• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Expression Plasticity of Hypoxia Related Genes in High-Altitude and Plains Nanorana parkeri Populations

    2016-09-28 06:55:21QiongZHANGXingzhiHANRobertKRAUSLeYANGLiqingFANYinziYEandYiTAO
    Asian Herpetological Research 2016年1期

    Qiong ZHANG, Xingzhi HAN, Robert H. S. KRAUS, Le YANG, Liqing FAN, Yinzi YEand Yi TAO

    1Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences,Beijing 100101, China

    2College of Life Sciences, Harbin Normal University, Harbin 150025, Heilongjiang, China

    3Department of Biology, University of Konstanz, 78457 Konstanz, Germany

    4Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, Radolfzell 78315, Germany

    5Tibet Plateau Institute of Biology, Beijing West Street 19, Tibet 850001, China

    6College of Agricultural and Animal Husbandry, Tibet University, Tibet 860000, China

    7College of Life Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China

    ?

    The Expression Plasticity of Hypoxia Related Genes in High-Altitude and Plains Nanorana parkeri Populations

    Qiong ZHANG1,*, Xingzhi HAN2, Robert H. S. KRAUS3,4, Le YANG5, Liqing FAN6, Yinzi YE7and Yi TAO1

    1Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences,Beijing 100101, China

    2College of Life Sciences, Harbin Normal University, Harbin 150025, Heilongjiang, China

    3Department of Biology, University of Konstanz, 78457 Konstanz, Germany

    4Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, Radolfzell 78315, Germany

    5Tibet Plateau Institute of Biology, Beijing West Street 19, Tibet 850001, China

    6College of Agricultural and Animal Husbandry, Tibet University, Tibet 860000, China

    7College of Life Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China

    For species that have a broad geographic distribution, adaptive variation may be attributable to gene expression plasticity. Nanorana parkeri is an anuran endemic to the southern Tibetan Plateau where it has an extensive altitudinal range (2850 to 5100 m asl). Low oxygen concentration is one of the main environmental characteristics of the Tibetan Plateau. Hypoxia-inducible factor α subunits (HIF-1α and HIF-2α, encoded by Endothelial PAS domain protein 1 (EPAS1)) and associated genes (e.g., vascular endothelial growth factor (VEGF) and Erythropoietin (EPO))play crucial roles in maintaining oxygen homeostasis. In this study, we compared the expression of HIF-1A, VEGF,EPAS1 and EPO mRNA between two populations of N. parkeri: one population inhabiting the native high altitudes, and the second living in, and being acclimated to, the lower plains (70 m asl). The expression of HIF-1A, VEGF and EPAS1 mRNA in the high altitude population were signifi cantly higher than in the acclimated population, whereas there was no signifi cant difference for EPO between two groups. Our results indicated that gene expression plasticity may make signifi cant contributions to local adaptation of species that have broad altitudinal distributions. In addition, we deepen our understanding of the adaptive potential of this species by evaluating the experiments in the scope of its evolutionary history.

    local adaptation, ectotherms, de-adaptation, plasticity, Qinghai-Tibetan plateau, amphibians

    1. Introduction

    Understanding population responses to rapid environmental changes is a research frontier. Organisms can adapt to environmental variation by phenotypic plasticity. Phenotypic plasticity is defi ned as the ability of a given genotype to produce different phenotypes in response to different environmental conditions (Agrawal, 2001). Itis a common phenomenon and occurs in all organisms from microbes to mammals. Exploring the genetic basis of phenotypic plasticity will help us to understand the adaptation and evolutionary responses of organisms. In theory, plasticity may be caused by up- or down-regulation of common developmental pathways, but also by environment-specifi c gene expression (Snell-Rood et al.,2011). The patterns associated with gene expression changes in plasticity might deepen our understanding of the evolution of stress resistance (DeWitt et al., 1998).

    For example, hypoxia is one of the main environment characteristics of a mountain range's plateau area. Hypoxic condition is hostile to the heart because it affectscardiac function severely (Zhou et al., 2012). Native organisms with long-term adaptation to high altitude environments have evolved a set of specific phenotypic traits to survive this harsh environment. For example, the hypoxia-inducible factor (HIF) pathway is induced by the hypoxic environment and it can protect the organisms from detrimental effects of hypoxia. HIFs are composed of a labile hypoxia-regulated α subunit, so called HIF-1α, -2α or -3α, and a constitutive β subunit (Wenger and Gassmann, 1997). The HIF α subunits are functional parts, mediating many genes involved in erythropoiesis,angiogenesis, autophagy, and energy metabolism(William and Peter, 2008). HIF-1α and -2α mediate several genes, for example, transcription of vascular endothelial growth factor (VEGF) (Forsythe et al.,1996), which is a major mediator of vasculogenesis and angiogenesis and protects endothelial cells from undergoing apoptosis (Nor et al., 1999); HIF-2α is encoded by EPAS1, which mediates hypoxia-induced expression of the erythropoietin (EPO) gene (Kapitsinou et al., 2010). VEGF and EPO are of particular importance because they play major roles in promoting O2delivery and metabolic adaptation to O2deprivation in mammals (Ahmad et al., 2013; Bigham et al.,2010; Espinoza et al., 2014; Li et al., 2009, 2013; Nor et al., 1999; Simonson et al., 2012; Wang et al., 2006; Yi et al., 2010; Zhao et al., 2004).

