• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Functions of PARylation in DNA Damage Repair Pathways

    2016-09-28 08:02:04HuitingWeiXiaochunYu
    Genomics,Proteomics & Bioinformatics 2016年3期
    關(guān)鍵詞:中共中央辦公廳下文國務(wù)院辦公廳

    Huiting WeiXiaochun Yu*b

    1Department of Immunology,Tianjin Key Laboratory of Cellular and Molecular Immunology,MOE Key Laboratory of Immune Microenvironment and Disease,School of Basic Medical Sciences,Tianjin Medical University,Tianjin 300070,China

    2Department of Cancer Genetics and Epigenetics,Beckman Research Institute,City of Hope Medical Center,Duarte,CA 91010,USA

    ?

    REVIEW

    Functions of PARylation in DNA Damage Repair Pathways

    Huiting Wei1,a,Xiaochun Yu2,*,b

    1Department of Immunology,Tianjin Key Laboratory of Cellular and Molecular Immunology,MOE Key Laboratory of Immune Microenvironment and Disease,School of Basic Medical Sciences,Tianjin Medical University,Tianjin 300070,China

    2Department of Cancer Genetics and Epigenetics,Beckman Research Institute,City of Hope Medical Center,Duarte,CA 91010,USA

    Available online 27 May 2016

    Handled by Zhao-Qi Wang

    KEYWORDS

    Poly ADP-ribosylation;

    PARPs;

    DNA damage response;

    PAR-binding modules;

    Ubiquitination

    AbstractProtein poly ADP-ribosylation(PARylation)is a widespread post-translational modification at DNA lesions,which is catalyzed by poly(ADP-ribose)polymerases(PARPs).This modification regulates a number of biological processes including chromatin reorganization,DNA damage response(DDR),transcriptional regulation,apoptosis,and mitosis.PARP1,functioning as a DNA damage sensor,can be activated by DNA lesions,forming PAR chains that serve as a docking platform for DNA repair factors with high biochemical complexity.Here,we highlight molecular insights into PARylation recognition,the expanding role of PARylation in DDR pathways,and the functional interaction between PARylation and ubiquitination,which will offer us a better understanding of the biological roles of this unique post-translational modification.

    Introduction

    Throughout the biological life,genomic stability of the organisms is always challenged by both endogenous and exogenous toxic stresses[1,2].It has been estimated that every cell could experience up to 105spontaneous DNA lesions per day[3]. To maintain genomic integrity,the organisms have evolved a series of sophisticated and precise mechanisms to protect their genome against the deleterious lesions,including cell cycle checkpoint,diverse DNA repair signaling pathways,chromatin reorganization,and protein modifications[4].Among these responses,poly ADP-ribosylation(PARylation)is a pivotal post-translational protein modification(PTM)that appears rapidly at DNA damage sites[5,6].

    In human,ADP-ribosylation is catalyzed by poly(ADP-ribose)polymerases(PARPs),which consists of 17 members[7-10].PARPs primarily covalently attach the ADP-ribose(ADPR)unit via an ester bond to the carboxyl group of acidic residues such as glutamate or aspartate residues on the target proteins[11,12],but cysteine(Cys)and lysine(Lys)residues could also act as acceptors[13,14].However,most of them are only able to transfer single mono(ADP-ribose)(MAR)group onto their target proteins[5,15].To date,PARP1,2,and 3 have been identified to catalyze PARylation during DNA damage response(DDR)[5,15].In addition,tankyrases including tankyrase-1(PARP5a)and tankyrase-2(PARP5b)have also been shown to contribute to genomic stability[15,16].Among these PARPs,PARP1 is the founding member of PARP family for the synthesis of PAR chains.The mechanism of PARP1 activation by single-strand and double-strand DNA breaks(SSBs and DSBs)is well established[17].Using NAD+as substrate,PARPs repeatedly catalyze the transfer of successive units of ADPR moieties via a unique 2′,1′′-O-glycosidic ribose-ribose bond to target proteins,finally producing PAR chain[5].Several reports have demonstrated that PAR chains can comprise up to 200 ADPR units in length[5,11,17].In addition,PARP1 can introduce branching into PAR chains through the 2′′,1′′′-glycosidic bond[18,19].

    In cells,PAR polymers are primarily degraded by PAR glycohydrolase(PARG),which possesses both exoglycosidic activity and endoglycosidic activity[20-22].PARG efficientlycleavestheunique2′,1′′-glycosidicribose-ribose bonds of the PAR chains and releases the free ADPR moieties[22,23].In addition,ADP-ribosylhydrolase 3(ARH3)also exhibits the PAR-degrading activity,although ARH3 has only exoglycosidase activity[24,25].Neither PARG norARH3canhydrolyzetheproximalprotein-bound ADPR unit from a PAR chain,possibly due to steric hindrance,thus leaving a MARylated protein.MARylated proteins can be recognized by different protein domain and thus serve as scaffolds for recruitment of proteins during diverse biological processes[22,24].Interestingly,a set of Macro domain-containing(MacroD)proteins have been found to exhibit hydrolase activities.These include the terminal ADPR protein glycohydrolase(TARG1/C6orf130)[26],as well as MacroD1 and MacroD2[27-30].Earlier studies showed that these three enzymes can hydrolyze O-acetyl-ADPR,a metabolite derived from NAD during sirtuin2-catalyzed protein deacetylation,regulating diverse biological processes[31].Recently,TARG,MacroD1,and MacroD2 were identified for their action in removal of glutamatespecific ADPR[26,28,29].The hydrolysis of last ADPR from modified protein is the final and rate-limiting step of PAR chain degradation[32].Like many other PTMs,synthesis and degradation of PAR chains is tightly and dynamically controlled in vivo with the half-life of only several minutes[4,27].If PAR chains cannot be hydrolyzed in a timely manner,excessive protein-free PAR chains can induce the apoptosis-like cell death,termed parthanatos[4,27].Parthanatos is another form of programed cell death which is distinct from necrosis and apoptosis.As a distinct death pathway,parthanatos is associated with PARP-1.The synthesis and accumulation of PAR chain will result in mitochondrial depolarization and nuclear apoptosis inducing factor(AIF)translocation,thus inducing cell death[33].

