if f(ρ)≤0,there exists a positive constant C4depending only on m0,m1and‖(ρ0-

    ProofFirst,by the continuity equation(1.1)1,we have

    where we have used the fact that

    Putting(2.17)into(2.6),and multiplying the resultant equation by

    A direct calculation yields that

    Combining(2.19)and(2.20),and integrating the resultant equation in t and x over[0,t]×R, we have

    where we have used the fact that

    By employing integrations by parts,we obtain

    Inserting(2.22)–(2.23)into(2.21),and using(2.3),we arrive at

    (2.24)together with the assumption that f(ρ)≤0 implies(2.16)immediately.This completes the proof of Lemma 2.4.

    Lemma 2.5Let conditions(i)and(ii)(b)of Theorem 1.1 hold and f(ρ)≤0,then there exists a positive constant C5depending only on m0,m1andthat

    for all(t,x)∈[0,T]×R.

    ProofSet

    then it follows from assumption(ii)(b)of Theorem 1.1 that

    On the other hand,Lemmas 2.1 and 2.4 imply that

    From(2.26)and(2.27),we have(2.25)at once.This completes the proof Lemma 2.5.

    As a consequence of Lemmas 2.3–2.5,we have

    Corollary 2.1Under the assumptions of Lemmas 2.3–2.5,it holds that for 0≤t≤T,

    where C6>0 is a constant depending only on m0,m1and

    The next lemma gives an estimate on

    Lemma 2.6There exists a positive constant C7depending only on m0,m1and‖(ρ0-such that for 0≤t≤T,

    ProofWe derive from Lemmas 2.3–2.5 that

    On the other hand,Lemmas 2.3–2.5 also imply that

    From the Cauchy equality and(2.30),we infer that

    Then(2.29)follows from(2.31)and(2.32)immediately.This completes the proof of Lemma 2.6.

    For the estimate on‖ux(t)‖2,we have

    Lemma 2.7There exists a positive constant C8depending only on m0,m1and‖(ρ0-such that for 0≤t≤T,

    ProofMultiplying(2.6)by-uxx,and using the continuity equation(1.1)1,we have

    Integrating(2.34)in t and x over[0,t]×R gives

    where

    It follows from the Cauchy inequality,the Sobolev inequality,the Young inequality,

    Lemmas 2.3 and 2.5,and Corollary 2.1 that

    Putting(2.36)–(2.37)into(2.35),and using Growwall’s equality,we obtain(2.33).This completes the proof of Lemma 2.7.

    Finally,we estimate the term

    Lemma 2.8There exists a positive constant C9depending only on m0,m1,and‖u0‖1such that for t∈[0,T],

    ProofDifferentiating(1.1)2once with respect to x,then multiplying the resultant equation by ρxx,and using equation(1.1)1,we have

    Integrating(2.39)with respect to t and x over[0,t]×R,using the Cauchy inequality,the Sobolev inequality,Lemmas 2.3–2.7 and Corollary 2.1,we can get Lemma 2.8,the proof is similar to Lemma 2.7 and thus omitted here.This completes the proof of Lemma 2.8.

    It follows from Corollary 2.1,and Lemmas 2.6–2.8 that there exists a positive constant C10depending only on m0,m1,and‖u0‖1such that for 0≤t≤T,

    Similarly,we can also obtain

    where C11is a positive constant depending only on m0,m1,

    Proof of Proposition 2.2Proposition 2.2 follows from(2.40)and(2.41)immediately.

    Proof of Theorem 1.1By Propositions 2.1–2.2 and the standard continuity argument,we can extend the local-in-time smooth solution to be a global one(i.e.,T=+∞). Thus(1.4)and(1.5)follows from(2.1)and(2.2),respectively.Moreover,estimate(2.2)and system(1.1)imply that

    which implies that

    Furthermore,we deduce from(2.2),(2.43)and the Sobolev inequality that

    From(2.43)and(2.44),we have(1.6)at once.This completes the proof of Theorem 1.1.