    However, recent studies have shown that when organisms native to high altitudes were exposed to sea level oxygen conditions, 50%-80% ( Gao, 2005)showed a series of clinical symptoms including dizziness,palpitation, hypersomnia, malaise, chest tightening,precordial ache, arrhythmia, hypophrenia; some show abnormal readings on physiological parameters for heart, lung and blood, which continues to drop even after reaching normal plain level, i.e., overcompensated;a few individuals still present symptoms including hypoproteinemia, oligocardia, decreased cardiac function and pulmonary hypertension after two years of continuous stay in the plains; in some cases, this may last for a few years, and in the most severe cases the individuals were forced to return to high altitude (Gao, 2005; Zhang et al.,1996). We refer to all the above pathological features as symptoms of “high altitude de-adaptation reaction”or “high altitude de-adaptation syndrome” (Gao, 2005;Zhang et al., 1996). High altitude acclimation and adaptation mechanisms have been well described,however, high altitude de-adaptation mechanisms are studied more rarely.

    Compared with endothermic animals (e.g., most bird and mammals), amphibians are tolerant of variable oxygen availability. For example, a frog's anoxia tolerance is in between the anoxia sensitivity of mammals and anoxia tolerance of turtles and carp. Ranids survive a few days of anoxia at low temperatures and approximately 3 h of anoxia at room temperature (Stewart et al. 2004).

    Nanorana parkeri is an anuran endemic to the southern Tibetan plateau, which is the highest plateau in the world(at greater than 4000 m a.s.l.); and low atmospheric oxygen pressure (about 40% lower than at sea level) is one of its main environmental characteristics. N. parkeri distributes across a narrow latitudinal (28 to 31°N) but extensive altitudinal range (2850 to 5100 m a.s.l.).

    In this study, to further understand de-adaptation of frogs, we transferred the high altitude N. parkeri population to the plains (only 70 m a.s.l.), and compared the expression of four crucial genes of the HIF pathway(HIF-1A, VEGF, EPAS1 and EPO) in N. parkeri in heart tissues between a high altitude native population and the population housed at only 70 m a.s.l. in the laboratory in Beijing. More specifically, we asked (1) whether N. parkeri will be subjected to a high altitude de-adaptation reaction when they are transferred to the plain? (2)What is the genetic mechanism involved in N. parkeri phenotypic plasticity (local adaptation) in the plain?

    2. Materials and Methods

    2.1 Sample preparation One high altitude native N. parkeri population (six males and five females) was sampled from Mainling (29.31°N, 94.37°E; 4312 m a.s.l.), in Nyingtri county, Tibet, in June 2014 (Table 1). Animals were killed by breaking their spine immediately upon capture to harvest the heart. Tissues preserved in RNA holder (TransGen Biotech Co., Ltd., Beijing, stored at room temperature), were brought to our laboratory in Beijing and used for RNA extraction.

    Another population (12 males and 12 females) was sampled from Damshung (30.27°N, 91.04°E; 4500 m a.s.l.), Lhasa, Tibet in May 2013. The population was transferred to the lab in Beijing (Institute of Zoology,Chinese Academy of Sciences, Beijing; 70 m a.s.l.)and raised in the lab. Eight frogs were raised together in three 65×35×40 cm3plastic boxes, whereby in each box four males were housed with four females. The density is similar to that of some wild population in breeding season at high altitude (pers. comm. Liqing Fan,associate professor in College of Agricultural and Animal Husbandry, Tibet University). The boxes were placed outside in a garden area. Window nets covered the boxesto ensure ventilation. In order to imitate the frogs' natural habitat, grass, mud and shelter were placed in each box(Figure 1), and the water in each box was replaced every three days. We fed crickets and mealworms to the frogs once a day, the amount of food given to each frog was eight 1.5 cm long crickets and ten 1.5 cm long mealworms. At the end of October of 2013, hibernation began and lasted until March 2014. During hibernation, 10 cm of soil layer was added to cover the bottom of each box, and 5 cm water layer was above the soil layer. The frogs stayed in the bottom of the soil layer, then the boxes were put in the incubator under 6°C (Li, 2014). Water levels were replenished every two weeks to avoid water loss. The acclimation lasted for one year. RNA extraction from the same tissue and with the same methods as for the high altitude native population took place in June of 2014. During the raising process, we recorded the exact time of starting to accept food, the first embracing behavior occurrence and going into hibernation of each frog.

    Table 1 Samples information.

    All procedures involved in the handling and care of animals were in accordance with the China Practice for the Care and Use of Laboratory Animals and were approved by China Zoological Society.

    2.2 RNA extraction and primer preparation Total RNA was extracted and purified from N. parkeri heart using TRIZOL reagent (Invitrogen). The concentrations of RNA samples were quantifi ed with a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific Inc., DE/ USA) for further analyses.

    We obtained HIF-1A, VEGF, EPAS1 and EPO gene sequences according to the whole-genome sequence of N. parkeri (Sun et al., 2014) and homologous sequences of Human (Homo sapiens), yak (Bos grunniens), common frog (Rana temproraria), rainbow trout (Oncorhynchus mykiss), African clawed frog (Xenopus laevis) and tropicalis frog (Xenopus tropicalis) from GenBank(Benson et al., 2011). The designed PCR primers are shown in Table 2. All of the primers were produced by Shanghai Biotechnology Corporation (Shanghai, China).

    2.3 RT-PCR Reverse-transcription polymerase chain reaction (RT-PCR) was performed with the Access RTPCR System (Promega) according to the manual. A total of 0.6 μg RNA isolated from N. parkeri heart for each population from each of five individuals were pooled into a total aliquot of 3 μg and reverse transcribed for 60 min at 42°C and for 10 min at 75°C with M-MLV reverse transcriptase. RT-PCRs were performed by using SYBR green PCR Master Mix (Applied Biosystems) in a 10 μl total volume, including 5 μl premix, 2 μl 1 μM each primer and 1 μl cDNA template to quantify the expression of HIF-1A, VEGF, EPAS1 and EPO mRNA. The amplification was performed for 40 cycles at thefollowing cycle conditions: 95°C for 10 s (denaturation),56°C for 10 s (annealing) and 72°C for 20 s (extension). Each reaction was performed in triplicate. To compare among groups, mRNA levels of target genes were measured as relative expression using 2-△△CTvalues and normalized to β-Actin generated from the same sample(Livak and Schmittgen, 2001).