    PARylation and DNA repair pathway

    PARylation in base excision repair/SSB repair process

    The base excision repair/SSB repair process(BER/SSBR)is a pivotal DNA repair signal pathway to repair oxidized bases,apurinic/apyrimidinic sites(AP sites,also known as abasic sites)or SSBs[1].In cells,many chemical alterations such as oxidation,methylation,deamination,and hydroxylation can induce base damage and SSBs[1].In the BER process,damaged bases are cleaved by DNA glycosylases,producing abasic sites,which are next processed by AP endonuclease(APE)into SSBs[2,34].These sites are further repaired through two different pathways termed short-patch repair and long-patch repair,which are distinct in terms of patch sizes and DNA repair factors involved[35].

    PARP1 can physically and functionally interact with SSBR factor X-ray repair cross-complementing protein 1(XRCC1),which plays a major role in SSBR signal pathway,facilitating the recruitment and assembly of the SSBR machinery[35]. OurrecentstudyindicatesthattheBRCA1CTerminus(BRCT)domain of XRCC1 directly binds to PAR chain and mediates early recruitment of XRCC1 to DNA lesions[36].Several reports have also demonstrated that PARP1 is able to interact with key factors of the BER/SSBR process including the DNA glycosylase 8-oxoguanine glycosylase 1(OGG1),XRCC1,DNA polymerase(DNAP)β,DNA ligase III,proliferating cell nuclear antigen(PCNA),aprataxin,and condensin I[37-40]. Many of these factors can undergo PARylation by PARP1(Figure 1).Additionally,PARP2 has also been identified to interact with BER/SSBR proteins such as XRCC1,DNAP β,andDNAligaseIII[41].Thesefindingssupport thatPARchain could provide a landing platform for the recruitment of DNA repair complexes as proposed by Masson et al.in 1998[42].

    PARylation in DSB repair

    DNADSBsareregardedasthemostdetrimentalDNAdamage,whichseriouslyanddirectlythreatengenomicstabilityviainterrupting the physical continuity of the chromosome[1].The failure to repair DSBs will lead to catastrophic consequences such as oncogenesis,cell death,and developmental disorders[1].To deal with DSBs,organisms have employed three major DNA repair mechanisms including classical non-homologous end joining(C-NHEJ),alternative non-homologous end joining(alt-NHEJ),and homologous recombination(HR).The choice ofDNArepairpathwaydependsonwhetherthedamagedDNA end is resected,which is likely mediated by the Mre11/Rad50/ Nbs1(MRN)complexandC-terminal-bindingprotein(CtBP)-interacting protein(CtIP).Once DNA resection is impeded,repair by C-NHEJ is invoked.However,if resection has occurred,HR and alt-NHEJ may compete with each other torepairthedamagedDNA.RAD51formsafilamentatthesite of SSB that drives strand exchange and facilities HR,whereas PARP1 may serve as a platform for recruiting alt-NHEJ repair factors such as DNAP θ[43].

    PARylation in C-NHEJ

    Eukaryocytes mainly employ C-NHEJ to repair damaged DNA.The process is DNA end resection-independent,and is also unrelated to sequence homology.Therefore,C-NHEJ occurs throughout the cell cycle,but predominantly in G0/G1 and G2 phase[44,45].In the process of C-NHEJ,the Ku70/Ku80 heterodimer is recruited to DNA damage sites followed by loading of DNA-dependent protein kinase catalytic subunit(DNA-PKcs).Meanwhile,Ku70/Ku80 heterodimer facilitates the activation of the DNA ligase IV/XRCC4 complex.AccessoryfactorssuchasnucleaseArtemis,aprataxin-polynucleotidekinase-likefactor(APLF),or polynucleotide kinase/phosphatase(PNKP)process the damaged DNA end to be compatible for ligation.At the final step,the activated DNA ligase IV and its cofactor XRCC4,or Cernunnos/XRCC4-like factor(XLF),rejoin the DNA ends[46].

    Figure 1 PARylation mediates DNA damage repair

    Several studies support an important role of PARP1 in CNHEJ.Interaction between PARP1 and DNA-PKcs facilitates genomic integrity during V(D)J recombination and prevents tumor development[47].It is of note that PARP can stimulate DNA-PKcs activity via PARylation in vitro[48].This interaction is further supported by in vivo evidence as reported recently.A structural PARP1/DNA-PKcs/Ku molecular complex has been identified in which PARP1 elicits a major architectural rearrangement of the DNA-PKcs-mediated synapsis[49].Moreover,previous studies from our lab have shown that the BRCT domain of DNA ligase IV directly recognizes the ADP-ribose of PAR chains,which mediates the early recruitment of the ligase to DNA lesions.Such efficient recruitment may facilitate C-NHEJ[50].

