• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Functions of PARylation in DNA Damage Repair Pathways

    2016-09-28 08:02:04HuitingWeiXiaochunYu
    Genomics,Proteomics & Bioinformatics 2016年3期
    關(guān)鍵詞:中共中央辦公廳下文國務(wù)院辦公廳

    Huiting WeiXiaochun Yu*b

    1Department of Immunology,Tianjin Key Laboratory of Cellular and Molecular Immunology,MOE Key Laboratory of Immune Microenvironment and Disease,School of Basic Medical Sciences,Tianjin Medical University,Tianjin 300070,China

    2Department of Cancer Genetics and Epigenetics,Beckman Research Institute,City of Hope Medical Center,Duarte,CA 91010,USA

    ?

    REVIEW

    Functions of PARylation in DNA Damage Repair Pathways

    Huiting Wei1,a,Xiaochun Yu2,*,b

    1Department of Immunology,Tianjin Key Laboratory of Cellular and Molecular Immunology,MOE Key Laboratory of Immune Microenvironment and Disease,School of Basic Medical Sciences,Tianjin Medical University,Tianjin 300070,China

    2Department of Cancer Genetics and Epigenetics,Beckman Research Institute,City of Hope Medical Center,Duarte,CA 91010,USA

    Available online 27 May 2016

    Handled by Zhao-Qi Wang

    KEYWORDS

    Poly ADP-ribosylation;

    PARPs;

    DNA damage response;

    PAR-binding modules;

    Ubiquitination

    AbstractProtein poly ADP-ribosylation(PARylation)is a widespread post-translational modification at DNA lesions,which is catalyzed by poly(ADP-ribose)polymerases(PARPs).This modification regulates a number of biological processes including chromatin reorganization,DNA damage response(DDR),transcriptional regulation,apoptosis,and mitosis.PARP1,functioning as a DNA damage sensor,can be activated by DNA lesions,forming PAR chains that serve as a docking platform for DNA repair factors with high biochemical complexity.Here,we highlight molecular insights into PARylation recognition,the expanding role of PARylation in DDR pathways,and the functional interaction between PARylation and ubiquitination,which will offer us a better understanding of the biological roles of this unique post-translational modification.

    Introduction

    Throughout the biological life,genomic stability of the organisms is always challenged by both endogenous and exogenous toxic stresses[1,2].It has been estimated that every cell could experience up to 105spontaneous DNA lesions per day[3]. To maintain genomic integrity,the organisms have evolved a series of sophisticated and precise mechanisms to protect their genome against the deleterious lesions,including cell cycle checkpoint,diverse DNA repair signaling pathways,chromatin reorganization,and protein modifications[4].Among these responses,poly ADP-ribosylation(PARylation)is a pivotal post-translational protein modification(PTM)that appears rapidly at DNA damage sites[5,6].

    In human,ADP-ribosylation is catalyzed by poly(ADP-ribose)polymerases(PARPs),which consists of 17 members[7-10].PARPs primarily covalently attach the ADP-ribose(ADPR)unit via an ester bond to the carboxyl group of acidic residues such as glutamate or aspartate residues on the target proteins[11,12],but cysteine(Cys)and lysine(Lys)residues could also act as acceptors[13,14].However,most of them are only able to transfer single mono(ADP-ribose)(MAR)group onto their target proteins[5,15].To date,PARP1,2,and 3 have been identified to catalyze PARylation during DNA damage response(DDR)[5,15].In addition,tankyrases including tankyrase-1(PARP5a)and tankyrase-2(PARP5b)have also been shown to contribute to genomic stability[15,16].Among these PARPs,PARP1 is the founding member of PARP family for the synthesis of PAR chains.The mechanism of PARP1 activation by single-strand and double-strand DNA breaks(SSBs and DSBs)is well established[17].Using NAD+as substrate,PARPs repeatedly catalyze the transfer of successive units of ADPR moieties via a unique 2′,1′′-O-glycosidic ribose-ribose bond to target proteins,finally producing PAR chain[5].Several reports have demonstrated that PAR chains can comprise up to 200 ADPR units in length[5,11,17].In addition,PARP1 can introduce branching into PAR chains through the 2′′,1′′′-glycosidic bond[18,19].

    In cells,PAR polymers are primarily degraded by PAR glycohydrolase(PARG),which possesses both exoglycosidic activity and endoglycosidic activity[20-22].PARG efficientlycleavestheunique2′,1′′-glycosidicribose-ribose bonds of the PAR chains and releases the free ADPR moieties[22,23].In addition,ADP-ribosylhydrolase 3(ARH3)also exhibits the PAR-degrading activity,although ARH3 has only exoglycosidase activity[24,25].Neither PARG norARH3canhydrolyzetheproximalprotein-bound ADPR unit from a PAR chain,possibly due to steric hindrance,thus leaving a MARylated protein.MARylated proteins can be recognized by different protein domain and thus serve as scaffolds for recruitment of proteins during diverse biological processes[22,24].Interestingly,a set of Macro domain-containing(MacroD)proteins have been found to exhibit hydrolase activities.These include the terminal ADPR protein glycohydrolase(TARG1/C6orf130)[26],as well as MacroD1 and MacroD2[27-30].Earlier studies showed that these three enzymes can hydrolyze O-acetyl-ADPR,a metabolite derived from NAD during sirtuin2-catalyzed protein deacetylation,regulating diverse biological processes[31].Recently,TARG,MacroD1,and MacroD2 were identified for their action in removal of glutamatespecific ADPR[26,28,29].The hydrolysis of last ADPR from modified protein is the final and rate-limiting step of PAR chain degradation[32].Like many other PTMs,synthesis and degradation of PAR chains is tightly and dynamically controlled in vivo with the half-life of only several minutes[4,27].If PAR chains cannot be hydrolyzed in a timely manner,excessive protein-free PAR chains can induce the apoptosis-like cell death,termed parthanatos[4,27].Parthanatos is another form of programed cell death which is distinct from necrosis and apoptosis.As a distinct death pathway,parthanatos is associated with PARP-1.The synthesis and accumulation of PAR chain will result in mitochondrial depolarization and nuclear apoptosis inducing factor(AIF)translocation,thus inducing cell death[33].

    PARylation and DNA repair pathway

    PARylation in base excision repair/SSB repair process

    The base excision repair/SSB repair process(BER/SSBR)is a pivotal DNA repair signal pathway to repair oxidized bases,apurinic/apyrimidinic sites(AP sites,also known as abasic sites)or SSBs[1].In cells,many chemical alterations such as oxidation,methylation,deamination,and hydroxylation can induce base damage and SSBs[1].In the BER process,damaged bases are cleaved by DNA glycosylases,producing abasic sites,which are next processed by AP endonuclease(APE)into SSBs[2,34].These sites are further repaired through two different pathways termed short-patch repair and long-patch repair,which are distinct in terms of patch sizes and DNA repair factors involved[35].

    PARP1 can physically and functionally interact with SSBR factor X-ray repair cross-complementing protein 1(XRCC1),which plays a major role in SSBR signal pathway,facilitating the recruitment and assembly of the SSBR machinery[35]. OurrecentstudyindicatesthattheBRCA1CTerminus(BRCT)domain of XRCC1 directly binds to PAR chain and mediates early recruitment of XRCC1 to DNA lesions[36].Several reports have also demonstrated that PARP1 is able to interact with key factors of the BER/SSBR process including the DNA glycosylase 8-oxoguanine glycosylase 1(OGG1),XRCC1,DNA polymerase(DNAP)β,DNA ligase III,proliferating cell nuclear antigen(PCNA),aprataxin,and condensin I[37-40]. Many of these factors can undergo PARylation by PARP1(Figure 1).Additionally,PARP2 has also been identified to interact with BER/SSBR proteins such as XRCC1,DNAP β,andDNAligaseIII[41].Thesefindingssupport thatPARchain could provide a landing platform for the recruitment of DNA repair complexes as proposed by Masson et al.in 1998[42].