    [1]Van der Waals J D.Thermodynamische theorie der Kapillaritt unter Voraussetzung stetiger Dichtenderung[J].Z.Phys.Chem.,1894,13:657–725.

    [2]Korteweg D J.Sur la forme que prennent lesquations des mouvement des fluids si l’on tient comple des forces capillaries par des variations de densit[J].Arch.Neerl.Sci.Exactes Nat.Ser.II,1901,6: 1–24.

    [3]Dunn J E,Serrin J.On the thermodynamics of interstital working[J].Arch.Rat.Mech.Anal.,1985, 88:95–133.

    [4]Bresch D,Desjardins B,Lin C K.On some compressible fluid models:Korteweg,lubrication and shallow water systems[J].Comm.Part.Diff.Equa.,2003,28:843–868.

    [5]Danchin R,Desjardins B.Existence of solutions for compressible fluid models of Korteweg type[J]. Ann.Inst.Henri PoincarAnal.Non.Linaire,2001,18:97–133.

    [6]Haspot B.Existence of global weak solution for compressible fluid models of Korteweg type[J].J. Math.Fluid Mech.,2011,13:223–249.

    [7]Haspot B.Existence of strong solutions for nonisothermal Korteweg system[J].Annales Math.Blaise Pascal,2009,16:431–481.

    [8]Hattori H,Li D.Golobal solutions of a high dimensional system for Korteweg materials[J].J.Math. Anal.Appl.,1996,198:84–97.

    [9]Hattori H,Li D.The existence of global solutions to a fluid dynamic model for materials for Korteweg type[J].J.Part.Diff.Equ.,1996,9:323–342.

    [10]Hattori H,Li D.Solutions for two dimensional system for materials of Korteweg type[J].SIAM J. Math.Anal.,1994,25:85–98.

    [11]Kotschote M.Existence and time-asymptotics of global strong solutions to dynamic Korteweg models[J].Indiana Univ.Math.J.,2014,63(1):21–51.

    [12]Kotschote M.Strong solutions for a compressible fluid model of Korteweg type[J].Ann.Inst.Henri PoincarAnal.Non.Linaire,2008,25:679–696.

    [13]Wang Y J,Tan Z.Optimal decay rates for the compressible fluid models of Korteweg type[J].J. Math.Anal.Appl.,2011,379:256–271.

    [14]Li Y P.Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force[J].J.Math.Anal.Appl.,2012,388:1218–1232.

    [15]Wang W J,Wang W K.Decay rate of the compressible Navier-Stokes-Korteweg equations with potential force[J].Discrete Contin.Dyn.Syst.,2015,35(1):513–536.

    [16]Tsyganov E.Global existence and asymptotic convergence of weak solutions for the one-dimensional Navier-Stokes equations with capillarity and nonmonotonic pressure[J].J.Diff.Equ.,2008,245: 3936–3955.

    [17]Charve F,Haspot B.Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system[J].SIMA J.Math.Anal.,2014,45(2):469–494.

    [18]Germain P,LeFloch P G.Finite energy method for compressible fluids:the Navier-Stokes-Korteweg model[J].Comm.Pure Appl.Math.,2016,69(1):3–61.

    [19]Chen Z Z.Asymptotic stability of strong rarefaction waves for the compressible fluid models of Korteweg type[J].J.Math.Anal.Appl.,2012,394:438–448.

    [20]Chen Z Z,Xiao Q H.Nonlinear stability of viscous contact wave for the one-dimensional compressible fluid models of Korteweg type[J].Math.Meth.Appl.Sci.,2013,36(17):2265–2279.

    [21]Chen Z Z,He L,Zhao H J.Nonlinear stability of traveling wave solutions for the compressible fluid models of Korteweg type[J].J.Math.Anal.Appl.,2015,422:1213–1234.

    [22]Chen Z Z,Zhao H J.Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system[J].J.Math.Pur.Appl.,2014,101:330–371.