    PARylation in alt-NHEJ

    As a new DSB repair signal pathway,alt-NHEJ has attracted much attention recently[46].When classical C-NHEJ is deficient,alt-NHEJ can be initiated by resected DNA end.Compared with C-NHEJ,alt-NHEJ is characterized by the following features:initiated by damaged DNA end resection;independent of the Ku70/Ku80 heterodimer,XRCC4,and DNA ligase IV;using complementary microhomologies—short stretches(1-10 nucleotides)that can anneal,to guide DNA repair and much less faithful than C-NHEJ[51].PARP-1,XRCC1,DNA ligase III,PNKP,WRN,CtIP,NBS1,and ERCC1 have all been implicated in alt-NHEJ[46].PARPs play pivotal roles in this process.PARP1 can recognize the broken DNA ends and create a scaffold for the recruitment of other DNA damage factors involved in alt-NHEJ.Finally,end-rejoining is carried out by the DNA ligase III/XRCC1 complex in coordination with PARP1[52](Figure 1).In addition,both XRCC1 and PNKP can be recruited to the DNA damage sites through PAR binding,which could occur at the early steps of alt-NHEJ[50].

    PARylation in HR

    HR can be activated by single-stranded DNA(ssDNA)resection.The process produces a lagging strand gap or 3′overhang,which is the key step for HR[53].Owing to its requirement for a sister chromatid,HR predominates in S and G2 phases,when the amount of DNA replication is highest and the sister template is available[45,54].HR is typically characterized by error-free[1,55].Using homologous sequence to repair damaged DNA,HR requires strand invasion mediated by the recombinase RAD51.Earlier findings show that PARP1 is dispensable for HR.PARylation appears to have little direct effect on HR since HR is normal in PARP-depleted cells[53].However,PARP1 has been associated with HR-mediated repair and reactivation of stalled replication forks,therefore promoting faithful DNA replication[56].Moreover,PARP1 facilitates recruitment of MRE11 and RAD51,which restart stalled replication BRCA1/2-dependent early DDR[57].The BRCTs of BARD1,theoligonucleotide/oligosaccharidebinding-fold(OB-fold)of BRCA2,and the protein incorporated later into tight junctions(PilT)N terminus(PIN)domain of exonuclease 1(EXO1)are the PAR-binding modules that target these HR repair machineries to DSBs for damaged DNA repair[58].

    PAR-binding modules

    To regulate numerous biological functions,PAR chains must be recognized by diverse proteins such as DDR factors.To date,several distinct classes of PAR-binding modules have been identified.These include the PAR-binding zinc finger(PBZ),the Macro domain,the WWE domain,the BRCT domain,the forkhead-associated(FHA)domain,the OB-fold domain,the PIN domain,and the RNA recognition motif(RRM)domain[9,59].

    PBZ domain

    The recently-identified PBZ domains possess the consensus sequence[K/R]xxCx[F/Y]GxxCxbbxxxxHxxx[F/Y]xH[60]. PBZs are less common in mammalian proteins involved in DNA repair and cell cycle checkpoint,although PBZs are much more widespread in some other eukaryotes[48,60-62].Up till now,PBZ domains are only found in three human proteins,including histone chaperone APLF,checkpoint with FHA and RING finger(CHFR),and sensitive to nitrogen mustard 1A(SNM1A)[48,60-62].Crystal structures of APLF and CHFR show that PBZs are essential for their functions.Initial analysis of CHFR primary sequence has identified a zing finger called C2H2,which binds to PAR efficiently.Therefore,this motif is defined as a new PAR binding module termed PBZ[60].APLF containstwotandemPBZdomainstermedF1andF2.Although F1andF2canrecognizethePARchainindependently,presence of both domains remarkably increase the affinity of PAR chain binding,whichisover1000timesmoreefficientthantheisolated PBZ domain[63].Structural analysis demonstrates that PBZ module contains a central zinc ion coordinated by two cysteine and two histidine residues,which can recognize adenines in two neighboring ADP-ribose units of the PAR chain.This type of recognition renders the PBZ motifs to be the truly specific PAR binding modules[63](Figure 2).

    The WWE domain

    The WWE domain is the most recently discovered PAR-binding domain,named after the three strictly conserved amino acid residues,tryptophan-tryptophan-glutamate(WWE)[64]. The WWE domains,which can recognize iso-ADPR of PAR chain with high affinity,tightly links ubiquitination and PARylation signal pathways.The iso-ADPR which contains a characteristic bond,2′,1′′-O-glycosidic ribose-ribose is the signature of PAR chains[64].The negatively-charged phosphate groups of the iso-ADPR can bind the positively-charged WWE domain[64].The WWE domain is primarily found in two distinct protein families,including the E3 ubiquitin ligases(RNF146,deltex1,and TRIP12)and the PARPs(PARP8 and PARP11-14)[63].So far,the function of WWE domain has been well described for RNF146/Iduna.RNF146 recognizes PAR chain and ubiquitinates DNA repair proteins such as XRCC1,PARP1,DNA ligase III,and Ku70.The PARylated proteins are targeted to proteosome for degradation[64,65]. Taken together,the WWE domain-containing proteins are tightly linked with and influence each other(Figure 2).

    The Macro domain

    The Macro domain,which consists of 130-190 amino acid residues,is evolutionarily conserved and widely spread throughout all kingdoms of organisms.This is distinct from the PBZ and WWE domains.It is estimated that more than 300 proteins,including 11 human proteins,with a diverse set of biological functions possess the Macro domain[66].Macro domains can bind to the terminal ADPR of PAR,MAR,as well as O-acetyl-ADPR[66-68].Some proteins such as amplified in liver cancer 1(ALC1,also known as CHD1L),can interact with PAR chains through Macro domains and catalyze PARP1-stimulated nucleosome sliding,thus participating in DDR and chromatin remodeling[69,70].Some other Macro domain-containing proteins,in addition to their binding ability,also exhibit catalytic activity on the hydrolysis of PAR chains,making the Macro domains unique among the other PAR-binding modules.These include PARG[22],TARG1[26,71],and MacroD1/2[28,31](Figure 2).PARG enzyme uses Macro domain for the binding and hydrolysis of PAR chains,as we outlined above.