    PARylation in DSB repair

    DNADSBsareregardedasthemostdetrimentalDNAdamage,whichseriouslyanddirectlythreatengenomicstabilityviainterrupting the physical continuity of the chromosome[1].The failure to repair DSBs will lead to catastrophic consequences such as oncogenesis,cell death,and developmental disorders[1].To deal with DSBs,organisms have employed three major DNA repair mechanisms including classical non-homologous end joining(C-NHEJ),alternative non-homologous end joining(alt-NHEJ),and homologous recombination(HR).The choice ofDNArepairpathwaydependsonwhetherthedamagedDNA end is resected,which is likely mediated by the Mre11/Rad50/ Nbs1(MRN)complexandC-terminal-bindingprotein(CtBP)-interacting protein(CtIP).Once DNA resection is impeded,repair by C-NHEJ is invoked.However,if resection has occurred,HR and alt-NHEJ may compete with each other torepairthedamagedDNA.RAD51formsafilamentatthesite of SSB that drives strand exchange and facilities HR,whereas PARP1 may serve as a platform for recruiting alt-NHEJ repair factors such as DNAP θ[43].

    PARylation in C-NHEJ

    Eukaryocytes mainly employ C-NHEJ to repair damaged DNA.The process is DNA end resection-independent,and is also unrelated to sequence homology.Therefore,C-NHEJ occurs throughout the cell cycle,but predominantly in G0/G1 and G2 phase[44,45].In the process of C-NHEJ,the Ku70/Ku80 heterodimer is recruited to DNA damage sites followed by loading of DNA-dependent protein kinase catalytic subunit(DNA-PKcs).Meanwhile,Ku70/Ku80 heterodimer facilitates the activation of the DNA ligase IV/XRCC4 complex.AccessoryfactorssuchasnucleaseArtemis,aprataxin-polynucleotidekinase-likefactor(APLF),or polynucleotide kinase/phosphatase(PNKP)process the damaged DNA end to be compatible for ligation.At the final step,the activated DNA ligase IV and its cofactor XRCC4,or Cernunnos/XRCC4-like factor(XLF),rejoin the DNA ends[46].

    Figure 1 PARylation mediates DNA damage repair

    Several studies support an important role of PARP1 in CNHEJ.Interaction between PARP1 and DNA-PKcs facilitates genomic integrity during V(D)J recombination and prevents tumor development[47].It is of note that PARP can stimulate DNA-PKcs activity via PARylation in vitro[48].This interaction is further supported by in vivo evidence as reported recently.A structural PARP1/DNA-PKcs/Ku molecular complex has been identified in which PARP1 elicits a major architectural rearrangement of the DNA-PKcs-mediated synapsis[49].Moreover,previous studies from our lab have shown that the BRCT domain of DNA ligase IV directly recognizes the ADP-ribose of PAR chains,which mediates the early recruitment of the ligase to DNA lesions.Such efficient recruitment may facilitate C-NHEJ[50].

    PARylation in alt-NHEJ

    As a new DSB repair signal pathway,alt-NHEJ has attracted much attention recently[46].When classical C-NHEJ is deficient,alt-NHEJ can be initiated by resected DNA end.Compared with C-NHEJ,alt-NHEJ is characterized by the following features:initiated by damaged DNA end resection;independent of the Ku70/Ku80 heterodimer,XRCC4,and DNA ligase IV;using complementary microhomologies—short stretches(1-10 nucleotides)that can anneal,to guide DNA repair and much less faithful than C-NHEJ[51].PARP-1,XRCC1,DNA ligase III,PNKP,WRN,CtIP,NBS1,and ERCC1 have all been implicated in alt-NHEJ[46].PARPs play pivotal roles in this process.PARP1 can recognize the broken DNA ends and create a scaffold for the recruitment of other DNA damage factors involved in alt-NHEJ.Finally,end-rejoining is carried out by the DNA ligase III/XRCC1 complex in coordination with PARP1[52](Figure 1).In addition,both XRCC1 and PNKP can be recruited to the DNA damage sites through PAR binding,which could occur at the early steps of alt-NHEJ[50].

    PARylation in HR

    HR can be activated by single-stranded DNA(ssDNA)resection.The process produces a lagging strand gap or 3′overhang,which is the key step for HR[53].Owing to its requirement for a sister chromatid,HR predominates in S and G2 phases,when the amount of DNA replication is highest and the sister template is available[45,54].HR is typically characterized by error-free[1,55].Using homologous sequence to repair damaged DNA,HR requires strand invasion mediated by the recombinase RAD51.Earlier findings show that PARP1 is dispensable for HR.PARylation appears to have little direct effect on HR since HR is normal in PARP-depleted cells[53].However,PARP1 has been associated with HR-mediated repair and reactivation of stalled replication forks,therefore promoting faithful DNA replication[56].Moreover,PARP1 facilitates recruitment of MRE11 and RAD51,which restart stalled replication BRCA1/2-dependent early DDR[57].The BRCTs of BARD1,theoligonucleotide/oligosaccharidebinding-fold(OB-fold)of BRCA2,and the protein incorporated later into tight junctions(PilT)N terminus(PIN)domain of exonuclease 1(EXO1)are the PAR-binding modules that target these HR repair machineries to DSBs for damaged DNA repair[58].

    PAR-binding modules

    To regulate numerous biological functions,PAR chains must be recognized by diverse proteins such as DDR factors.To date,several distinct classes of PAR-binding modules have been identified.These include the PAR-binding zinc finger(PBZ),the Macro domain,the WWE domain,the BRCT domain,the forkhead-associated(FHA)domain,the OB-fold domain,the PIN domain,and the RNA recognition motif(RRM)domain[9,59].

    PBZ domain

    The recently-identified PBZ domains possess the consensus sequence[K/R]xxCx[F/Y]GxxCxbbxxxxHxxx[F/Y]xH[60]. PBZs are less common in mammalian proteins involved in DNA repair and cell cycle checkpoint,although PBZs are much more widespread in some other eukaryotes[48,60-62].Up till now,PBZ domains are only found in three human proteins,including histone chaperone APLF,checkpoint with FHA and RING finger(CHFR),and sensitive to nitrogen mustard 1A(SNM1A)[48,60-62].Crystal structures of APLF and CHFR show that PBZs are essential for their functions.Initial analysis of CHFR primary sequence has identified a zing finger called C2H2,which binds to PAR efficiently.Therefore,this motif is defined as a new PAR binding module termed PBZ[60].APLF containstwotandemPBZdomainstermedF1andF2.Although F1andF2canrecognizethePARchainindependently,presence of both domains remarkably increase the affinity of PAR chain binding,whichisover1000timesmoreefficientthantheisolated PBZ domain[63].Structural analysis demonstrates that PBZ module contains a central zinc ion coordinated by two cysteine and two histidine residues,which can recognize adenines in two neighboring ADP-ribose units of the PAR chain.This type of recognition renders the PBZ motifs to be the truly specific PAR binding modules[63](Figure 2).

    The WWE domain

    The WWE domain is the most recently discovered PAR-binding domain,named after the three strictly conserved amino acid residues,tryptophan-tryptophan-glutamate(WWE)[64]. The WWE domains,which can recognize iso-ADPR of PAR chain with high affinity,tightly links ubiquitination and PARylation signal pathways.The iso-ADPR which contains a characteristic bond,2′,1′′-O-glycosidic ribose-ribose is the signature of PAR chains[64].The negatively-charged phosphate groups of the iso-ADPR can bind the positively-charged WWE domain[64].The WWE domain is primarily found in two distinct protein families,including the E3 ubiquitin ligases(RNF146,deltex1,and TRIP12)and the PARPs(PARP8 and PARP11-14)[63].So far,the function of WWE domain has been well described for RNF146/Iduna.RNF146 recognizes PAR chain and ubiquitinates DNA repair proteins such as XRCC1,PARP1,DNA ligase III,and Ku70.The PARylated proteins are targeted to proteosome for degradation[64,65]. Taken together,the WWE domain-containing proteins are tightly linked with and influence each other(Figure 2).

    The Macro domain

    The Macro domain,which consists of 130-190 amino acid residues,is evolutionarily conserved and widely spread throughout all kingdoms of organisms.This is distinct from the PBZ and WWE domains.It is estimated that more than 300 proteins,including 11 human proteins,with a diverse set of biological functions possess the Macro domain[66].Macro domains can bind to the terminal ADPR of PAR,MAR,as well as O-acetyl-ADPR[66-68].Some proteins such as amplified in liver cancer 1(ALC1,also known as CHD1L),can interact with PAR chains through Macro domains and catalyze PARP1-stimulated nucleosome sliding,thus participating in DDR and chromatin remodeling[69,70].Some other Macro domain-containing proteins,in addition to their binding ability,also exhibit catalytic activity on the hydrolysis of PAR chains,making the Macro domains unique among the other PAR-binding modules.These include PARG[22],TARG1[26,71],and MacroD1/2[28,31](Figure 2).PARG enzyme uses Macro domain for the binding and hydrolysis of PAR chains,as we outlined above.