    Figure 1 Nanorana parkeri habitat. A. natural habitat in Tibet; B. artifi cial habitat in laboratory in Beijing.

    2.4 Statistical analysis of data Results were presented as mean ± S.E. per group. The mean derived from three replicates, but not from the fi ve individuals, because the tissues from fi ve individuals were mixed as one sample. Group means were compared by an independent-sample t test. A value of P < 0.05 was considered statistically signifi cant (SPSS ver. 17.0).

    3. Results

    3.1 Behavioral observation of the acclimated population The frogs immediately started with food intake when they were transferred to the laboratory in Beijing. During the natural breeding season, thelaboratory frogs engaged in typical breeding behavior frequently, but did not produce eggs, eventually. The first embracing behavior was observed on the third day after they were transferred to the lab. At the beginning of October, the laboratory frogs went into hibernation gradually. This happened at a similar time compared to the wild (Table 3).

    Table 2 Primer details for RT-PCR.

    Table 3 Behavioral performance of the acclimated N. parkeri population in the laboratory in Beijing.

    Figure 2 Expression of each gene's mRNA in the high altitude native group and the acclimated group. Expression levels were normalized to β-actin mRNA levels. Representative results from three independent experiments in triplicate on the same mRNA of different individuals are presented as means ± standard errors. (A) HIF-1A; (B) VEGF; (C) EPAS1; (D) EPO.

    3.2 mRNA expression of the acclimated population in comparison with the high altitude native population The gene expression levels of HIF-1A, VEGF and EPAS1 mRNA of the high altitude native population were signifi cantly higher than in the acclimated population (P< 0.05, Figure 2A, B and C, Table 4), but not the levels of EPO that did not differ signifi cantly between the high altitude group and the acclimated group (Figure 2D).

    4. Discussion

    In our study, we observed potential gene expression acclimation of HIF-1A, VEGF and EPAS1, but not for EPO. It seems that the EPO response to change of environment is either absent, or not very pronounced. A similar result was found in previous studies (Robach et al., 2004); such as when the hypoxic stimulus persists,EPO increased during the first days (about 1 week),then progressively declined. In our study, we find no signifi cant EPO response and the reason for a lack of an EPO response in this case still remains unclear (Robach et al., 2004).

    Overall, we here report on the general lack of the high altitude de-adaptation response. These results indicate that the frogs successfully adapted their metabolism to the sea-level altitude environment. A similar study on deer mice (Peromyscus maniculatus) which distribute from highland (4350 m) to lowland (430 m) areas elucidated the role of regulatory plasticity in evolutionary adaptation to hypoxic cold-stress (Cheviron et al. 2013). Another study of a broadly distributed Andean bird species(Zonotrichia capensis) also documented a large degree of transcriptomic plasticity in skeletal muscle in response to changes in elevation (Cheviron et al., 2008). Furthermore,Cheviron et al. (2012) suggested that the elevated thermogenic capacities of highland mice were largely attributable to changes in gene expression plasticity. Together, these studies suggest that regulatory plasticity,and not longer-term natural selection for specifi c alleles at the actual genes, may make significant contributions to the niche breadth of species that have broad altitudinal distributions.

    In addition, the evolutionary history of N. parkeri illustrates the adaptation potential of this species to the lowland environment. N. parkeri belongs to the subgenus Nanorana. The split of the subgenera Nanorana and Paa took place about 9 Mya, which is compatible with the geological hypothesis that the rapid uplift of Tibet took place about 8 Mya (Harrison et al., 1992; Molnar et al., 1993; Zhisheng et al., 2001). Most members of the subgenus Paa are distributed below 2500 m a.s.l.. Therefore, our result suggests that species formation may be associated with active orogeny within Tibet. All three species of the subgenus Nanorana dwell at altitudes from nearly 3000 m up to 4700 m a.s.l.. Members of this subgenus seem to have adapted progressively as the entire Tibetan plateau experienced significant increases in altitude to at least the 3000 m level (Che et al., 2010). Our results are compatible with the notion that although the species is today a high altitude native, it originated from the plain species, and it still has the ability to adapt to the lowland environment.

    Plasticity might allow a population to survive long enough in a new environment for existing genetic variation, in combination with mutation and/or recombination, to respond to local selection conditions(Johansson et al., 2013). In our study, we observed phenotypic plasticity mediated by gene expression plasticity. To test whether genetic accommodation has occurred, we need to study genetic variation at the specifi c genes in the future. In addition, with today's technology,creating whole transcriptomes becomes affordable and might allow for a fresh look without being biased towards knowledge about metabolic pathways in other systems. Therefore, transcriptomic analysis by means of RNA sequencing may in future help us to identify currently unknown pathways that are specifi c to the Tibetan frog.

    Table 4 The results of independent samples test for each gene.

    Acknowledgements Our research was supported by National Natural Science Foundation of China (No. 31471994). The Samples were analyzed at Key laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences.