    Additional domains

    ItiswellknownthatFHAandBRCTdomainscanbindtophosphorylated proteins and modify protein-protein interactions[72].Recently,it was reported that the phosphate-binding pocket in the central BRCT domain of BARD1 is required forselective binding to PAR chain[50,73].Meanwhile,BRCT domainpromotestheinteractionbetweenBARD1andPARP1. Moreover,the FHA domains of aprataxin(APTX)and PNKP confer affinity to iso-ADPR of PAR chain[50,73].

    Figure 2 PAR-binding modules

    The OB-fold is an ssDNA or ssRNA binding domain that has been found in proteins from all three kingdoms.OB-fold comprises 70-150 AA residues forming five-stranded beta-barrel with a terminating alpha-helix[57].Interestingly,it is reportedrecentlythattheOB-foldcanbindtothePAR-specific iso-ADPR and such binding is required to bring the ssDNA-binding protein 1(SSB1)to sites of DNA damage[58].

    The PIN domain-containing proteins serve as nucleases that cleave ssDNA/ssRNA in a sequence-specific manner[74].The PIN domain consists of~130 amino acid residues characterized by a group of three strictly conserved acidic amino acid residues[75].Our recent study found that the PIN domain of EXO1 recognizes PAR in DDR[58].

    The RRM is one of the most abundant protein domains in eukaryotes,which can serve as a plastic RNA-binding platform to regulate post-transcriptional gene expression[76].Several RRM-containing proteins have been reported to assemble at sites of PAR formation to promote DDR[77,78].

    It is reported that some RNA and DNA binding motifs can recognize PAR chains.Motifs enriched in arginines and glycines,which are termed glycine-arginine-rich(GAR)domains and/or RGG boxes,were identified several decades ago. RGG boxes are found in more than 1000 human proteins that are involved in numerous biological processes including transcription and DDR[79].RGG boxes in the RNA-binding proteins such as FUS/TLS,EWS/EWSR1,TAF15,SAFB1,SAFA,and hnRNPUL1/2,have been identified,and these proteins can be recruited to DNA damage sites via binding to PAR chain through RGG boxes[80-86].

    PARylation and ubiquitination

    Ubiquitin is a small regulatory protein consisting of 76 amino acid residues,which has been found in almost all tissues of eukaryotic organisms.It can be covalently transferred to a Lys residue of an acceptor protein.This process is termed ubiquitination[87].The ubiquitination pathway in cells is an elaborate system for targeting unwanted proteins for degradation,carried out by three classes of enzymes,E1,E2,andE3.Ubiquitinisfirstactivatedbyubiquitinactivating enzyme(E1)before being transferred to the active site of E1 in an ATP-dependent manner.Then the ubiquitin molecule is passed on to the second enzyme,ubiquitinconjugating enzyme(E2),whereubiquitin is linkedby another thioester bond to the Cys active site of E2.Finally,with the help of a third enzyme,ubiquitin protein ligase(E3),ubiquitin is transferred from E2 to a Lys residue on a substrate protein.Additional ubiquitin molecules can be linked to the first one to form a poly-ubiquitin chain usually targeting the protein to the proteasome[87].

    Recent studies have demonstrated that PARylation can serve as a signal for the ubiquitination and promote the degradation of PARsylated proteins[88-90].Some E3 ligases bind PAR via either a WWE(RNF146,also known as Iduna)domain or a PBZ(CHFR)domain[43,44,46].The relationship betweenPARylationandubiquitinationhasbeenwell described in the RING-type E3 ubiquitin ligase,RNF146. The RNF146 WWE domain recognizes the PAR chain via interacting with iso-ADPR(Figure 2),functioning as an allosteric signal that changes the RING domain conformation from a catalytically-inactive state to an active one.RNF146 can polyubiquitylate many repair factors in a PAR-dependent manner,such as PARP-2,XRCC1,DNA ligase III,and Ku70[62].The discovery of a direct connection between PARylation and ubiquitination provides us with a new interpretation of the signaling function of PAR—degradation of proteins in a timely and orchestrated manner.

    Dysregulation of PARylation and human diseases

    PARP1 is a key facilitator of DDR and is implicated in tumorigenesis of several malignancies,particularly those associated with dysfunctional DNA repair pathways[37].Recent studies further demonstrate that transcript,protein,and enzyme activity of PARP1were increased in several tumor types with the most striking differences noticed in ovarian cancer,hepatocellular cancer,colorectal cancer,and leukemia[76-78].Given that PARP1 has an important role in DDR,a novel therapeutic targeting PARP1 has been developed to treat cancers through increasing tumor sensitivity to chemotherapeutic agents and also through inducing‘‘synthetic lethality”in cells[78].Now PARP inhibitors have demonstrated efficacy in a number of tumor types,including platinum-sensitive epithelial ovarian cancer[50],breast cancer with mutation in BRCA1 or BRCA2[91],and prostate cancer[92].Olaparib is a PARP inhibitor that blocks enzymes involved in repairing damaged DNA[92].Recently olaparib has been licensed as monotherapy for the treatment of patients with hereditary BRCA1 or BRCA2 mutations[91].