    Additional domains

    ItiswellknownthatFHAandBRCTdomainscanbindtophosphorylated proteins and modify protein-protein interactions[72].Recently,it was reported that the phosphate-binding pocket in the central BRCT domain of BARD1 is required forselective binding to PAR chain[50,73].Meanwhile,BRCT domainpromotestheinteractionbetweenBARD1andPARP1. Moreover,the FHA domains of aprataxin(APTX)and PNKP confer affinity to iso-ADPR of PAR chain[50,73].

    Figure 2 PAR-binding modules

    The OB-fold is an ssDNA or ssRNA binding domain that has been found in proteins from all three kingdoms.OB-fold comprises 70-150 AA residues forming five-stranded beta-barrel with a terminating alpha-helix[57].Interestingly,it is reportedrecentlythattheOB-foldcanbindtothePAR-specific iso-ADPR and such binding is required to bring the ssDNA-binding protein 1(SSB1)to sites of DNA damage[58].

    The PIN domain-containing proteins serve as nucleases that cleave ssDNA/ssRNA in a sequence-specific manner[74].The PIN domain consists of~130 amino acid residues characterized by a group of three strictly conserved acidic amino acid residues[75].Our recent study found that the PIN domain of EXO1 recognizes PAR in DDR[58].

    The RRM is one of the most abundant protein domains in eukaryotes,which can serve as a plastic RNA-binding platform to regulate post-transcriptional gene expression[76].Several RRM-containing proteins have been reported to assemble at sites of PAR formation to promote DDR[77,78].

    It is reported that some RNA and DNA binding motifs can recognize PAR chains.Motifs enriched in arginines and glycines,which are termed glycine-arginine-rich(GAR)domains and/or RGG boxes,were identified several decades ago. RGG boxes are found in more than 1000 human proteins that are involved in numerous biological processes including transcription and DDR[79].RGG boxes in the RNA-binding proteins such as FUS/TLS,EWS/EWSR1,TAF15,SAFB1,SAFA,and hnRNPUL1/2,have been identified,and these proteins can be recruited to DNA damage sites via binding to PAR chain through RGG boxes[80-86].

    PARylation and ubiquitination

    Ubiquitin is a small regulatory protein consisting of 76 amino acid residues,which has been found in almost all tissues of eukaryotic organisms.It can be covalently transferred to a Lys residue of an acceptor protein.This process is termed ubiquitination[87].The ubiquitination pathway in cells is an elaborate system for targeting unwanted proteins for degradation,carried out by three classes of enzymes,E1,E2,andE3.Ubiquitinisfirstactivatedbyubiquitinactivating enzyme(E1)before being transferred to the active site of E1 in an ATP-dependent manner.Then the ubiquitin molecule is passed on to the second enzyme,ubiquitinconjugating enzyme(E2),whereubiquitin is linkedby another thioester bond to the Cys active site of E2.Finally,with the help of a third enzyme,ubiquitin protein ligase(E3),ubiquitin is transferred from E2 to a Lys residue on a substrate protein.Additional ubiquitin molecules can be linked to the first one to form a poly-ubiquitin chain usually targeting the protein to the proteasome[87].

    Recent studies have demonstrated that PARylation can serve as a signal for the ubiquitination and promote the degradation of PARsylated proteins[88-90].Some E3 ligases bind PAR via either a WWE(RNF146,also known as Iduna)domain or a PBZ(CHFR)domain[43,44,46].The relationship betweenPARylationandubiquitinationhasbeenwell described in the RING-type E3 ubiquitin ligase,RNF146. The RNF146 WWE domain recognizes the PAR chain via interacting with iso-ADPR(Figure 2),functioning as an allosteric signal that changes the RING domain conformation from a catalytically-inactive state to an active one.RNF146 can polyubiquitylate many repair factors in a PAR-dependent manner,such as PARP-2,XRCC1,DNA ligase III,and Ku70[62].The discovery of a direct connection between PARylation and ubiquitination provides us with a new interpretation of the signaling function of PAR—degradation of proteins in a timely and orchestrated manner.

    Dysregulation of PARylation and human diseases

    PARP1 is a key facilitator of DDR and is implicated in tumorigenesis of several malignancies,particularly those associated with dysfunctional DNA repair pathways[37].Recent studies further demonstrate that transcript,protein,and enzyme activity of PARP1were increased in several tumor types with the most striking differences noticed in ovarian cancer,hepatocellular cancer,colorectal cancer,and leukemia[76-78].Given that PARP1 has an important role in DDR,a novel therapeutic targeting PARP1 has been developed to treat cancers through increasing tumor sensitivity to chemotherapeutic agents and also through inducing‘‘synthetic lethality”in cells[78].Now PARP inhibitors have demonstrated efficacy in a number of tumor types,including platinum-sensitive epithelial ovarian cancer[50],breast cancer with mutation in BRCA1 or BRCA2[91],and prostate cancer[92].Olaparib is a PARP inhibitor that blocks enzymes involved in repairing damaged DNA[92].Recently olaparib has been licensed as monotherapy for the treatment of patients with hereditary BRCA1 or BRCA2 mutations[91].

    Perspectives and conclusions

    Over the last decades,PARylation has been proved to be involved in numerous cellular functions including DDR. PAR serves as an initial sensor and mediates the early recruitment of DNA damage repair machineries.As a kind of protein modification,PARylation is tightly and dynamically regulated. PAR chain synthesis is mediated by several PARPs,whereas PARG mainly takes charge of PAR chain degradation.Great strides have been made in the past few decades to decipher the PARylation regulatory processes and the underlying molecular mechanisms.However,many questions remain to be answered.First,other NAD+-consuming enzymes,such as sirtuin 1,are thought to compete for NAD+with PARPs[9]. What is the reciprocal influence of these enzymes?Moreover,how these DNA damage factors are assembled at the DNA damage sites via PAR chains is still unclear exactly,as PAR chain does not have any sequence specificity.In addition,new molecular or chemical methods need to be developed to better achieve cell-permeable PARG or/and ARH inhibitors.More investigations are needed to address these questions in the future.In this regard,a better understanding of the biochemical and functional properties of PARylation in DNA repair may provide new clues to answer these fundamental questions.

    Competing interests

    The authors declare that they have no competing financial interests.

    Acknowledgments

    References

    [1]Ciccia A,Elledge SJ.The DNA damage response:making it safe to play with knives.Mol Cell 2010;40:179-204.

    [2]Lindahl T,Barnes DE.Repair of endogenous DNA damage.Cold Spring Harb Symp Quant Biol 2000;65:127-33.

    [3]Hoeijmakers JH.DNA damage,aging,and cancer.N Engl J Med 2009;361:1475-85.

    [4]Wang Y,Kim NS,Haince JF,Kang HC,David KK,Andrabi SA,et al.Poly(ADP-ribose)(PAR)binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death(parthanatos).Sci Signal 2011;4:ra20.

    [5]Gibson BA,Kraus WL.New insights into the molecular and cellular functions of poly(ADP-ribose)and PARPs.Nat Rev Mol Cell Biol 2012;13:411-24.

    [6]Perina D,Mikoc A,Ahel J,Cetkovic H,Zaja R,Ahel I. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life.DNA Repair(Amst)2014;23:4-16.

    [7]Luo X,Kraus WL.On PAR with PARP:cellular stress signaling throughpoly(ADP-ribose)andPARP-1.GenesDev 2012;26:417-32.