    References

    Agrawal A. A. 2001. Phenotypic plasticity in the interactions and evolution of species. Science, 294:321-326

    Ahmad Y., Sharma N. K., Garg I., Ahmad M. F., Sharma M.,Bhargava K. 2013. An Insight into the Changes in human plasma proteome on adaptation to hypobaric hypoxia. PLoS ONE, 8: e67548. DOI: 10.1371/journal.pone.0067548

    Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J.,Sayers E. W. 2011. GenBank. Nucleic Acids Res, 39: D32-D37

    Bigham A., Bauchet M., Pinto D., Mao X., Akey J. M., Mei R.,Scherer S. W., Julian C. G., Wilson M. J., López Herráez D.,Brutsaert T., Parra E. J., Moore L. G., Shriver M. D. 2010. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet, 6:e1001116. DOI: 10.1371/journal.pgen.1001116

    Che J., Zhou W. W., Hu J. S., Yan F., Papenfuss T. J., Wake D. B., Zhang Y. P. 2010. Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia. Proc Natl Acad Sci U S A, 107: 13765-13770

    Cheviron Z. A., Bachman G. C., Connaty A., Mcclelland G. B.,Storz J. F. 2012. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice. Proc. Natl. Acad. Sci. USA, 109: 8635-8640

    Cheviron Z. A., Connaty A. D., McClelland G. B., Storz J. F. 2013. Functional genomics of adaptation to hypoxic coldstress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance. Evolution, 68-1: 48-62

    Cheviron Z. A., Whitehead A., Brumfield R. T. 2008. Transcriptomic variation and plasticity in Rufous-collared Sparrows (Zonotrichia capensis) along an elevation gradient. Mol Ecol,17: 4556-4569

    Dewitt T. J., Sih A., Wilson D. S. 1998. Cost and limits of phenotypic plasticity. Trends Ecol Evol, 13:77-81

    Espinoza J. R., Alvarez G., León-Velarde F., Preciado H. F. J., Macarlupu J., Rivera-Ch M., Rodriguez J., Favier J.,Gimenez-Roqueplo A., Richalet J. 2014. Vascular Endothelial Growth Factor-A is associated with chronic mountain sickness in the Andean population. High Alt Med Biol, 15:146-154

    Forsythe J. A., Jiang B. H., Iyer N. V., Agani F., Leung S. W.,Koos R. D., Semenza G. L. 1996. Activation of vascular endothelial growth factor gene transcription by hypoxiainducible factor 1. Mol Cell Biol, 16: 4604-4613

    Gao Y. Q. 2005. High altitude military medicine. Chongqing:Chongqing Publishing House. P.237-238

    Harrison T. M., Copeland P., Kidd W. S. F., Yin A. 1992. Raising Tibet. Science, 255: 1663-1670

    Johansson F., Veldhoen N., Lind M., Helbing C. C. 2013. Phenotypic plasticity in the hepatic transcriptome of European common frog (Rana temporaria): the interplay between environmental induction and geographical lineage on developmental response. Mol Ecol, 22: 5608-5623

    Kapitsinou P. P., Liu Q., Unger T. L. 2010. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood, 116: 3039-3048

    Li H., Guo S., Ren Y., Wang D., Yu H., Li W., Zhao X., Chang Z. 2013. VEGF189 expression is highly related to adaptation of the plateau pika (Ochotona curzoniae) inhabiting high altitudes. High Alt Med Biol, 14: 395-404

    Li H., Ren Y., Guo S., Cheng L., Wang D., Yang J., Chang Z.,Zhao X. 2009. The protein level of hypoxia-inducible factor-1α is increased in the plateau pika (Ochotona curzoniae) inhabiting high altitudes. J Exp Zool, 311A: 134-141

    Li L. 2014. Three factors impacting the hibernation of bullfrog. Brainman of Farmhouse, 2: 22 (in chinese)

    Livak K. J., Schmittgen T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CTmethod. Methods, 25:402-408 Doi: 10.1006/meth.2001.1262.

    Molnar P., England P., Martiod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon development. Rev Geophys, 34: 357-396

    Nor J.E., Christensen J., Mooney D. J., Polverini P. J. 1999. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol, 154:375-384

    Robach P., Fulla Y., Westerterp K. R., Richalet J. P. 2004. Comparative response of EPO and soluble transferring receptor at high altitude. Med Sci Sports Exerc, 36: 1493-1498

    Simonson T. S., McClain D. A., Jorde L. B., Prchal J. T. 2012. Genetic determinants of Tibetan high-altitude adaptation. Hum Genet, 131: 527-533

    Snell-Rood E. C. 2012. Selective processes in development:implications for the costs and benefi ts of phenotypic plasticity. Integr Comp Biol, 52: 31-42

    Stewart E. R., Reese S. A., Ultsh G. R. 2004. The physiology of hibernation in Canadian leopard frogs (Rana pipiens) and bullfrogs (Rana catesbeiana). Physio Biochem Zool, 77: 65-73

    Sun Y. B., Xiong Z. J., Xiang X. Y., Liu S. P., Zhou W. W., Tu X. L., Zhong L., Wang L., Wu D. D., Zhang B. L., Zhu C. L., Yang M. M., Chen H. M., Li F., Zhou L., Feng S. H.,Huang C., Zhang G. J., Irwin D., Hillis D. M., Murphy R. W., Yang H. M., Che J., Wang J., Zhang Y. P. 2014. Wholegenome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proc Natl Acad SciUSA, 112: E1257-E1262

    Wenger R. H., Gassmann M. 1997. Oxygen(es) and the hypoxiainducible factor-1. Biol Chem, 378: 609-616

    William G. K., Peter J. R. 2008. Oxygen sensing by metazoans:the central role of the HIF hydroxylase pathway. Mol Cell, 30:393-402