    Perspectives and conclusions

    Over the last decades,PARylation has been proved to be involved in numerous cellular functions including DDR. PAR serves as an initial sensor and mediates the early recruitment of DNA damage repair machineries.As a kind of protein modification,PARylation is tightly and dynamically regulated. PAR chain synthesis is mediated by several PARPs,whereas PARG mainly takes charge of PAR chain degradation.Great strides have been made in the past few decades to decipher the PARylation regulatory processes and the underlying molecular mechanisms.However,many questions remain to be answered.First,other NAD+-consuming enzymes,such as sirtuin 1,are thought to compete for NAD+with PARPs[9]. What is the reciprocal influence of these enzymes?Moreover,how these DNA damage factors are assembled at the DNA damage sites via PAR chains is still unclear exactly,as PAR chain does not have any sequence specificity.In addition,new molecular or chemical methods need to be developed to better achieve cell-permeable PARG or/and ARH inhibitors.More investigations are needed to address these questions in the future.In this regard,a better understanding of the biochemical and functional properties of PARylation in DNA repair may provide new clues to answer these fundamental questions.

    Competing interests

    The authors declare that they have no competing financial interests.

    Acknowledgments

    References

    [1]Ciccia A,Elledge SJ.The DNA damage response:making it safe to play with knives.Mol Cell 2010;40:179-204.

    [2]Lindahl T,Barnes DE.Repair of endogenous DNA damage.Cold Spring Harb Symp Quant Biol 2000;65:127-33.

    [3]Hoeijmakers JH.DNA damage,aging,and cancer.N Engl J Med 2009;361:1475-85.

    [4]Wang Y,Kim NS,Haince JF,Kang HC,David KK,Andrabi SA,et al.Poly(ADP-ribose)(PAR)binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death(parthanatos).Sci Signal 2011;4:ra20.

    [5]Gibson BA,Kraus WL.New insights into the molecular and cellular functions of poly(ADP-ribose)and PARPs.Nat Rev Mol Cell Biol 2012;13:411-24.

    [6]Perina D,Mikoc A,Ahel J,Cetkovic H,Zaja R,Ahel I. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life.DNA Repair(Amst)2014;23:4-16.

    [7]Luo X,Kraus WL.On PAR with PARP:cellular stress signaling throughpoly(ADP-ribose)andPARP-1.GenesDev 2012;26:417-32.

    十八屆四中全會通過的《中共中央關(guān)于全面推進依法治國若干重大問題的決定》,首次提出實行國家機關(guān)“誰執(zhí)法誰普法”普法責(zé)任制。2017年5月,中共中央辦公廳、國務(wù)院辦公廳印發(fā)《關(guān)于實行國家機關(guān)“誰執(zhí)法誰普法”普法責(zé)任制的意見》(下文簡稱《意見》),《意見》是對黨的十八屆四中全會決定明確提出的實行國家機關(guān)“誰執(zhí)法誰普法”普法責(zé)任制這一重要要求的具體化、規(guī)范化。

    [8]Hakme A,Wong HK,Dantzer F,Schreiber V.The expanding field of poly(ADP-ribosyl)ation reactions.’Protein Modifications: BeyondtheUsualSuspects’ReviewSeries.EMBORep 2008;9:1094-100.

    [9]Hottiger MO.Nuclear ADP-Ribosylation and Its Role in Chromatin Plasticity,Cell Differentiation,and Epigenetics.Annu Rev Biochem 2015;84:227-63.

    [10]Rouleau M,Patel A,Hendzel MJ,Kaufmann SH,Poirier GG. PARPinhibition:PARP1andbeyond.NatRevCancer 2010;10:293-301.

    [11]D’Amours D,Desnoyers S,D’Silva I,Poirier GG.Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 1999;342:249-68.

    [12]Tallis M,Morra R,Barkauskaite E,Ahel I.Poly(ADP-ribosyl)ation in regulation of chromatin structure and the DNA damage response.Chromosoma 2014;123:79-90.

    [13]Altmeyer M,Hottiger MO.Poly(ADP-ribose)polymerase 1 at the crossroad of metabolic stress and inflammation in aging.Aging(Albany NY)2009;1:458-69.

    [14]Vyas S,Chang P.New PARP targets for cancer therapy.Nat Rev Cancer 2014;14:502-9.

    [15]De Vos M,Schreiber V,Dantzer F.The diverse roles and clinical relevance of PARPs in DNA damage repair:current state of the art.Biochem Pharmacol 2012;84:137-46.

    [16]Dregalla RC,Zhou J,Idate RR,Battaglia CL,Liber HL,Bailey SM.Regulatory roles of tankyrase 1 at telomeres and in DNA repair:suppression of T-SCE and stabilization of DNA-PKcs. Aging(Albany NY)2010;2:691-708.

    [17]Juarez-Salinas H,Levi V,Jacobson EL,Jacobson MK.Poly(ADP-ribose)has a branched structure in vivo.J Biol Chem 1982;257:607-9.

    [18]Tanuma S,Kanai Y.Poly(ADP-ribosyl)ation of chromosomal proteinsintheHeLaS3cellcycle.JBiolChem 1982;257:6565-70.

    [19]Miwa M,Saikawa N,Yamaizumi Z,Nishimura S,Sugimura T. Structure of poly(adenosine diphosphate ribose):identification of 2’-[1”-ribosyl-2”-(or3”-)(1”’-ribosyl)]adenosine-5’,5”,5”’-tris(phosphate)as a branch linkage.Proc Natl Acad Sci U S A 1979;76:595-9.

    [20]Dunstan MS,Barkauskaite E,Lafite P,Knezevic CE,Brassington A,Ahel M,et al.Structure and mechanism of a canonical poly(ADP-ribose)glycohydrolase.Nat Commun 2012;3:878.

    [21]Kim IK,Kiefer JR,Ho CM,Stegeman RA,Classen S,Tainer JA,et al.Structure of mammalian poly(ADP-ribose)glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element. Nat Struct Mol Biol 2012;19:653-6.