    [23]Chen Z Z,Chai X J,Dong B Q,Zhao H J.Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data[J].J.Diff.Equ.,2015,259:4376–4411.

    [24]Chen Z Z.Large-time behavior of smooth solutions to the isothermal compressible fluid models of Korteweg type with large initial data[J].Nonl.Anal.,2016,144:139–156.

    [25]Kanel’Y.On a model system of equations of one-dimensional gas motion(in Russian)[J].Diff. Uravn.,1968,4:374–380.

    一維可壓縮Navier-Stokes-Korteweg方程組的大初值整體光滑解

    陳婷婷,陳志春,陳正爭

    (安徽大學(xué)數(shù)學(xué)科學(xué)學(xué)院,安徽合肥230601)

    本文研究了當(dāng)粘性系數(shù)和毛細(xì)系數(shù)是密度函數(shù)的一般光滑函數(shù)時,一維等溫的可壓縮Navier-Stokes-Korteweg方程的Cauchy問題.利用基本能量方法和Kanel的技巧,得到了大初值、非真空光滑解的整體存在性與時間漸近行為.本文結(jié)果推廣了已有文獻(xiàn)中的結(jié)論.

    可壓縮Navier-Stokes-Korteweg方程;整體存在性;時間漸近行為;大初值

    O175.29

    tion:35Q35;35L65;35B40

    A

    0255-7797(2017)01-0091-16

    ?Received date:2016-04-09Accepted date:2016-04-20

    Foundation item:Supported by National Natural Science Foundation of China(11426031)and Undergraduate Scientific Research Training Program of Anhui University(ZLTS2015141).

    Biography:Chen Tingting(1995–),female,born at Tongling,Anhui,undergraduate,major in partial differential equation.

    Chen Zhengzheng.