    Yi X., Liang Y., Sanchez E. H., Jin X., Cuo Z. X. P., Pool J. E.,Xu X., Jiang H., Vinckenbosch N., Korneliussen T. S., Zheng H., Liu T., He W., Li K., Luo R., Nie X., Wu H., Zhao M., Cao H., Zou J., Shan Y., Li S., Yang Q., Asan Ni P., Tian G., Xu J., Liu X., Jiang T., Wu R., Zhou G., Tang M., Qin J., Wang T., Feng S., Li G., Huasang Luosang J., Wang W., Chen F.,Wang Y., Zheng X., Li Z., Bianba Z., Yang G., Wang X.,Tang S., Gao G., Chen Y., Luo Z., Gusang L., Cao Z., Zhang Q., Ouyang W., Ren X., Liang H., Zheng H., Huang Y., Li J.,Bolund L., Kristiansen K., Li Y., Zhang Y., Zhang X., Li R.,Li S., Yang H., Nielsen R., Wang J. 2010. Sequencing of 50 human exomes reveals adaptation to high altitude. Science, 329:75-78

    Zhao T. B., Ning H. X., Zhu S. S., Sun P., Xu S. X., Chang Z. J.,Zhao X. Q. 2004. Cloning of hypoxia-inducible factor 1α cDNA from a high hypoxia tolerant mammal-plateau pika (Ochotona curzoniae). Biochem Biophys Res Commun, 316: 565-572

    Zhang Y. B., Wang Y., Liu X. L., Fen G. H., Zhao D. Y. 1996. People and high altitude. Xining: Qinghai People's Publishing House. P. 297-319

    Zhisheng A., Kutzbach J. E., Prell W. L., Porter S. C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411: 62-66

    Zhou Q., Yang S., Luo Y., Qi Y., Yan Z., Shi Z., Fan Y. 2012. A Randomly-controlled study on the cardiac function at the early stage of return to the plains after short-term exposure to high altitude. PLoS ONE, 7: e31097. DOI: 10.1371/journal. pone.0031097

    *

    Dr. Qiong ZHANG, from Institute of Zoology,Chinese Academy of Sciences, Beijing, China, with her research focusing on the molecular ecology and adaptive evolution of amphibian. E-mail: zhangqiong@ioz.ac.cn