    [22]Slade D,Dunstan MS,Barkauskaite E,Weston R,Lafite P,Dixon N,et al.The structure and catalytic mechanism of a poly(ADP-ribose)glycohydrolase.Nature 2011;477:616-20.

    [23]Ueda K,Oka J,Naruniya S,Miyakawa N,Hayaishi O.Poly ADP-ribose glycohydrolase from rat liver nuclei,a novel enzyme degradingthepolymer.BiochemBiophysResCommun 1972;46:516-23.

    [24]Mueller-Dieckmann C,Kernstock S,Lisurek M,von Kries JP,Haag F,Weiss MS,et al.The structure of human ADP-ribosylhydrolase 3(ARH3)provides insights into the reversibility of protein ADP-ribosylation.Proc Natl Acad Sci U S A 2006;103:15026-31.

    [25]Niere M,Mashimo M,Agledal L,Dolle C,Kasamatsu A,Kato J,et al.ADP-ribosylhydrolase 3(ARH3),not poly(ADP-ribose)glycohydrolase(PARG)isoforms,is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose).J Biol Chem 2012;287:16088-102.

    [26]Sharifi R,Morra R,Appel CD,Tallis M,Chioza B,Jankevicius G,et al.Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease.EMBO J 2013;32:1225-37.

    [27]Barkauskaite E,Brassington A,Tan ES,Warwicker J,Dunstan MS,Banos B,et al.Visualization of poly(ADP-ribose)bound to PARG reveals inherent balance between exo-and endo-glycohydrolase activities.Nat Commun 2013;4:2164.

    [28]Jankevicius G,Hassler M,Golia B,Rybin V,Zacharias M,Timinszky G,et al.A family of macrodomain proteins reverses cellularmono-ADP-ribosylation.NatStructMolBiol 2013;20:508-14.

    [29]Rosenthal F,F(xiàn)eijs KL,F(xiàn)rugier E,Bonalli M,F(xiàn)orst AH,Imhof R,et al.Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases.Nat Struct Mol Biol 2013;20:502-7.

    [30]Neuvonen M,Ahola T.Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.J Mol Biol 2009;385:212-25.

    [31]Chen D,Vollmar M,Rossi MN,Phillips C,Kraehenbuehl R,Slade D,et al.Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases.J Biol Chem 2011;286:13261-71.

    [32]Wielckens K,Schmidt A,George E,Bredehorst R,Hilz H.DNA fragmentation and NAD depletion.Their relation to the turnover of endogenous mono(ADP-ribosyl)and poly(ADP-ribosyl)proteins.J Biol Chem 1982;257:12872-7.

    [33]Fatokun AA,Dawson VL,Dawson TM.Parthanatos:mitochondrial-linked mechanisms and therapeutic opportunities.Br J Pharmacol 2014;171:2000-16.

    [34]Jiricny J.The multifaceted mismatch-repair system.Nat Rev Mol Cell Biol 2006;7:335-46.

    [35]Caldecott KW.Single-strand break repair and genetic disease. Nat Rev Genet 2008;9:619-31.

    [36]Li M,Yu X.Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation.Cancer Cell 2013;23:693-704.

    [37]Dantzer F,de La Rubia G,Menissier-De Murcia J,Hostomsky Z,de Murcia G,Schreiber V.Base excision repair is impaired in mammalian cells lacking Poly(ADP-ribose)polymerase-1.Biochemistry 2000;39:7559-69.

    [38]Noren Hooten N,Kompaniez K,Barnes J,Lohani A,Evans MK. Poly(ADP-ribose)polymerase 1(PARP-1)binds to 8-oxoguanine-DNA glycosylase(OGG1).J Biol Chem 2011;286:44679-90.

    [39]Frouin I,Maga G,Denegri M,Riva F,Savio M,Spadari S,et al. Human proliferating cell nuclear antigen,poly(ADP-ribose)polymerase-1,and p21waf1/cip1.A dynamic exchange of partners.J Biol Chem 2003;278:39265-8.

    [40]Harris JL,Jakob B,Taucher-Scholz G,Dianov GL,Becherel OJ,Lavin MF.Aprataxin,poly-ADP ribose polymerase 1(PARP-1)and apurinic endonuclease 1(APE1)function together to protect thegenomeagainstoxidativedamage.HumMolGenet 2009;18:4102-17.

    [41]Schreiber V,Ame JC,Dolle P,Schultz I,Rinaldi B,F(xiàn)raulob V,et al.Poly(ADP-ribose)polymerase-2(PARP-2)is required for efficient base excision DNA repair in association with PARP-1 and XRCC1.J Biol Chem 2002;277:23028-36.

    [42]Masson M,Niedergang C,Schreiber V,Muller S,Menissier-de Murcia J,de Murcia G.XRCC1 is specifically associated with poly(ADP-ribose)polymerase and negatively regulates its activity following DNA damage.Mol Cell Biol 1998;18:3563-71.

    [43]Ceccaldi R,Rondinelli B,D’Andrea AD.Repair Pathway Choices and Consequences at the Double-Strand Break.Trends Cell Biol 2016;26:52-64.

    [44]Chiruvella KK,Liang Z,Wilson TE.Repair of double-strand breaks by end joining.Cold Spring Harb Perspect Biol 2013;5: a012757.

    [45]Karanam K,Kafri R,Loewer A,Lahav G.Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase.Mol Cell 2012;47:320-9.

    [46]Lieber MR.The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway.Annu Rev Biochem 2010;79:181-211.

    [47]Morrison C,Smith GC,Stingl L,Jackson SP,Wagner EF,Wang ZQ.Genetic interaction between PARP and DNA-PK in V(D)J recombination and tumorigenesis.Nat Genet 1997;17:479-82.