    十八屆四中全會通過的《中共中央關(guān)于全面推進依法治國若干重大問題的決定》,首次提出實行國家機關(guān)“誰執(zhí)法誰普法”普法責(zé)任制。2017年5月,中共中央辦公廳、國務(wù)院辦公廳印發(fā)《關(guān)于實行國家機關(guān)“誰執(zhí)法誰普法”普法責(zé)任制的意見》(下文簡稱《意見》),《意見》是對黨的十八屆四中全會決定明確提出的實行國家機關(guān)“誰執(zhí)法誰普法”普法責(zé)任制這一重要要求的具體化、規(guī)范化。

    [8]Hakme A,Wong HK,Dantzer F,Schreiber V.The expanding field of poly(ADP-ribosyl)ation reactions.’Protein Modifications: BeyondtheUsualSuspects’ReviewSeries.EMBORep 2008;9:1094-100.

    [9]Hottiger MO.Nuclear ADP-Ribosylation and Its Role in Chromatin Plasticity,Cell Differentiation,and Epigenetics.Annu Rev Biochem 2015;84:227-63.

    [10]Rouleau M,Patel A,Hendzel MJ,Kaufmann SH,Poirier GG. PARPinhibition:PARP1andbeyond.NatRevCancer 2010;10:293-301.

    [11]D’Amours D,Desnoyers S,D’Silva I,Poirier GG.Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 1999;342:249-68.

    [12]Tallis M,Morra R,Barkauskaite E,Ahel I.Poly(ADP-ribosyl)ation in regulation of chromatin structure and the DNA damage response.Chromosoma 2014;123:79-90.

    [13]Altmeyer M,Hottiger MO.Poly(ADP-ribose)polymerase 1 at the crossroad of metabolic stress and inflammation in aging.Aging(Albany NY)2009;1:458-69.

    [14]Vyas S,Chang P.New PARP targets for cancer therapy.Nat Rev Cancer 2014;14:502-9.

    [15]De Vos M,Schreiber V,Dantzer F.The diverse roles and clinical relevance of PARPs in DNA damage repair:current state of the art.Biochem Pharmacol 2012;84:137-46.

    [16]Dregalla RC,Zhou J,Idate RR,Battaglia CL,Liber HL,Bailey SM.Regulatory roles of tankyrase 1 at telomeres and in DNA repair:suppression of T-SCE and stabilization of DNA-PKcs. Aging(Albany NY)2010;2:691-708.

    [17]Juarez-Salinas H,Levi V,Jacobson EL,Jacobson MK.Poly(ADP-ribose)has a branched structure in vivo.J Biol Chem 1982;257:607-9.

    [18]Tanuma S,Kanai Y.Poly(ADP-ribosyl)ation of chromosomal proteinsintheHeLaS3cellcycle.JBiolChem 1982;257:6565-70.

    [19]Miwa M,Saikawa N,Yamaizumi Z,Nishimura S,Sugimura T. Structure of poly(adenosine diphosphate ribose):identification of 2’-[1”-ribosyl-2”-(or3”-)(1”’-ribosyl)]adenosine-5’,5”,5”’-tris(phosphate)as a branch linkage.Proc Natl Acad Sci U S A 1979;76:595-9.

    [20]Dunstan MS,Barkauskaite E,Lafite P,Knezevic CE,Brassington A,Ahel M,et al.Structure and mechanism of a canonical poly(ADP-ribose)glycohydrolase.Nat Commun 2012;3:878.

    [21]Kim IK,Kiefer JR,Ho CM,Stegeman RA,Classen S,Tainer JA,et al.Structure of mammalian poly(ADP-ribose)glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element. Nat Struct Mol Biol 2012;19:653-6.

    [22]Slade D,Dunstan MS,Barkauskaite E,Weston R,Lafite P,Dixon N,et al.The structure and catalytic mechanism of a poly(ADP-ribose)glycohydrolase.Nature 2011;477:616-20.

    [23]Ueda K,Oka J,Naruniya S,Miyakawa N,Hayaishi O.Poly ADP-ribose glycohydrolase from rat liver nuclei,a novel enzyme degradingthepolymer.BiochemBiophysResCommun 1972;46:516-23.

    [24]Mueller-Dieckmann C,Kernstock S,Lisurek M,von Kries JP,Haag F,Weiss MS,et al.The structure of human ADP-ribosylhydrolase 3(ARH3)provides insights into the reversibility of protein ADP-ribosylation.Proc Natl Acad Sci U S A 2006;103:15026-31.

    [25]Niere M,Mashimo M,Agledal L,Dolle C,Kasamatsu A,Kato J,et al.ADP-ribosylhydrolase 3(ARH3),not poly(ADP-ribose)glycohydrolase(PARG)isoforms,is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose).J Biol Chem 2012;287:16088-102.

    [26]Sharifi R,Morra R,Appel CD,Tallis M,Chioza B,Jankevicius G,et al.Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease.EMBO J 2013;32:1225-37.

    [27]Barkauskaite E,Brassington A,Tan ES,Warwicker J,Dunstan MS,Banos B,et al.Visualization of poly(ADP-ribose)bound to PARG reveals inherent balance between exo-and endo-glycohydrolase activities.Nat Commun 2013;4:2164.

    [28]Jankevicius G,Hassler M,Golia B,Rybin V,Zacharias M,Timinszky G,et al.A family of macrodomain proteins reverses cellularmono-ADP-ribosylation.NatStructMolBiol 2013;20:508-14.

    [29]Rosenthal F,F(xiàn)eijs KL,F(xiàn)rugier E,Bonalli M,F(xiàn)orst AH,Imhof R,et al.Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases.Nat Struct Mol Biol 2013;20:502-7.

    [30]Neuvonen M,Ahola T.Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.J Mol Biol 2009;385:212-25.

    [31]Chen D,Vollmar M,Rossi MN,Phillips C,Kraehenbuehl R,Slade D,et al.Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases.J Biol Chem 2011;286:13261-71.

    [32]Wielckens K,Schmidt A,George E,Bredehorst R,Hilz H.DNA fragmentation and NAD depletion.Their relation to the turnover of endogenous mono(ADP-ribosyl)and poly(ADP-ribosyl)proteins.J Biol Chem 1982;257:12872-7.

    [33]Fatokun AA,Dawson VL,Dawson TM.Parthanatos:mitochondrial-linked mechanisms and therapeutic opportunities.Br J Pharmacol 2014;171:2000-16.

    [34]Jiricny J.The multifaceted mismatch-repair system.Nat Rev Mol Cell Biol 2006;7:335-46.

    [35]Caldecott KW.Single-strand break repair and genetic disease. Nat Rev Genet 2008;9:619-31.

    [36]Li M,Yu X.Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation.Cancer Cell 2013;23:693-704.

    [37]Dantzer F,de La Rubia G,Menissier-De Murcia J,Hostomsky Z,de Murcia G,Schreiber V.Base excision repair is impaired in mammalian cells lacking Poly(ADP-ribose)polymerase-1.Biochemistry 2000;39:7559-69.

    [38]Noren Hooten N,Kompaniez K,Barnes J,Lohani A,Evans MK. Poly(ADP-ribose)polymerase 1(PARP-1)binds to 8-oxoguanine-DNA glycosylase(OGG1).J Biol Chem 2011;286:44679-90.

    [39]Frouin I,Maga G,Denegri M,Riva F,Savio M,Spadari S,et al. Human proliferating cell nuclear antigen,poly(ADP-ribose)polymerase-1,and p21waf1/cip1.A dynamic exchange of partners.J Biol Chem 2003;278:39265-8.

    [40]Harris JL,Jakob B,Taucher-Scholz G,Dianov GL,Becherel OJ,Lavin MF.Aprataxin,poly-ADP ribose polymerase 1(PARP-1)and apurinic endonuclease 1(APE1)function together to protect thegenomeagainstoxidativedamage.HumMolGenet 2009;18:4102-17.

    [41]Schreiber V,Ame JC,Dolle P,Schultz I,Rinaldi B,F(xiàn)raulob V,et al.Poly(ADP-ribose)polymerase-2(PARP-2)is required for efficient base excision DNA repair in association with PARP-1 and XRCC1.J Biol Chem 2002;277:23028-36.

    [42]Masson M,Niedergang C,Schreiber V,Muller S,Menissier-de Murcia J,de Murcia G.XRCC1 is specifically associated with poly(ADP-ribose)polymerase and negatively regulates its activity following DNA damage.Mol Cell Biol 1998;18:3563-71.

    [43]Ceccaldi R,Rondinelli B,D’Andrea AD.Repair Pathway Choices and Consequences at the Double-Strand Break.Trends Cell Biol 2016;26:52-64.