    25 August 2015 Accepted: 1 December 2015

    欧美+日韩+精品| 在线观看66精品国产| 在线播放无遮挡| 亚洲美女搞黄在线观看 | av视频在线观看入口| 毛片一级片免费看久久久久 | 日韩亚洲欧美综合| 51国产日韩欧美| 一级av片app| 亚洲黑人精品在线| 日韩强制内射视频| 亚洲熟妇中文字幕五十中出| 成人美女网站在线观看视频| 亚洲欧美清纯卡通| 亚洲欧美清纯卡通| 欧美色欧美亚洲另类二区| 在线观看午夜福利视频| 免费高清视频大片| or卡值多少钱| 国产黄色小视频在线观看| 亚洲精品影视一区二区三区av| 午夜福利视频1000在线观看| 中文字幕精品亚洲无线码一区| 一本一本综合久久| 久久精品国产鲁丝片午夜精品 | 搡老岳熟女国产| 18禁在线播放成人免费| 欧美极品一区二区三区四区| 成人欧美大片| 最好的美女福利视频网| 少妇丰满av| 97碰自拍视频| 日韩 亚洲 欧美在线| 99riav亚洲国产免费| 国产精品美女特级片免费视频播放器| www.www免费av| a级毛片免费高清观看在线播放| 一夜夜www| www.www免费av| 少妇人妻精品综合一区二区 | 亚洲中文字幕日韩| 久久欧美精品欧美久久欧美| 97人妻精品一区二区三区麻豆| 香蕉av资源在线| 亚洲无线在线观看| 亚洲黑人精品在线| 国内久久婷婷六月综合欲色啪| 国产黄片美女视频| 久久久久久久久久黄片| 久99久视频精品免费| 联通29元200g的流量卡| av在线观看视频网站免费| a级毛片a级免费在线| 可以在线观看的亚洲视频| 亚洲在线自拍视频| 亚洲精品在线观看二区| 日本a在线网址| 特大巨黑吊av在线直播| 一个人看的www免费观看视频| 3wmmmm亚洲av在线观看| 桃红色精品国产亚洲av| 成人一区二区视频在线观看| 嫩草影视91久久| 丰满乱子伦码专区| 特大巨黑吊av在线直播| 亚洲精品一卡2卡三卡4卡5卡| 一区福利在线观看| 俺也久久电影网| 国产在线精品亚洲第一网站| 午夜福利在线观看免费完整高清在 | 黄色欧美视频在线观看| 亚洲av中文av极速乱 | 国产毛片a区久久久久| 3wmmmm亚洲av在线观看| 高清毛片免费观看视频网站| 窝窝影院91人妻| 欧美+亚洲+日韩+国产| 我要看日韩黄色一级片| 欧美另类亚洲清纯唯美| 国产午夜福利久久久久久| 国产精品一区二区三区四区久久| 三级毛片av免费| 色综合婷婷激情| 最好的美女福利视频网| 欧美zozozo另类| 亚洲男人的天堂狠狠| 成年版毛片免费区| 国产男人的电影天堂91| 麻豆成人午夜福利视频| 91狼人影院| 亚洲国产精品sss在线观看| 国产高清有码在线观看视频| av黄色大香蕉| 欧美日韩黄片免| 男女边吃奶边做爰视频| 91精品国产九色| 黄色一级大片看看| 国产高清视频在线观看网站| 热99re8久久精品国产| 国产亚洲精品av在线| 午夜福利18| 搡老妇女老女人老熟妇| 午夜久久久久精精品| 日本黄色视频三级网站网址| or卡值多少钱| 在线播放国产精品三级| 欧美日韩综合久久久久久 | 亚洲图色成人| 动漫黄色视频在线观看| 亚洲精品粉嫩美女一区| 成熟少妇高潮喷水视频| 亚洲精品一卡2卡三卡4卡5卡| 香蕉av资源在线| 真人一进一出gif抽搐免费| 欧美最黄视频在线播放免费| 2021天堂中文幕一二区在线观| 少妇裸体淫交视频免费看高清| 老司机福利观看| 黄色日韩在线| 久久久久久久午夜电影| 校园春色视频在线观看| 精品一区二区三区人妻视频| 偷拍熟女少妇极品色| 婷婷丁香在线五月| 亚洲一区二区三区色噜噜| 成人特级av手机在线观看| 99热这里只有是精品在线观看| 欧美日韩瑟瑟在线播放| 久久久久久伊人网av| 免费搜索国产男女视频| 国模一区二区三区四区视频| 日韩国内少妇激情av| 国产免费男女视频| 精品人妻偷拍中文字幕| www.色视频.com| 人人妻人人澡欧美一区二区| 国产精品免费一区二区三区在线| 欧美成人性av电影在线观看| 在线免费观看不下载黄p国产 | 国内少妇人妻偷人精品xxx网站| 亚洲成人中文字幕在线播放| 变态另类丝袜制服| 最新在线观看一区二区三区| 熟女电影av网| 美女xxoo啪啪120秒动态图| 国产精品久久久久久久久免| 亚洲第一区二区三区不卡| 哪里可以看免费的av片| 国产单亲对白刺激| 国产免费一级a男人的天堂| 国产精品爽爽va在线观看网站| 成人鲁丝片一二三区免费| 国产白丝娇喘喷水9色精品| 88av欧美| 免费看日本二区| 又紧又爽又黄一区二区| 国产一区二区在线av高清观看| 成年免费大片在线观看| 久久香蕉精品热| 国产亚洲91精品色在线| 极品教师在线视频| 99视频精品全部免费 在线| 少妇的逼好多水| 在线看三级毛片| 色综合色国产| 欧美日韩中文字幕国产精品一区二区三区| 人妻久久中文字幕网| 全区人妻精品视频| 欧美一区二区亚洲| 日本一本二区三区精品| 成人三级黄色视频| 欧美色视频一区免费| 中文字幕av在线有码专区| 深夜a级毛片| 亚洲欧美清纯卡通| 看免费成人av毛片| 成年女人永久免费观看视频| 亚洲avbb在线观看| 婷婷精品国产亚洲av在线| 毛片一级片免费看久久久久 | 国产蜜桃级精品一区二区三区| 久久午夜亚洲精品久久| 看免费成人av毛片| 精品久久久久久久久av| 国产久久久一区二区三区| 人妻夜夜爽99麻豆av| 在线观看美女被高潮喷水网站| 在线播放国产精品三级| 欧美日本亚洲视频在线播放| 最后的刺客免费高清国语| 99久久精品一区二区三区| 搡老岳熟女国产| 美女cb高潮喷水在线观看| 波多野结衣巨乳人妻| 97人妻精品一区二区三区麻豆| 99久久精品国产国产毛片| 久久久久久久久中文| 精品久久久久久久久亚洲 | 午夜免费成人在线视频| 国产精华一区二区三区| 欧美绝顶高潮抽搐喷水| 长腿黑丝高跟| 免费黄网站久久成人精品| 国内精品美女久久久久久| a级毛片a级免费在线| 