    [48]Ruscetti T,Lehnert BE,Halbrook J,Le Trong H,Hoekstra MF,Chen DJ,et al.Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose)polymerase.J Biol Chem 1998;273:14461-7.[49]Spagnolo L,Barbeau J,Curtin NJ,Morris EP,Pearl LH. Visualization of a DNA-PK/PARP1 complex.Nucleic Acids Res 2012;40:4168-77.

    [50]Li M,Lu LY,Yang CY,Wang S,Yu X.The FHA and BRCT domainsrecognizeADP-ribosylationduringDNAdamage response.Genes Dev 2013;27:1752-68.

    [51]Deriano L,Roth DB.Modernizing the nonhomologous endjoining repertoire:alternative and classical NHEJ share the stage. Annu Rev Genet 2013;47:433-55.

    [52]Iliakis G.Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle dependence.Radiother Oncol 2009;92:310-5.

    [53]Schultz N,Lopez E,Saleh-Gohari N,Helleday T.Poly(ADP-ribose)polymerase(PARP-1)has a controlling role in homologous recombination.Nucleic Acids Res 2003;31:4959-64.

    [54]West SC.Molecular views of recombination proteins and their control.Nat Rev Mol Cell Biol 2003;4:435-45.

    [55]Heyer WD,Ehmsen KT,Liu J.Regulation of homologous recombination in eukaryotes.Annu Rev Genet 2010;44:113-39.

    [56]Haince JF,McDonald D,Rodrigue A,Dery U,Masson JY,Hendzel MJ,et al.PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites.J Biol Chem 2008;283:1197-208.

    [57]Zhang F,Shi J,Bian C,Yu X.Poly(ADP-Ribose)Mediates the BRCA2-Dependent Early DNA Damage Response.Cell Rep 2015;13:678-89.

    [58]Zhang F,Shi J,Chen SH,Bian C,Yu X.The PIN domain of EXO1 recognizes poly(ADP-ribose)in DNA damage response. Nucleic Acids Res 2015;43:10782-94.

    [59]Zaja R,Mikoc A,Barkauskaite E,Ahel I.Molecular Insights into Poly(ADP-ribose)Recognition and Processing.Biomolecules 2012;3:1-17.

    [60]Ahel I,Ahel D,Matsusaka T,Clark AJ,Pines J,Boulton SJ,et al. Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/ checkpoint proteins.Nature 2008;451:81-5.

    [61]Mehrotra PV,Ahel D,Ryan DP,Weston R,Wiechens N,Kraehenbuehl R,et al.DNA repair factor APLF is a histone chaperone.Mol Cell 2011;41:46-55.

    [62]Oberoi J,Richards MW,Crumpler S,Brown N,Blagg J,Bayliss R.Structural basis of poly(ADP-ribose)recognition by the multizinc binding domain of checkpoint with forkhead-associated and RING Domains(CHFR).J Biol Chem 2010;285:39348-58.

    [63]Li GY,McCulloch RD,F(xiàn)enton AL,Cheung M,Meng L,Ikura M,et al.Structure and identification of ADP-ribose recognition motifs of APLF and role in the DNA damage response.Proc Natl Acad Sci U S A 2010;107:9129-34.

    [64]Wang Z,Michaud GA,Cheng Z,Zhang Y,Hinds TR,F(xiàn)an E,et al.Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose)by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependentubiquitination.GenesDev 2012;26:235-40.

    [65]Kang HC,Lee YI,Shin JH,Andrabi SA,Chi Z,Gagne JP,et al. Iduna is a poly(ADP-ribose)(PAR)-dependent E3 ubiquitin ligase that regulates DNA damage.Proc Natl Acad Sci U S A 2011;108:14103-8.

    [66]Feijs KL,F(xiàn)orst AH,Verheugd P,Luscher B.Macrodomaincontaining proteins:regulating new intracellular functions of mono(ADP-ribosyl)ation.Nat Rev Mol Cell Biol 2013;14:443-51.

    [67]Timinszky G,Till S,Hassa PO,Hothorn M,Kustatscher G,Nijmeijer B,et al.A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation.Nat Struct Mol Biol 2009;16:923-9.

    [68]Kustatscher G,Hothorn M,Pugieux C,Scheffzek K,Ladurner AG.Splicing regulates NAD metabolite binding to histone macroH2A.Nat Struct Mol Biol 2005;12:624-5.

    [69]Gottschalk AJ,Timinszky G,Kong SE,Jin J,Cai Y,Swanson SK,et al.Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler.Proc Natl Acad Sci U S A 2009;106:13770-4.

    [70]Ahel D,Horejsi Z,Wiechens N,Polo SE,Garcia-Wilson E,Ahel I,et al.Poly(ADP-ribose)-dependent regulation of DNA repair by thechromatinremodelingenzymeALC1.Science 2009;325:1240-3.

    [71]Peterson FC,Chen D,Lytle BL,Rossi MN,Ahel I,Denu JM,et al.Orphan macrodomain protein(human C6orf130)is an O-acyl-ADP-ribose deacylase:solution structure and catalytic properties.J Biol Chem 2011;286:35955-65.

    [72]Reinhardt HC,Yaffe MB.Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response.Nat Rev Mol Cell Biol 2013;14:563-80.

    [73]DaRosa PA,Wang Z,Jiang X,Pruneda JN,Cong F,Klevit RE,et al.Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal.Nature 2015;517:223-6.

    [74]Arcus VL,McKenzie JL,Robson J,Cook GM.The PIN-domain ribonucleases and the prokaryotic VapBC toxin-antitoxin array. Protein Eng Des Sel 2011;24:33-40.

    [75]Arcus VL,Rainey PB,Turner SJ.The PIN-domain toxinantitoxin array in mycobacteria.Trends Microbiol 2005;13:360-5.