    猜你喜歡
    安徽大學(xué)初值毛細(xì)
    “毛細(xì)”政務(wù)號關(guān)停背后
    廉政瞭望(2024年5期)2024-05-26 13:21:07
    具非定常數(shù)初值的全變差方程解的漸近性
    多孔建筑材料毛細(xì)吸水系數(shù)連續(xù)測量的方法
    能源工程(2020年6期)2021-01-26 00:55:16
    一種適用于平動點(diǎn)周期軌道初值計算的簡化路徑搜索修正法
    讀《安徽大學(xué)藏戰(zhàn)國竹簡》(一)札記
    三維擬線性波方程的小初值光滑解
    秦曉玥作品
    出現(xiàn)憋喘 可能是毛細(xì)支氣管炎!
    媽媽寶寶(2017年3期)2017-02-21 01:22:16
    L'examen dans l'antiquitéet de nos jours
    高滲鹽水霧化吸入治療毛細(xì)支氣管炎的療效觀察
    亚洲情色 制服丝袜| 免费久久久久久久精品成人欧美视频 | 欧美少妇被猛烈插入视频| 亚州av有码| 免费人妻精品一区二区三区视频| 大码成人一级视频| 99re6热这里在线精品视频| 日韩一区二区视频免费看| 欧美精品高潮呻吟av久久| 亚洲精品中文字幕在线视频 | 九九爱精品视频在线观看| 国产亚洲一区二区精品| 国产精品伦人一区二区| 亚洲精品中文字幕在线视频 | 80岁老熟妇乱子伦牲交| 欧美日韩亚洲高清精品| 在现免费观看毛片| 国模一区二区三区四区视频| 9色porny在线观看| 激情五月婷婷亚洲| 国产亚洲欧美精品永久| 黑人高潮一二区| 久久国产乱子免费精品| 边亲边吃奶的免费视频| 岛国毛片在线播放| 99国产精品免费福利视频| 黄色配什么色好看| 亚洲欧美日韩东京热| 欧美高清成人免费视频www| 男人添女人高潮全过程视频| 日韩视频在线欧美| 久久狼人影院| 国产淫语在线视频| a级一级毛片免费在线观看| 男女无遮挡免费网站观看| 日本91视频免费播放| 乱码一卡2卡4卡精品| 涩涩av久久男人的天堂| 国产欧美日韩精品一区二区| h视频一区二区三区| 中文资源天堂在线| 亚洲无线观看免费| 久久亚洲国产成人精品v| 久久亚洲国产成人精品v| 亚洲久久久国产精品| 国产精品.久久久| 色网站视频免费| av.在线天堂| 久久99一区二区三区| 男女啪啪激烈高潮av片| 日韩一本色道免费dvd| 大码成人一级视频| 一区二区av电影网| 亚洲av.av天堂| 97超视频在线观看视频| 一边亲一边摸免费视频| 成人特级av手机在线观看| 大码成人一级视频| 亚洲av电影在线观看一区二区三区| 视频中文字幕在线观看| 亚洲欧美日韩卡通动漫| 国模一区二区三区四区视频| 大香蕉97超碰在线| 免费大片18禁| 亚洲精品国产色婷婷电影| 中文字幕av电影在线播放| 我要看黄色一级片免费的| 水蜜桃什么品种好| 久久久久久久大尺度免费视频| 欧美日韩亚洲高清精品| 欧美精品高潮呻吟av久久| 黄色欧美视频在线观看| 国产伦精品一区二区三区四那| 少妇被粗大的猛进出69影院 | 免费观看a级毛片全部| 国内揄拍国产精品人妻在线| 成人国产av品久久久| 国产精品女同一区二区软件| 精品少妇久久久久久888优播| 国产高清国产精品国产三级| 丰满迷人的少妇在线观看| 嫩草影院新地址| 王馨瑶露胸无遮挡在线观看| 最近手机中文字幕大全| 国产成人aa在线观看| 最近2019中文字幕mv第一页| 丝袜在线中文字幕| 久久久国产欧美日韩av| 亚洲性久久影院| 日韩熟女老妇一区二区性免费视频| 三级国产精品欧美在线观看| 亚洲精品视频女| 精品久久久久久久久亚洲| 精品久久国产蜜桃| 