    [44]Chiruvella KK,Liang Z,Wilson TE.Repair of double-strand breaks by end joining.Cold Spring Harb Perspect Biol 2013;5: a012757.

    [45]Karanam K,Kafri R,Loewer A,Lahav G.Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase.Mol Cell 2012;47:320-9.

    [46]Lieber MR.The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway.Annu Rev Biochem 2010;79:181-211.

    [47]Morrison C,Smith GC,Stingl L,Jackson SP,Wagner EF,Wang ZQ.Genetic interaction between PARP and DNA-PK in V(D)J recombination and tumorigenesis.Nat Genet 1997;17:479-82.

    [48]Ruscetti T,Lehnert BE,Halbrook J,Le Trong H,Hoekstra MF,Chen DJ,et al.Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose)polymerase.J Biol Chem 1998;273:14461-7.[49]Spagnolo L,Barbeau J,Curtin NJ,Morris EP,Pearl LH. Visualization of a DNA-PK/PARP1 complex.Nucleic Acids Res 2012;40:4168-77.

    [50]Li M,Lu LY,Yang CY,Wang S,Yu X.The FHA and BRCT domainsrecognizeADP-ribosylationduringDNAdamage response.Genes Dev 2013;27:1752-68.

    [51]Deriano L,Roth DB.Modernizing the nonhomologous endjoining repertoire:alternative and classical NHEJ share the stage. Annu Rev Genet 2013;47:433-55.

    [52]Iliakis G.Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle dependence.Radiother Oncol 2009;92:310-5.

    [53]Schultz N,Lopez E,Saleh-Gohari N,Helleday T.Poly(ADP-ribose)polymerase(PARP-1)has a controlling role in homologous recombination.Nucleic Acids Res 2003;31:4959-64.

    [54]West SC.Molecular views of recombination proteins and their control.Nat Rev Mol Cell Biol 2003;4:435-45.

    [55]Heyer WD,Ehmsen KT,Liu J.Regulation of homologous recombination in eukaryotes.Annu Rev Genet 2010;44:113-39.

    [56]Haince JF,McDonald D,Rodrigue A,Dery U,Masson JY,Hendzel MJ,et al.PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites.J Biol Chem 2008;283:1197-208.

    [57]Zhang F,Shi J,Bian C,Yu X.Poly(ADP-Ribose)Mediates the BRCA2-Dependent Early DNA Damage Response.Cell Rep 2015;13:678-89.

    [58]Zhang F,Shi J,Chen SH,Bian C,Yu X.The PIN domain of EXO1 recognizes poly(ADP-ribose)in DNA damage response. Nucleic Acids Res 2015;43:10782-94.

    [59]Zaja R,Mikoc A,Barkauskaite E,Ahel I.Molecular Insights into Poly(ADP-ribose)Recognition and Processing.Biomolecules 2012;3:1-17.

    [60]Ahel I,Ahel D,Matsusaka T,Clark AJ,Pines J,Boulton SJ,et al. Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/ checkpoint proteins.Nature 2008;451:81-5.

    [61]Mehrotra PV,Ahel D,Ryan DP,Weston R,Wiechens N,Kraehenbuehl R,et al.DNA repair factor APLF is a histone chaperone.Mol Cell 2011;41:46-55.

    [62]Oberoi J,Richards MW,Crumpler S,Brown N,Blagg J,Bayliss R.Structural basis of poly(ADP-ribose)recognition by the multizinc binding domain of checkpoint with forkhead-associated and RING Domains(CHFR).J Biol Chem 2010;285:39348-58.

    [63]Li GY,McCulloch RD,F(xiàn)enton AL,Cheung M,Meng L,Ikura M,et al.Structure and identification of ADP-ribose recognition motifs of APLF and role in the DNA damage response.Proc Natl Acad Sci U S A 2010;107:9129-34.

    [64]Wang Z,Michaud GA,Cheng Z,Zhang Y,Hinds TR,F(xiàn)an E,et al.Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose)by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependentubiquitination.GenesDev 2012;26:235-40.

    [65]Kang HC,Lee YI,Shin JH,Andrabi SA,Chi Z,Gagne JP,et al. Iduna is a poly(ADP-ribose)(PAR)-dependent E3 ubiquitin ligase that regulates DNA damage.Proc Natl Acad Sci U S A 2011;108:14103-8.

    [66]Feijs KL,F(xiàn)orst AH,Verheugd P,Luscher B.Macrodomaincontaining proteins:regulating new intracellular functions of mono(ADP-ribosyl)ation.Nat Rev Mol Cell Biol 2013;14:443-51.

    [67]Timinszky G,Till S,Hassa PO,Hothorn M,Kustatscher G,Nijmeijer B,et al.A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation.Nat Struct Mol Biol 2009;16:923-9.

    [68]Kustatscher G,Hothorn M,Pugieux C,Scheffzek K,Ladurner AG.Splicing regulates NAD metabolite binding to histone macroH2A.Nat Struct Mol Biol 2005;12:624-5.

    [69]Gottschalk AJ,Timinszky G,Kong SE,Jin J,Cai Y,Swanson SK,et al.Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler.Proc Natl Acad Sci U S A 2009;106:13770-4.

    [70]Ahel D,Horejsi Z,Wiechens N,Polo SE,Garcia-Wilson E,Ahel I,et al.Poly(ADP-ribose)-dependent regulation of DNA repair by thechromatinremodelingenzymeALC1.Science 2009;325:1240-3.

    [71]Peterson FC,Chen D,Lytle BL,Rossi MN,Ahel I,Denu JM,et al.Orphan macrodomain protein(human C6orf130)is an O-acyl-ADP-ribose deacylase:solution structure and catalytic properties.J Biol Chem 2011;286:35955-65.

    [72]Reinhardt HC,Yaffe MB.Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response.Nat Rev Mol Cell Biol 2013;14:563-80.

    [73]DaRosa PA,Wang Z,Jiang X,Pruneda JN,Cong F,Klevit RE,et al.Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal.Nature 2015;517:223-6.

    [74]Arcus VL,McKenzie JL,Robson J,Cook GM.The PIN-domain ribonucleases and the prokaryotic VapBC toxin-antitoxin array. Protein Eng Des Sel 2011;24:33-40.

    [75]Arcus VL,Rainey PB,Turner SJ.The PIN-domain toxinantitoxin array in mycobacteria.Trends Microbiol 2005;13:360-5.

    [76]Maris C,Dominguez C,Allain FH.The RNA recognition motif,a plastic RNA-binding platform to regulate post-transcriptional gene expression.FEBS J 2005;272:2118-31.

    [77]Gagne JP,Hunter JM,Labrecque B,Chabot B,Poirier GG.A proteomic approach to the identification of heterogeneous nuclear ribonucleoproteins as a new family of poly(ADP-ribose)-binding proteins.Biochem J 2003;371:331-40.

    [78]Ji Y,Tulin AV.Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteinsmodulatessplicing.NucleicAcidsRes 2009;37:3501-13.

    [79]Thandapani P,O’Connor TR,Bailey TL,Richard S.Defining the RGG/RG motif.Mol Cell 2013;50:613-23.

    [80]Izhar L,Adamson B,Ciccia A,Lewis J,Pontano-Vaites L,Leng Y,et al.A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors.Cell Rep 2015;11:1486-500.

    [81]Altmeyer M,Toledo L,Gudjonsson T,Grofte M,Rask MB,Lukas C,et al.The chromatin scaffold protein SAFB1 renders chromatin permissive for DNA damage signaling.Mol Cell 2013;52:206-20.

    [82]Mastrocola AS,Kim SH,Trinh AT,Rodenkirch LA,Tibbetts RS.The RNA-binding protein fused in sarcoma(FUS)functions downstream of poly(ADP-ribose)polymerase(PARP)in response to DNA damage.J Biol Chem 2013;288:24731-41.

    [83]Rulten SL,Rotheray A,Green RL,Grundy GJ,Moore DA,Gomez-Herreros F,et al.PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sitesofoxidativeDNAdamage.NucleicAcidsRes 2014;42:307-14.