日本三级黄在线观看| 亚洲中文字幕一区二区三区有码在线看| 麻豆国产97在线/欧美| 又爽又黄无遮挡网站| 在线观看免费视频日本深夜| 俄罗斯特黄特色一大片| 亚洲人成网站高清观看| 少妇被粗大猛烈的视频| 能在线免费观看的黄片| 国产精品国产高清国产av| 免费高清视频大片| 亚洲第一电影网av| 五月伊人婷婷丁香| 国产欧美日韩一区二区精品| 熟妇人妻久久中文字幕3abv| 国产av不卡久久| 中文字幕免费在线视频6| 国产女主播在线喷水免费视频网站 | 69av精品久久久久久| 日韩大尺度精品在线看网址| 色综合亚洲欧美另类图片| 97超级碰碰碰精品色视频在线观看| 三级男女做爰猛烈吃奶摸视频| 91久久精品国产一区二区三区| 日本三级黄在线观看| 日日啪夜夜撸| 简卡轻食公司| 国产午夜福利久久久久久| 两个人视频免费观看高清| 可以在线观看毛片的网站| 久久这里只有精品中国| 免费看av在线观看网站| 午夜福利在线观看免费完整高清在 | 美女免费视频网站| 三级毛片av免费| 亚洲专区国产一区二区| 搡老妇女老女人老熟妇| 国产精品不卡视频一区二区| 变态另类丝袜制服| 九色国产91popny在线| 亚洲成人精品中文字幕电影| 国产真实乱freesex| 免费无遮挡裸体视频| 有码 亚洲区| 久久精品国产鲁丝片午夜精品 | 色尼玛亚洲综合影院| 国产乱人视频| 国产精华一区二区三区| 亚洲色图av天堂| 久久久久久久午夜电影| 午夜精品一区二区三区免费看| 婷婷色综合大香蕉| 国产单亲对白刺激| 在线观看66精品国产| 亚洲一级一片aⅴ在线观看| 中文字幕精品亚洲无线码一区| 午夜日韩欧美国产| 日韩欧美一区二区三区在线观看| 亚洲精品456在线播放app | 婷婷丁香在线五月| 日本与韩国留学比较| 在现免费观看毛片| 国产亚洲精品久久久久久毛片| 69人妻影院| av专区在线播放| 搡女人真爽免费视频火全软件 | 99久久成人亚洲精品观看| 久久欧美精品欧美久久欧美| 99精品久久久久人妻精品| 国产精品一区二区三区四区免费观看 | 婷婷亚洲欧美| 亚洲精品亚洲一区二区| 日本 欧美在线| 午夜日韩欧美国产| 国产精品一区二区三区四区久久| 久久人人爽人人爽人人片va| 欧美成人免费av一区二区三区| 国内少妇人妻偷人精品xxx网站| 性色avwww在线观看| 欧美精品啪啪一区二区三区| 国产黄色小视频在线观看| 小蜜桃在线观看免费完整版高清| 色哟哟·www| 中文字幕人妻熟人妻熟丝袜美| 国产精品福利在线免费观看| 国产欧美日韩一区二区精品| 日本黄大片高清| 免费人成视频x8x8入口观看| 久久精品国产亚洲av涩爱 | 国产成年人精品一区二区| 欧美成人免费av一区二区三区| 成人国产一区最新在线观看| 成人av在线播放网站| 亚洲成人免费电影在线观看| 一区二区三区免费毛片| 国产精品98久久久久久宅男小说| 久久6这里有精品| 亚洲午夜理论影院| 琪琪午夜伦伦电影理论片6080| 国产又黄又爽又无遮挡在线| 国产蜜桃级精品一区二区三区| 如何舔出高潮| 日韩中字成人| 午夜福利成人在线免费观看| 亚洲精品日韩av片在线观看| 国产69精品久久久久777片| 日韩一本色道免费dvd| 日本一二三区视频观看| 亚洲,欧美,日韩| or卡值多少钱| 色综合婷婷激情| 长腿黑丝高跟| 日日夜夜操网爽| 亚洲av.av天堂| 日韩欧美在线二视频| 美女免费视频网站| 欧美成人免费av一区二区三区| 国产三级在线视频| 麻豆国产av国片精品| av福利片在线观看| 一边摸一边抽搐一进一小说| 一级黄色大片毛片| 一区二区三区免费毛片| 欧美日韩综合久久久久久 | 伊人久久精品亚洲午夜| 精品免费久久久久久久清纯| 尾随美女入室| 欧美性感艳星| 国产午夜精品论理片| 成人特级av手机在线观看| 免费人成在线观看视频色| 精品午夜福利在线看| 一本精品99久久精品77| 高清日韩中文字幕在线| 最近最新中文字幕大全电影3| 色综合亚洲欧美另类图片| 内地一区二区视频在线| 最新中文字幕久久久久| 欧美极品一区二区三区四区| 搡女人真爽免费视频火全软件 | 日韩大尺度精品在线看网址| 国产黄a三级三级三级人| 又黄又爽又刺激的免费视频.| 久久精品国产亚洲av香蕉五月| 欧美高清性xxxxhd video| www日本黄色视频网| 欧美丝袜亚洲另类 | 精品日产1卡2卡| 久久精品人妻少妇| 亚洲人与动物交配视频| 国产av在哪里看| 少妇人妻精品综合一区二区 | 尾随美女入室| 一夜夜www| 内射极品少妇av片p| 日韩欧美免费精品| 国产免费男女视频| 日韩av在线大香蕉| 又黄又爽又免费观看的视频| 69人妻影院| 搞女人的毛片| 国产伦人伦偷精品视频| 国产探花极品一区二区| 夜夜爽天天搞| 麻豆成人av在线观看| 亚洲五月天丁香| 欧美激情久久久久久爽电影| 99久久无色码亚洲精品果冻| 精品不卡国产一区二区三区| 亚洲av免费高清在线观看| av.在线天堂| 精品久久久久久久末码| 日本成人三级电影网站| 男人的好看免费观看在线视频| 精品不卡国产一区二区三区| 久久久久国内视频| 免费观看在线日韩| 最近在线观看免费完整版| 国产高潮美女av| 国产美女午夜福利| 日本与韩国留学比较| 女人被狂操c到高潮| 91av网一区二区| 成人亚洲精品av一区二区| 国产午夜精品久久久久久一区二区三区 | 女生性感内裤真人,穿戴方法视频| 大又大粗又爽又黄少妇毛片口| 床上黄色一级片| 成人欧美大片| 深爱激情五月婷婷| 少妇高潮的动态图| 99国产精品一区二区蜜桃av| 国产精品国产高清国产av| 国产精品久久久久久av不卡| 久久精品91蜜桃| 亚洲四区av| 国产高潮美女av| 亚洲人与动物交配视频| 亚洲欧美日韩无卡精品| 免费在线观看成人毛片| 国产真实伦视频高清在线观看 | 国产精品福利在线免费观看| 国产v大片淫在线免费观看| 亚洲成人中文字幕在线播放| 亚洲第一电影网av| 亚洲精品色激情综合| 