六月丁香七月| 狂野欧美激情性xxxx在线观看| 免费大片18禁| 国产精品久久久久久av不卡| 99久国产av精品国产电影| 在现免费观看毛片| 日韩 亚洲 欧美在线| 99热这里只有是精品在线观看| 欧美 日韩 精品 国产| 99热这里只有精品一区| 日本91视频免费播放| 在线播放无遮挡| 久久久国产欧美日韩av| 狂野欧美激情性bbbbbb| 亚洲婷婷狠狠爱综合网| 一级二级三级毛片免费看| 亚洲伊人久久精品综合| 国产女主播在线喷水免费视频网站| 国产毛片在线视频| 久久狼人影院| 另类精品久久| 午夜老司机福利剧场| 我要看日韩黄色一级片| 一区二区av电影网| 伊人亚洲综合成人网| av天堂中文字幕网| 欧美+日韩+精品| 成人美女网站在线观看视频| 三级国产精品片| 人妻人人澡人人爽人人| 99九九线精品视频在线观看视频| 国产欧美日韩综合在线一区二区 | 欧美区成人在线视频| 久久毛片免费看一区二区三区| 久久毛片免费看一区二区三区| 看免费成人av毛片| 高清黄色对白视频在线免费看 | 亚洲精品成人av观看孕妇| 成年av动漫网址| 80岁老熟妇乱子伦牲交| 看免费成人av毛片| 成人毛片60女人毛片免费| 亚洲天堂av无毛| 国产亚洲91精品色在线| 久久久久久久精品精品| 在线 av 中文字幕| 成人二区视频| 免费少妇av软件| 女人久久www免费人成看片| 久久99一区二区三区| 免费播放大片免费观看视频在线观看| 免费黄色在线免费观看| 久久久久国产精品人妻一区二区| 免费黄网站久久成人精品| 成人午夜精彩视频在线观看| 国产成人freesex在线| 老司机影院毛片| 黄片无遮挡物在线观看| av又黄又爽大尺度在线免费看| 欧美日韩视频高清一区二区三区二| 简卡轻食公司| 内地一区二区视频在线| 国产成人午夜福利电影在线观看| 色网站视频免费| 69精品国产乱码久久久| 亚洲av成人精品一二三区| 午夜久久久在线观看| 丰满少妇做爰视频| 亚洲av综合色区一区| kizo精华| 午夜福利网站1000一区二区三区| 又大又黄又爽视频免费| 国产高清国产精品国产三级| 国产精品久久久久成人av| 成人二区视频| 日韩视频在线欧美| av有码第一页| 一区二区三区精品91| 国产精品欧美亚洲77777| 亚洲,一卡二卡三卡| 简卡轻食公司| 91成人精品电影| h日本视频在线播放| 婷婷色麻豆天堂久久| 日韩三级伦理在线观看| 欧美日韩视频高清一区二区三区二| 久久久久网色| 国产在线一区二区三区精| 欧美人与善性xxx| 国产永久视频网站| 成人国产av品久久久| 最近中文字幕高清免费大全6| 曰老女人黄片| 又爽又黄a免费视频| 午夜福利,免费看| 91午夜精品亚洲一区二区三区| 七月丁香在线播放| 高清不卡的av网站| 亚洲av综合色区一区| 国产伦精品一区二区三区四那| 亚洲欧美一区二区三区黑人 | 久久免费观看电影| 伦精品一区二区三区| 日韩av不卡免费在线播放| 精品久久久久久电影网| 久久6这里有精品| 亚洲精品成人av观看孕妇| 大又大粗又爽又黄少妇毛片口| 黑丝袜美女国产一区| 欧美亚洲 丝袜 人妻 在线| 日韩中文字幕视频在线看片| 国模一区二区三区四区视频| 欧美成人精品欧美一级黄| 赤兔流量卡办理| 交换朋友夫妻互换小说| 十分钟在线观看高清视频www | 建设人人有责人人尽责人人享有的| 男女无遮挡免费网站观看| 全区人妻精品视频| 久久精品久久久久久噜噜老黄| 久久影院123| 免费黄色在线免费观看| 久久狼人影院| 免费观看在线日韩| 观看av在线不卡| 国产精品三级大全| 在现免费观看毛片| 黄色欧美视频在线观看| 插逼视频在线观看| 视频区图区小说| 久久久久久久精品精品| 国产69精品久久久久777片| 