    [84]Polo SE,Blackford AN,Chapman JR,Baskcomb L,Gravel S,Rusch A,et al.Regulation of DNA-end resection by hnRNPU-like proteins promotes DNA double-strand break signaling and repair.Mol Cell 2012;45:505-16.

    [85]Hong Z,Jiang J,Ma J,Dai S,Xu T,Li H,et al.The role of hnRPUL1 involved in DNA damage response is related to PARP1.PLoS One 2013;8:e60208.

    [86]Britton S,Dernoncourt E,Delteil C,F(xiàn)roment C,Schiltz O,Salles B,et al.DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res 2014;42:9047-62.

    [87]Weissman AM,Shabek N,Ciechanover A.The predator becomes the prey:regulating the ubiquitin system by ubiquitylation and degradation.Nat Rev Mol Cell Biol 2011;12:605-20.

    [88]Huang SM,Mishina YM,Liu S,Cheung A,Stegmeier F,Michaud GA,et al.Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling.Nature 2009;461:614-20.

    [89]Levaot N,Voytyuk O,Dimitriou I,Sircoulomb F,Chandrakumar A,Deckert M,et al.Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism.Cell 2011;147:1324-39.

    [90]Guettler S,LaRose J,Petsalaki E,Gish G,Scotter A,Pawson T,et al.Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease.Cell 2011;147:1340-54.

    [91]Crafton SM,Bixel K,Hays JL.PARP inhibition and gynecologic malignancies:a review of current literature and on-going trials. Gynecol Oncol 2016.http://dx.doi.org/10.1016/j.ygyno.2016.05.003.

    [92]Raison N,Elhage O,Dasgupta P.Getting personal with prostate cancer:DNA-repair defects and olaparib in metastatic prostate cancer.BJU Int 2016.http://dx.doi.org/10.1111/bju.13522.

    23 February 2016;revised 29 April 2016;accepted 2 May 2016

    *Corresponding author.

    E-mail:xyu@coh.org(Yu X).aORCID:0000-0003-2711-3868.bORCID:0000-0002-0751-7390.

    Peer review under responsibility of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2016.05.001