99热精品在线国产| a级毛片a级免费在线| 国产伦一二天堂av在线观看| 一个人观看的视频www高清免费观看| 老熟妇乱子伦视频在线观看| 春色校园在线视频观看| 日韩人妻高清精品专区| 又爽又黄无遮挡网站| 色噜噜av男人的天堂激情| 蜜桃久久精品国产亚洲av| 一进一出好大好爽视频| 黄色欧美视频在线观看| 露出奶头的视频| 国产午夜精品论理片| 两个人视频免费观看高清| 白带黄色成豆腐渣| 国内精品宾馆在线| 午夜福利在线在线| 欧美日韩亚洲国产一区二区在线观看| 高清日韩中文字幕在线| 99久久精品一区二区三区| 听说在线观看完整版免费高清| 尾随美女入室| 天天躁日日操中文字幕| 身体一侧抽搐| 亚洲欧美激情综合另类| 久久精品久久久久久噜噜老黄 | 综合色av麻豆| 国产探花极品一区二区| 午夜老司机福利剧场| 国产极品精品免费视频能看的| 国产成人aa在线观看| 婷婷精品国产亚洲av在线| 91麻豆av在线| 亚洲av美国av| 18+在线观看网站| 亚洲七黄色美女视频| 白带黄色成豆腐渣| 亚洲欧美日韩高清专用| 村上凉子中文字幕在线| 欧美高清性xxxxhd video| 日韩欧美三级三区| 国产亚洲精品综合一区在线观看| 岛国在线免费视频观看| 久久精品91蜜桃| 18禁黄网站禁片午夜丰满| 一进一出抽搐gif免费好疼| 少妇猛男粗大的猛烈进出视频 | 少妇丰满av| 欧美中文日本在线观看视频| 久久精品人妻少妇| 午夜精品久久久久久毛片777| 日韩中文字幕欧美一区二区| 亚洲精华国产精华精| 日韩精品中文字幕看吧| 校园人妻丝袜中文字幕| 欧美高清成人免费视频www| 成年女人永久免费观看视频| 老女人水多毛片| 有码 亚洲区| 国产免费男女视频| 午夜免费激情av| 国内少妇人妻偷人精品xxx网站| 国产69精品久久久久777片| 男女做爰动态图高潮gif福利片| 又黄又爽又刺激的免费视频.| 亚洲精品国产成人久久av| 人妻制服诱惑在线中文字幕| 美女cb高潮喷水在线观看| 亚洲av中文av极速乱 | 国产av不卡久久| 伦精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 免费在线观看影片大全网站| 亚洲精品456在线播放app | 在线播放无遮挡| 久久亚洲真实| 1000部很黄的大片| 91精品国产九色| 亚洲一级一片aⅴ在线观看| 久久久久久久久中文| 亚洲国产精品成人综合色| av.在线天堂| 国产日本99.免费观看| 男女做爰动态图高潮gif福利片| 联通29元200g的流量卡| 日日干狠狠操夜夜爽| 免费观看在线日韩| 欧美3d第一页| 国产精品国产三级国产av玫瑰| 18+在线观看网站| 男女视频在线观看网站免费| 22中文网久久字幕| 精品午夜福利视频在线观看一区| 日本精品一区二区三区蜜桃| 韩国av一区二区三区四区| 男女视频在线观看网站免费| 日本免费一区二区三区高清不卡| 精品99又大又爽又粗少妇毛片 | 内射极品少妇av片p| 男人的好看免费观看在线视频| av中文乱码字幕在线| 久久久久久久久久久丰满 | 亚洲在线自拍视频| 一个人免费在线观看电影| 夜夜看夜夜爽夜夜摸| 夜夜夜夜夜久久久久| 久久精品国产清高在天天线| 亚洲午夜理论影院| 日韩高清综合在线| 国产精品福利在线免费观看| 国产高清三级在线| 校园人妻丝袜中文字幕| 国产一区二区三区视频了| 久久精品国产99精品国产亚洲性色| 国产精品国产三级国产av玫瑰| 搡老熟女国产l中国老女人| 日韩欧美精品免费久久| 亚洲精品一区av在线观看| 一本精品99久久精品77| 美女xxoo啪啪120秒动态图| 亚洲成人免费电影在线观看| 国产69精品久久久久777片| 在线免费观看的www视频| 91在线观看av| 国产精华一区二区三区| 成人三级黄色视频| 99热精品在线国产| 久久亚洲真实| 午夜福利在线在线| 最近最新中文字幕大全电影3| 深爱激情五月婷婷| 永久网站在线| 免费看日本二区| 免费高清视频大片| 99久久九九国产精品国产免费| 麻豆国产av国片精品| 久久精品国产自在天天线| 国产av麻豆久久久久久久| 男女视频在线观看网站免费| 久久欧美精品欧美久久欧美| 老女人水多毛片| 观看美女的网站| 亚洲一区二区三区色噜噜| 老司机福利观看| 国国产精品蜜臀av免费| 日本成人三级电影网站| 欧美3d第一页| 国产av不卡久久| 国语自产精品视频在线第100页| 可以在线观看的亚洲视频| 国产高清激情床上av| 国产亚洲精品综合一区在线观看| 午夜免费激情av| 成人三级黄色视频| 可以在线观看毛片的网站| 亚洲精华国产精华精| 国产男靠女视频免费网站| 亚洲美女搞黄在线观看 | 免费看av在线观看网站| 欧美精品国产亚洲| 黄色配什么色好看| 无人区码免费观看不卡| 他把我摸到了高潮在线观看| 亚洲国产日韩欧美精品在线观看| 男人的好看免费观看在线视频| 搡老岳熟女国产| 日日摸夜夜添夜夜添小说| videossex国产| 最好的美女福利视频网| 成人综合一区亚洲| 性插视频无遮挡在线免费观看| av在线观看视频网站免费| 精品久久久噜噜| 亚洲欧美日韩卡通动漫| 波多野结衣高清无吗| 日本一本二区三区精品| 亚洲aⅴ乱码一区二区在线播放| 此物有八面人人有两片| 中文在线观看免费www的网站| 一夜夜www| 欧美+亚洲+日韩+国产| 久久人妻av系列| 亚洲七黄色美女视频| 成人国产一区最新在线观看| 级片在线观看| 最近中文字幕高清免费大全6 | 久久久色成人| 色噜噜av男人的天堂激情| 欧美高清成人免费视频www| 日本欧美国产在线视频| 国产不卡一卡二| 成人一区二区视频在线观看| а√天堂www在线а√下载| 亚洲成人免费电影在线观看| x7x7x7水蜜桃| 熟妇人妻久久中文字幕3abv| 亚洲成人精品中文字幕电影| 在线观看美女被高潮喷水网站| 欧美丝袜亚洲另类 | 亚洲成人精品中文字幕电影| 色尼玛亚洲综合影院| 久久中文看片网| 精品99又大又爽又粗少妇毛片 |