午夜免费观看性视频| 欧美日韩一区二区视频在线观看视频在线| 视频区图区小说| 免费观看无遮挡的男女| 中文字幕制服av| 成年人免费黄色播放视频 | 偷拍熟女少妇极品色| 青春草国产在线视频| 少妇的逼水好多| 久久99一区二区三区| 一本色道久久久久久精品综合| 最后的刺客免费高清国语| 欧美成人精品欧美一级黄| 久久av网站| 91aial.com中文字幕在线观看| 一级二级三级毛片免费看| 少妇熟女欧美另类| 欧美高清成人免费视频www| 日产精品乱码卡一卡2卡三| 搡老乐熟女国产| 三级国产精品片| 中国美白少妇内射xxxbb| 一级,二级,三级黄色视频| 多毛熟女@视频| 五月天丁香电影| 精品视频人人做人人爽| 人妻夜夜爽99麻豆av| 色哟哟·www| 国产成人aa在线观看| 欧美老熟妇乱子伦牲交| 亚洲欧美精品专区久久| 校园人妻丝袜中文字幕| 国产乱来视频区| 免费av不卡在线播放| a级毛片在线看网站| 美女大奶头黄色视频| 亚洲欧美精品专区久久| 少妇人妻一区二区三区视频| 精品久久久久久久久亚洲| 草草在线视频免费看| 免费不卡的大黄色大毛片视频在线观看| 国产一区亚洲一区在线观看| 国产精品免费大片| 中国国产av一级| 精品少妇久久久久久888优播| 精品少妇内射三级| 国产亚洲精品久久久com| 少妇 在线观看| 国产爽快片一区二区三区| 欧美一级a爱片免费观看看| 久久av网站| 性高湖久久久久久久久免费观看| .国产精品久久| 中文天堂在线官网| 亚洲av国产av综合av卡| 各种免费的搞黄视频| 精品人妻熟女av久视频| 人妻 亚洲 视频| 一区二区三区精品91| 天堂8中文在线网| 超碰97精品在线观看| 岛国毛片在线播放| 少妇丰满av| 国产成人a∨麻豆精品| 一个人免费看片子| 寂寞人妻少妇视频99o| 欧美精品国产亚洲| 欧美日韩av久久| 在线观看免费视频网站a站| 日韩人妻高清精品专区| 国产日韩一区二区三区精品不卡 | 国产精品女同一区二区软件| 如何舔出高潮| 五月开心婷婷网| 国产成人免费观看mmmm| 日本欧美国产在线视频| 在线观看一区二区三区激情| 国产免费一级a男人的天堂| av一本久久久久| 国产一级毛片在线| 久久久久久久久久人人人人人人| 成人国产av品久久久| 国产在线一区二区三区精| 九九在线视频观看精品| 十分钟在线观看高清视频www | 在线亚洲精品国产二区图片欧美 | 成人免费观看视频高清| 日本wwww免费看| 久久6这里有精品| 九九爱精品视频在线观看| 成人免费观看视频高清| 亚洲av.av天堂| a 毛片基地| 欧美激情国产日韩精品一区| 精品国产一区二区久久| 一区二区三区乱码不卡18| 亚洲第一av免费看| 日韩av在线免费看完整版不卡| 少妇的逼好多水| 国产免费视频播放在线视频| 国产精品久久久久久精品电影小说| 香蕉精品网在线| 国产成人午夜福利电影在线观看| 少妇高潮的动态图| 亚洲av欧美aⅴ国产| 看非洲黑人一级黄片| 多毛熟女@视频| 精品卡一卡二卡四卡免费| 99热6这里只有精品| 成年av动漫网址| 亚洲人成网站在线观看播放| 久久女婷五月综合色啪小说| 日日啪夜夜撸| 一本色道久久久久久精品综合| 国产精品一区二区在线不卡| 国模一区二区三区四区视频| 色视频www国产| 十八禁高潮呻吟视频 | 如日韩欧美国产精品一区二区三区 | 汤姆久久久久久久影院中文字幕| 哪个播放器可以免费观看大片| 精品午夜福利在线看| 久久 成人 亚洲| 一级黄片播放器| 久久久久久久国产电影| 黄色配什么色好看| 97超视频在线观看视频| 乱系列少妇在线播放| 人妻一区二区av| 视频区图区小说| 中文字幕精品免费在线观看视频 | 91在线精品国自产拍蜜月| 