    1672-0229?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    猜你喜歡
    中共中央辦公廳下文國務(wù)院辦公廳
    新媒體視野下文創(chuàng)產(chǎn)品的營銷與創(chuàng)新
    中共中央辦公廳國務(wù)院辦公廳印發(fā)《關(guān)于調(diào)整完善土地出讓收入使用范圍優(yōu)先支持鄉(xiāng)村振興的意見》
    推進鄉(xiāng)村治理體系 夯實鄉(xiāng)村振興基礎(chǔ)——中共中央辦公廳 國務(wù)院辦公廳印發(fā)《關(guān)于加強和改進鄉(xiāng)村治理的指導(dǎo)意見》
    國務(wù)院辦公廳關(guān)于促進建筑業(yè)持續(xù)健康發(fā)展的意見 國辦發(fā)〔2017〕19號
    青海政報(2017年4期)2017-07-24 14:04:48
    去古代吃頓飯(上)
    國務(wù)院辦公廳關(guān)于創(chuàng)建“中國制造2025”國家級示范區(qū)的通知
    青海政報(2017年22期)2017-04-09 06:45:55
    國務(wù)院辦公廳關(guān)于推廣支持創(chuàng)新相關(guān)改革舉措的通知
    青海政報(2017年21期)2017-03-16 06:05:09
    國務(wù)院辦公廳關(guān)于加強環(huán)境監(jiān)管執(zhí)法的通知
    天津造紙(2016年2期)2017-01-15 14:03:36
    中共中央辦公廳印發(fā)《科協(xié)系統(tǒng)深化改革實施方案》
    天津造紙(2016年2期)2017-01-15 14:03:32
    水能生火
    成人黄色视频免费在线看| 亚洲精品美女久久av网站| 一级作爱视频免费观看| 亚洲色图 男人天堂 中文字幕| 精品福利永久在线观看| 国产精品一区二区精品视频观看| 99久久精品国产亚洲精品| 18在线观看网站| 国产一区二区三区在线臀色熟女 | 美女视频免费永久观看网站| 9热在线视频观看99| 亚洲专区中文字幕在线| 国产不卡av网站在线观看| 香蕉丝袜av| 免费在线观看黄色视频的| 我的亚洲天堂| 久久久精品区二区三区| 亚洲久久久国产精品| 视频在线观看一区二区三区| 国产aⅴ精品一区二区三区波| 亚洲一区中文字幕在线| 久久精品熟女亚洲av麻豆精品| 精品免费久久久久久久清纯 | 国产淫语在线视频| 电影成人av| 777米奇影视久久| 成人永久免费在线观看视频| 欧美精品高潮呻吟av久久| 亚洲性夜色夜夜综合| 国产成人av教育| 啦啦啦在线免费观看视频4| 999久久久精品免费观看国产| avwww免费| 久久午夜亚洲精品久久| 亚洲欧洲精品一区二区精品久久久| www.999成人在线观看| 午夜激情av网站| 久久草成人影院| 少妇裸体淫交视频免费看高清 | 色尼玛亚洲综合影院| 国内久久婷婷六月综合欲色啪| 夜夜躁狠狠躁天天躁| 侵犯人妻中文字幕一二三四区| 精品国产一区二区三区四区第35| av超薄肉色丝袜交足视频| 熟女少妇亚洲综合色aaa.| 欧美 亚洲 国产 日韩一| videos熟女内射| 天天添夜夜摸| 婷婷丁香在线五月| 亚洲欧美日韩另类电影网站| 他把我摸到了高潮在线观看| 午夜精品在线福利| 淫妇啪啪啪对白视频| 建设人人有责人人尽责人人享有的| 亚洲视频免费观看视频| 久久午夜亚洲精品久久| 一级毛片女人18水好多| 国产高清视频在线播放一区| 国产男女超爽视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成人手机| 一级a爱视频在线免费观看| 国产精品久久久av美女十八| 亚洲欧美一区二区三区久久| 香蕉国产在线看| 欧美激情 高清一区二区三区| 在线观看免费视频日本深夜| 亚洲熟女毛片儿| 天天影视国产精品| 欧美av亚洲av综合av国产av| 999久久久精品免费观看国产| 99久久精品国产亚洲精品| 国产精品免费大片| 99精品在免费线老司机午夜| 成年人午夜在线观看视频| 老熟妇仑乱视频hdxx| 1024香蕉在线观看| 99热国产这里只有精品6| 一级毛片高清免费大全| 婷婷精品国产亚洲av在线 | 午夜免费鲁丝| 极品少妇高潮喷水抽搐| 免费女性裸体啪啪无遮挡网站| 老司机午夜福利在线观看视频| 久久精品亚洲熟妇少妇任你| 欧美老熟妇乱子伦牲交| 99久久国产精品久久久| 老熟妇乱子伦视频在线观看| 91精品三级在线观看| 欧美日韩一级在线毛片| 757午夜福利合集在线观看| 一区福利在线观看| 国产亚洲精品久久久久久毛片 | 久久久久久亚洲精品国产蜜桃av| 久久久水蜜桃国产精品网| 久久久久久久精品吃奶| 亚洲五月婷婷丁香| 国产色视频综合| 在线视频色国产色| 91在线观看av| 国产精品99久久99久久久不卡| 好看av亚洲va欧美ⅴa在| 99国产精品99久久久久| 黑人猛操日本美女一级片| 黄色视频,在线免费观看| 亚洲av日韩在线播放| 这个男人来自地球电影免费观看| 免费不卡黄色视频| 欧美国产精品一级二级三级| 国精品久久久久久国模美| 美女福利国产在线| 亚洲全国av大片| 成人亚洲精品一区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久婷婷成人综合色麻豆| 国产欧美日韩精品亚洲av| 无人区码免费观看不卡| 亚洲色图av天堂| 久久天堂一区二区三区四区| 后天国语完整版免费观看| 在线观看免费高清a一片| 黑人巨大精品欧美一区二区mp4| 97人妻天天添夜夜摸| 日韩欧美免费精品| 黄色成人免费大全| 午夜激情av网站| 久久热在线av| 嫁个100分男人电影在线观看| 美女高潮喷水抽搐中文字幕| 国产精品久久久久久精品古装| 天天影视国产精品| 国产精品免费一区二区三区在线 | 精品久久久久久久久久免费视频 | 中文字幕另类日韩欧美亚洲嫩草| 香蕉丝袜av| 欧美精品一区二区免费开放| 国产男女内射视频| 亚洲 欧美一区二区三区| 亚洲一区二区三区欧美精品| 国产亚洲欧美精品永久| 欧美亚洲日本最大视频资源| 满18在线观看网站| 日日夜夜操网爽| 国产亚洲精品第一综合不卡| 亚洲黑人精品在线| 久久青草综合色| 极品少妇高潮喷水抽搐| 久久性视频一级片| 超碰成人久久| 亚洲熟妇中文字幕五十中出 | 一区二区三区国产精品乱码| 免费在线观看影片大全网站| 美女午夜性视频免费| 亚洲欧美激情在线| 午夜视频精品福利| 亚洲专区字幕在线| 亚洲国产中文字幕在线视频| 黄色怎么调成土黄色| 女人爽到高潮嗷嗷叫在线视频| 91精品国产国语对白视频| 9191精品国产免费久久| 亚洲av片天天在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 国产精品免费视频内射| 国产成人欧美| 男人舔女人的私密视频| 男女高潮啪啪啪动态图| 国精品久久久久久国模美| 国产精品1区2区在线观看. | 久热这里只有精品99| 成人免费观看视频高清| 欧美成狂野欧美在线观看| 国产精品亚洲av一区麻豆| 少妇猛男粗大的猛烈进出视频| 欧美 日韩 精品 国产| 99热只有精品国产| 久久久精品国产亚洲av高清涩受| 又紧又爽又黄一区二区| 欧美激情 高清一区二区三区| 亚洲国产欧美一区二区综合| xxx96com| 成人18禁高潮啪啪吃奶动态图| 免费久久久久久久精品成人欧美视频| 99国产精品99久久久久| 久久精品aⅴ一区二区三区四区| 欧美在线一区亚洲| 午夜福利,免费看| 国产男靠女视频免费网站| 丰满的人妻完整版| 精品久久久久久久毛片微露脸| 大香蕉久久成人网| 一区二区三区精品91| 日本vs欧美在线观看视频| 亚洲欧美日韩高清在线视频| 欧美成人午夜精品| 大香蕉久久网| 久久ye,这里只有精品| 好男人电影高清在线观看| 交换朋友夫妻互换小说| 亚洲国产欧美网| 另类亚洲欧美激情| 亚洲精品乱久久久久久| 女人被躁到高潮嗷嗷叫费观| 久久精品成人免费网站| 欧美乱码精品一区二区三区| 久久久久精品人妻al黑| 色综合欧美亚洲国产小说| 欧美 日韩 精品 国产| 亚洲一码二码三码区别大吗| 免费观看精品视频网站| 日韩欧美一区二区三区在线观看 | 国产精品一区二区精品视频观看| 丰满迷人的少妇在线观看| 精品国内亚洲2022精品成人 | 亚洲伊人色综图| 国产亚洲欧美在线一区二区| 久久精品亚洲av国产电影网| 精品久久久久久久久久免费视频 | 成人特级黄色片久久久久久久| 欧美成人午夜精品| 午夜福利欧美成人| 人人妻人人澡人人爽人人夜夜| 久9热在线精品视频| 淫妇啪啪啪对白视频| 少妇 在线观看| 久久精品国产亚洲av香蕉五月 | 国产精品影院久久| 亚洲熟女精品中文字幕| 97人妻天天添夜夜摸| 色94色欧美一区二区| 伦理电影免费视频| avwww免费| 国产麻豆69| 建设人人有责人人尽责人人享有的| 丝袜美腿诱惑在线| 日日夜夜操网爽| av在线播放免费不卡| 日本一区二区免费在线视频| 在线观看www视频免费| 少妇裸体淫交视频免费看高清 | 欧美性长视频在线观看| 露出奶头的视频| 日韩三级视频一区二区三区| 国产欧美日韩综合在线一区二区| 亚洲三区欧美一区| 国产精品久久视频播放| 久久久久国产精品人妻aⅴ院 | 岛国在线观看网站| 午夜91福利影院| 亚洲午夜精品一区,二区,三区| 亚洲国产欧美日韩在线播放| 国产av一区二区精品久久| 中文字幕另类日韩欧美亚洲嫩草| 亚洲人成伊人成综合网2020| 欧美日韩国产mv在线观看视频| 亚洲 国产 在线| 国产亚洲欧美在线一区二区| 国产成人一区二区三区免费视频网站| 欧美黄色片欧美黄色片| 男女下面插进去视频免费观看| 极品人妻少妇av视频| 免费一级毛片在线播放高清视频 | 嫁个100分男人电影在线观看| 国产亚洲欧美精品永久| 变态另类成人亚洲欧美熟女 | av视频免费观看在线观看| 