精品亚洲成国产av| 精品人妻偷拍中文字幕| 亚洲情色 制服丝袜| 日日啪夜夜爽| 22中文网久久字幕| 久久人人爽av亚洲精品天堂| 久久久久久久久久久丰满| 22中文网久久字幕| 精品少妇内射三级| 99久久精品一区二区三区| 国产极品粉嫩免费观看在线 | 国产男女内射视频| 久久久久久久久大av| 中文乱码字字幕精品一区二区三区| 国产伦理片在线播放av一区| 亚洲怡红院男人天堂| 黄色视频在线播放观看不卡| 九草在线视频观看| 国产精品三级大全| 内地一区二区视频在线| 蜜臀久久99精品久久宅男| 日韩亚洲欧美综合| 欧美激情国产日韩精品一区| 亚洲av福利一区| 男人狂女人下面高潮的视频| 亚洲精品aⅴ在线观看| 少妇裸体淫交视频免费看高清| 中文在线观看免费www的网站| 日韩av不卡免费在线播放| 国产高清有码在线观看视频| 免费少妇av软件| 久久99蜜桃精品久久| 能在线免费看毛片的网站| 免费看不卡的av| 精品久久久久久久久亚洲| 国产淫片久久久久久久久| 成年人免费黄色播放视频 | 99久久精品国产国产毛片| 国产伦在线观看视频一区| 国产精品国产三级国产av玫瑰| 天堂俺去俺来也www色官网| 九九在线视频观看精品| 免费av中文字幕在线| 亚洲国产成人一精品久久久| 久久人妻熟女aⅴ| 在线观看美女被高潮喷水网站| 又爽又黄a免费视频| 亚洲av国产av综合av卡| 插阴视频在线观看视频| 欧美老熟妇乱子伦牲交| 色吧在线观看| 丰满饥渴人妻一区二区三| 国产有黄有色有爽视频| 丰满迷人的少妇在线观看| av黄色大香蕉| 亚洲av中文av极速乱| 啦啦啦中文免费视频观看日本| 成人美女网站在线观看视频| 成人黄色视频免费在线看| 春色校园在线视频观看| 尾随美女入室| 丰满人妻一区二区三区视频av| 一级av片app| 男女免费视频国产| 激情五月婷婷亚洲| 国产精品久久久久久精品古装| 免费观看av网站的网址| 亚洲精品国产色婷婷电影| 精品99又大又爽又粗少妇毛片| 22中文网久久字幕| 五月天丁香电影| 免费观看的影片在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲精品亚洲一区二区| 久久青草综合色| av专区在线播放| 日韩中字成人| 国产日韩欧美视频二区| 亚洲中文av在线| 成人影院久久| 一个人免费看片子| 欧美日韩精品成人综合77777| 色婷婷久久久亚洲欧美| 久久鲁丝午夜福利片| 一级a做视频免费观看| 久久精品国产a三级三级三级| 亚洲国产精品一区二区三区在线| 国产成人a∨麻豆精品| 国产精品不卡视频一区二区| 大码成人一级视频| 午夜精品国产一区二区电影| 亚洲精品日韩在线中文字幕| 春色校园在线视频观看| 国产成人精品福利久久| 我要看日韩黄色一级片| 又黄又爽又刺激的免费视频.| 欧美日韩视频精品一区| 99久国产av精品国产电影| 女性生殖器流出的白浆| 91久久精品国产一区二区三区| 在线观看人妻少妇| 亚洲美女黄色视频免费看| 亚洲四区av| 国产黄片美女视频| 欧美性感艳星| 免费少妇av软件| 亚洲国产精品专区欧美| 女的被弄到高潮叫床怎么办| 国产一区二区在线观看av| 国产在视频线精品| 久久久久久久久久成人| 777米奇影视久久| 亚洲精品一区蜜桃| 五月伊人婷婷丁香| 韩国av在线不卡| 国产永久视频网站| 99九九在线精品视频 | 一区二区三区精品91| 精品一区二区三区视频在线| 三级经典国产精品| 天堂8中文在线网| 欧美老熟妇乱子伦牲交| 亚洲欧洲日产国产| videos熟女内射| 极品人妻少妇av视频| 久久久久久久大尺度免费视频| av在线观看视频网站免费| 曰老女人黄片| 国产成人精品无人区| 