国产亚洲欧美98| 身体一侧抽搐| 母亲3免费完整高清在线观看| 看黄色毛片网站| 国产精品二区激情视频| 精品第一国产精品| 一进一出好大好爽视频| 老司机福利观看| 91字幕亚洲| 一区二区三区精品91| 欧美激情久久久久久爽电影 | 啦啦啦 在线观看视频| 在线播放国产精品三级| 国产一区在线观看成人免费| 国产单亲对白刺激| 亚洲美女黄片视频| 女警被强在线播放| 18禁观看日本| 免费在线观看黄色视频的| 亚洲中文字幕日韩| 十八禁人妻一区二区| 色婷婷久久久亚洲欧美| 久久中文字幕人妻熟女| 丁香六月欧美| 岛国毛片在线播放| 国精品久久久久久国模美| a级片在线免费高清观看视频| 中国美女看黄片| 99热国产这里只有精品6| 亚洲精品久久午夜乱码| 成人国产一区最新在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 日韩欧美一区二区三区在线观看 | 韩国精品一区二区三区| 宅男免费午夜| 嫁个100分男人电影在线观看| 亚洲精品国产色婷婷电影| 国产无遮挡羞羞视频在线观看| 岛国毛片在线播放| 首页视频小说图片口味搜索| 女性被躁到高潮视频| 欧美激情 高清一区二区三区| 亚洲综合色网址| av天堂在线播放| 99香蕉大伊视频| 中文亚洲av片在线观看爽 | 超碰97精品在线观看| 午夜福利在线观看吧| 老司机深夜福利视频在线观看| 一个人免费在线观看的高清视频| 精品高清国产在线一区| 90打野战视频偷拍视频| 亚洲av成人一区二区三| 黑丝袜美女国产一区| 99国产精品99久久久久| 成人免费观看视频高清| 香蕉国产在线看| 变态另类成人亚洲欧美熟女 | 99热国产这里只有精品6| 香蕉久久夜色| 午夜影院日韩av| 亚洲一区二区三区欧美精品| 制服人妻中文乱码| 亚洲精华国产精华精| av一本久久久久| 亚洲成人免费电影在线观看| 欧美黑人欧美精品刺激| 久久久国产成人免费| 久久青草综合色| 午夜福利视频在线观看免费| 久久久久久亚洲精品国产蜜桃av| 无遮挡黄片免费观看| 色婷婷av一区二区三区视频| videos熟女内射| 日本vs欧美在线观看视频| 成人国产一区最新在线观看| 精品久久久久久电影网| 99久久人妻综合| 三级毛片av免费| 91字幕亚洲| 国产精品美女特级片免费视频播放器 | 视频区图区小说| 午夜精品国产一区二区电影| 无人区码免费观看不卡| 涩涩av久久男人的天堂| 日本撒尿小便嘘嘘汇集6| 国产在线一区二区三区精| 精品国产一区二区久久| 国产野战对白在线观看| 久久草成人影院| 国产在线观看jvid| 在线av久久热| 午夜福利视频在线观看免费| 欧美成人免费av一区二区三区 | 国产成人一区二区三区免费视频网站| av天堂在线播放| 老司机午夜十八禁免费视频| 午夜福利视频在线观看免费| 人妻久久中文字幕网| 亚洲国产看品久久| 午夜成年电影在线免费观看| 亚洲专区国产一区二区| 中文字幕最新亚洲高清| 999精品在线视频| 欧美 亚洲 国产 日韩一| 日韩制服丝袜自拍偷拍| 香蕉丝袜av| 色综合欧美亚洲国产小说| 999精品在线视频| 在线天堂中文资源库| 亚洲免费av在线视频| 伊人久久大香线蕉亚洲五| 国产成人av教育| 亚洲 国产 在线| 国产麻豆69| av中文乱码字幕在线| 夜夜夜夜夜久久久久| 精品亚洲成a人片在线观看| 亚洲成a人片在线一区二区| 极品少妇高潮喷水抽搐| 大码成人一级视频| 久久精品国产亚洲av香蕉五月 | 亚洲第一av免费看| svipshipincom国产片| 久久久精品免费免费高清| 国产成人啪精品午夜网站| 午夜福利一区二区在线看| 黄色丝袜av网址大全| 欧美激情 高清一区二区三区| 国产在线精品亚洲第一网站| 国产精品九九99| 真人做人爱边吃奶动态| 日韩欧美免费精品| 国产乱人伦免费视频| 中亚洲国语对白在线视频| 国产精品亚洲一级av第二区| 久9热在线精品视频| 亚洲全国av大片| 99热网站在线观看| 91成人精品电影| 两人在一起打扑克的视频| 亚洲国产毛片av蜜桃av| 色尼玛亚洲综合影院| 黄片小视频在线播放| 91老司机精品| 19禁男女啪啪无遮挡网站| xxxhd国产人妻xxx| 国产免费现黄频在线看| 热99国产精品久久久久久7| 大型av网站在线播放| 亚洲精品一卡2卡三卡4卡5卡| 亚洲人成电影观看| 美女视频免费永久观看网站| 日韩一卡2卡3卡4卡2021年| 精品亚洲成a人片在线观看| 亚洲第一欧美日韩一区二区三区| 国产免费av片在线观看野外av| 精品第一国产精品| videosex国产| 老司机亚洲免费影院| 久久久久久久久久久久大奶| 国产亚洲一区二区精品| 一进一出抽搐动态| 亚洲国产毛片av蜜桃av| 男男h啪啪无遮挡| 身体一侧抽搐| 黑丝袜美女国产一区| 精品第一国产精品| 新久久久久国产一级毛片| 青草久久国产| 亚洲欧美精品综合一区二区三区| 啦啦啦视频在线资源免费观看| 女人被躁到高潮嗷嗷叫费观| 精品国产乱码久久久久久男人| 一区二区三区精品91| 九色亚洲精品在线播放| 免费观看a级毛片全部| 老熟女久久久| 亚洲综合色网址| 在线观看免费视频网站a站| 亚洲国产中文字幕在线视频| 亚洲熟妇中文字幕五十中出 | 又黄又粗又硬又大视频| 母亲3免费完整高清在线观看| 精品国产亚洲在线| 精品国产一区二区久久| 一a级毛片在线观看| 最近最新中文字幕大全电影3 | 国产精品免费大片| 99re6热这里在线精品视频| 免费一级毛片在线播放高清视频 | 老汉色av国产亚洲站长工具| 美国免费a级毛片| 免费人成视频x8x8入口观看| 动漫黄色视频在线观看| 国产欧美日韩综合在线一区二区| 精品国产乱码久久久久久男人| av网站在线播放免费| 国产精品久久久av美女十八| 亚洲综合色网址| 一区二区日韩欧美中文字幕| 亚洲精品国产色婷婷电影| 亚洲,欧美精品.| 人妻丰满熟妇av一区二区三区 | 久久午夜亚洲精品久久| 亚洲欧美激情在线| 一级片免费观看大全| av电影中文网址| 亚洲性夜色夜夜综合| 99久久99久久久精品蜜桃| 正在播放国产对白刺激| 久久久久久久国产电影| 在线观看免费日韩欧美大片| 欧美激情久久久久久爽电影 | 久久 成人 亚洲| 高清视频免费观看一区二区| 正在播放国产对白刺激| av欧美777| 99久久综合精品五月天人人| 99久久人妻综合| 久久久国产成人免费| 天堂俺去俺来也www色官网| 免费观看a级毛片全部| 免费黄频网站在线观看国产| 欧美精品av麻豆av| 亚洲av电影在线进入| 欧美日韩av久久| 一区在线观看完整版| 午夜福利视频在线观看免费| 伦理电影免费视频| 午夜福利在线免费观看网站| 一二三四在线观看免费中文在| 久久影院123| 亚洲欧美色中文字幕在线| 国产精品成人在线| 国产精品1区2区在线观看. | cao死你这个sao货| 女人爽到高潮嗷嗷叫在线视频| 亚洲中文av在线| 亚洲情色 制服丝袜| 1024香蕉在线观看| 首页视频小说图片口味搜索| 男人操女人黄网站| 成人永久免费在线观看视频| 成在线人永久免费视频| 国精品久久久久久国模美| videosex国产| 日日爽夜夜爽网站| 99热只有精品国产| 搡老乐熟女国产| 丰满的人妻完整版| 精品国产乱子伦一区二区三区| 老司机影院毛片| 久久国产精品影院| 日本vs欧美在线观看视频| 国产主播在线观看一区二区| av国产精品久久久久影院| 男女之事视频高清在线观看| 激情视频va一区二区三区| 视频区图区小说| 国产不卡一卡二| 窝窝影院91人妻| 欧美老熟妇乱子伦牲交| 看片在线看免费视频| 久久精品国产亚洲av高清一级| 又紧又爽又黄一区二区| 日本vs欧美在线观看视频| 亚洲视频免费观看视频| 在线观看舔阴道视频| 高清毛片免费观看视频网站 | 欧美日韩瑟瑟在线播放| 亚洲第一欧美日韩一区二区三区| 老熟女久久久| 午夜老司机福利片| 悠悠久久av| 欧美人与性动交α欧美精品济南到| 久久香蕉精品热| 精品熟女少妇八av免费久了| 日本五十路高清| 中亚洲国语对白在线视频| 中文字幕人妻熟女乱码| 变态另类成人亚洲欧美熟女 | 人妻丰满熟妇av一区二区三区 | 成熟少妇高潮喷水视频| 99在线人妻在线中文字幕 | 嫁个100分男人电影在线观看| av天堂在线播放| 最近最新中文字幕大全电影3 | 色综合婷婷激情| 又大又爽又粗| 亚洲成人免费av在线播放| 精品第一国产精品| 18禁美女被吸乳视频| 成人av一区二区三区在线看| 法律面前人人平等表现在哪些方面| 视频区欧美日本亚洲| 侵犯人妻中文字幕一二三四区| e午夜精品久久久久久久| 欧美黑人欧美精品刺激| 色婷婷久久久亚洲欧美| 人人妻人人澡人人看| 91麻豆精品激情在线观看国产 | 精品一区二区三卡| 看片在线看免费视频| 在线观看午夜福利视频| 97人妻天天添夜夜摸| 国产精品一区二区免费欧美| 一a级毛片在线观看| 国产成人欧美在线观看 | 又大又爽又粗| 国产精品久久久久久精品古装| av片东京热男人的天堂| 久久国产精品男人的天堂亚洲| 国产精品久久久av美女十八| 国产国语露脸激情在线看| 天天躁夜夜躁狠狠躁躁| 欧美日韩一级在线毛片| 乱人伦中国视频| 狂野欧美激情性xxxx| 另类亚洲欧美激情| 国产精品电影一区二区三区 | 熟女少妇亚洲综合色aaa.| 丰满的人妻完整版| 一区二区三区国产精品乱码| 18禁裸乳无遮挡免费网站照片 | 免费在线观看亚洲国产| 人人妻人人爽人人添夜夜欢视频| www日本在线高清视频| 热99re8久久精品国产| 久久精品国产清高在天天线| 亚洲一区二区三区不卡视频| 两性夫妻黄色片| 日韩成人在线观看一区二区三区| 窝窝影院91人妻| 免费看十八禁软件| 一级a爱片免费观看的视频| 中文字幕高清在线视频| 欧美乱妇无乱码| 在线观看免费视频网站a站| 女人爽到高潮嗷嗷叫在线视频| 69精品国产乱码久久久| 久久精品国产亚洲av香蕉五月 | 黄片大片在线免费观看| 一级a爱片免费观看的视频| 中文字幕高清在线视频| 久久九九热精品免费| 久久精品熟女亚洲av麻豆精品|