大香蕉97超碰在线| 亚洲av二区三区四区| 久久99热这里只频精品6学生| 91精品一卡2卡3卡4卡| 国产亚洲91精品色在线| 中文在线观看免费www的网站| 美女主播在线视频| 亚洲av综合色区一区| 免费高清在线观看视频在线观看| 人妻少妇偷人精品九色| 亚洲第一区二区三区不卡| 日韩欧美精品免费久久| 伦理电影大哥的女人| 日韩成人av中文字幕在线观看| 久久毛片免费看一区二区三区| 一级片'在线观看视频| 99热这里只有是精品50| 精品一区二区免费观看| 丝瓜视频免费看黄片| av播播在线观看一区| 日韩一区二区三区影片| 91午夜精品亚洲一区二区三区| 亚洲婷婷狠狠爱综合网| 欧美97在线视频| 国产午夜精品久久久久久一区二区三区| 国产黄片视频在线免费观看| 少妇精品久久久久久久| 最新的欧美精品一区二区| 好男人视频免费观看在线| 久久狼人影院| 少妇人妻一区二区三区视频| 亚洲欧美清纯卡通| 中国美白少妇内射xxxbb| 菩萨蛮人人尽说江南好唐韦庄| 丝袜脚勾引网站| 亚洲在久久综合| 黑人高潮一二区| 妹子高潮喷水视频| 熟女电影av网| 在线观看美女被高潮喷水网站| 国产色爽女视频免费观看| 免费人妻精品一区二区三区视频| 99九九在线精品视频 | 亚洲熟女精品中文字幕| 99久久精品国产国产毛片| 亚洲久久久国产精品| 777米奇影视久久| 在线亚洲精品国产二区图片欧美 | 亚洲,欧美,日韩| 又粗又硬又长又爽又黄的视频| 中文在线观看免费www的网站| 中国三级夫妇交换| 日本91视频免费播放| 国产精品国产三级国产av玫瑰| 在线观看人妻少妇| 日韩三级伦理在线观看| 欧美一级a爱片免费观看看| 高清av免费在线| 国产欧美日韩精品一区二区| 亚洲欧洲日产国产| 久久这里有精品视频免费| 欧美少妇被猛烈插入视频| 赤兔流量卡办理| av天堂久久9| 高清视频免费观看一区二区| 综合色丁香网| 在线精品无人区一区二区三| 一区二区三区四区激情视频| 人妻制服诱惑在线中文字幕| 卡戴珊不雅视频在线播放| 成人免费观看视频高清| 99久久综合免费| 亚洲电影在线观看av| 日本欧美国产在线视频| 高清黄色对白视频在线免费看 | 亚洲欧美一区二区三区黑人 | 高清毛片免费看| 日日撸夜夜添| 国产精品麻豆人妻色哟哟久久| 中文精品一卡2卡3卡4更新| 午夜免费观看性视频| 日韩强制内射视频| 人妻一区二区av| 久久国产亚洲av麻豆专区| 国产男女超爽视频在线观看| 亚洲综合精品二区| 日本黄大片高清| 狂野欧美白嫩少妇大欣赏| 三级国产精品欧美在线观看| 丰满少妇做爰视频| 内射极品少妇av片p| 国产精品人妻久久久影院| 久久99热6这里只有精品| 精品熟女少妇av免费看| 丰满迷人的少妇在线观看| 美女中出高潮动态图| av一本久久久久| 午夜免费观看性视频| 日日撸夜夜添| 欧美成人精品欧美一级黄| 国产极品天堂在线| 久久国内精品自在自线图片| 国产精品99久久久久久久久| 国产精品人妻久久久影院| 久久久欧美国产精品| 高清av免费在线| 亚洲精品一二三| 在线观看美女被高潮喷水网站| 五月开心婷婷网| 国模一区二区三区四区视频| 国产免费福利视频在线观看| 国产美女午夜福利| 国产午夜精品久久久久久一区二区三区| 久热久热在线精品观看| 久久精品久久久久久噜噜老黄| 纯流量卡能插随身wifi吗| 日本vs欧美在线观看视频 | 国产一区二区在线观看av| 蜜桃久久精品国产亚洲av| 九九久久精品国产亚洲av麻豆| 亚洲av成人精品一区久久| 国产亚洲91精品色在线| 在线播放无遮挡| 一二三四中文在线观看免费高清| 99视频精品全部免费 在线| 亚洲欧美中文字幕日韩二区| 街头女战士在线观看网站| 国产欧美日韩一区二区三区在线 |