    [76]Maris C,Dominguez C,Allain FH.The RNA recognition motif,a plastic RNA-binding platform to regulate post-transcriptional gene expression.FEBS J 2005;272:2118-31.

    [77]Gagne JP,Hunter JM,Labrecque B,Chabot B,Poirier GG.A proteomic approach to the identification of heterogeneous nuclear ribonucleoproteins as a new family of poly(ADP-ribose)-binding proteins.Biochem J 2003;371:331-40.

    [78]Ji Y,Tulin AV.Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteinsmodulatessplicing.NucleicAcidsRes 2009;37:3501-13.

    [79]Thandapani P,O’Connor TR,Bailey TL,Richard S.Defining the RGG/RG motif.Mol Cell 2013;50:613-23.

    [80]Izhar L,Adamson B,Ciccia A,Lewis J,Pontano-Vaites L,Leng Y,et al.A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors.Cell Rep 2015;11:1486-500.

    [81]Altmeyer M,Toledo L,Gudjonsson T,Grofte M,Rask MB,Lukas C,et al.The chromatin scaffold protein SAFB1 renders chromatin permissive for DNA damage signaling.Mol Cell 2013;52:206-20.

    [82]Mastrocola AS,Kim SH,Trinh AT,Rodenkirch LA,Tibbetts RS.The RNA-binding protein fused in sarcoma(FUS)functions downstream of poly(ADP-ribose)polymerase(PARP)in response to DNA damage.J Biol Chem 2013;288:24731-41.

    [83]Rulten SL,Rotheray A,Green RL,Grundy GJ,Moore DA,Gomez-Herreros F,et al.PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sitesofoxidativeDNAdamage.NucleicAcidsRes 2014;42:307-14.

    [84]Polo SE,Blackford AN,Chapman JR,Baskcomb L,Gravel S,Rusch A,et al.Regulation of DNA-end resection by hnRNPU-like proteins promotes DNA double-strand break signaling and repair.Mol Cell 2012;45:505-16.

    [85]Hong Z,Jiang J,Ma J,Dai S,Xu T,Li H,et al.The role of hnRPUL1 involved in DNA damage response is related to PARP1.PLoS One 2013;8:e60208.

    [86]Britton S,Dernoncourt E,Delteil C,F(xiàn)roment C,Schiltz O,Salles B,et al.DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res 2014;42:9047-62.

    [87]Weissman AM,Shabek N,Ciechanover A.The predator becomes the prey:regulating the ubiquitin system by ubiquitylation and degradation.Nat Rev Mol Cell Biol 2011;12:605-20.

    [88]Huang SM,Mishina YM,Liu S,Cheung A,Stegmeier F,Michaud GA,et al.Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling.Nature 2009;461:614-20.

    [89]Levaot N,Voytyuk O,Dimitriou I,Sircoulomb F,Chandrakumar A,Deckert M,et al.Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism.Cell 2011;147:1324-39.

    [90]Guettler S,LaRose J,Petsalaki E,Gish G,Scotter A,Pawson T,et al.Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease.Cell 2011;147:1340-54.

    [91]Crafton SM,Bixel K,Hays JL.PARP inhibition and gynecologic malignancies:a review of current literature and on-going trials. Gynecol Oncol 2016.http://dx.doi.org/10.1016/j.ygyno.2016.05.003.

    [92]Raison N,Elhage O,Dasgupta P.Getting personal with prostate cancer:DNA-repair defects and olaparib in metastatic prostate cancer.BJU Int 2016.http://dx.doi.org/10.1111/bju.13522.

    23 February 2016;revised 29 April 2016;accepted 2 May 2016

    *Corresponding author.

    E-mail:xyu@coh.org(Yu X).aORCID:0000-0003-2711-3868.bORCID:0000-0002-0751-7390.

    Peer review under responsibility of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2016.05.001

    1672-0229?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    猜你喜歡
    中共中央辦公廳下文國務(wù)院辦公廳
    新媒體視野下文創(chuàng)產(chǎn)品的營銷與創(chuàng)新
    中共中央辦公廳國務(wù)院辦公廳印發(fā)《關(guān)于調(diào)整完善土地出讓收入使用范圍優(yōu)先支持鄉(xiāng)村振興的意見》
    推進鄉(xiāng)村治理體系 夯實鄉(xiāng)村振興基礎(chǔ)——中共中央辦公廳 國務(wù)院辦公廳印發(fā)《關(guān)于加強和改進鄉(xiāng)村治理的指導(dǎo)意見》
    國務(wù)院辦公廳關(guān)于促進建筑業(yè)持續(xù)健康發(fā)展的意見 國辦發(fā)〔2017〕19號
    青海政報(2017年4期)2017-07-24 14:04:48
    去古代吃頓飯(上)
    國務(wù)院辦公廳關(guān)于創(chuàng)建“中國制造2025”國家級示范區(qū)的通知
    青海政報(2017年22期)2017-04-09 06:45:55
    國務(wù)院辦公廳關(guān)于推廣支持創(chuàng)新相關(guān)改革舉措的通知
    青海政報(2017年21期)2017-03-16 06:05:09
    國務(wù)院辦公廳關(guān)于加強環(huán)境監(jiān)管執(zhí)法的通知
    天津造紙(2016年2期)2017-01-15 14:03:36
    中共中央辦公廳印發(fā)《科協(xié)系統(tǒng)深化改革實施方案》
    天津造紙(2016年2期)2017-01-15 14:03:32
    水能生火
    日日啪夜夜爽| 熟女电影av网| av在线观看视频网站免费| 亚洲国产精品专区欧美| 大片免费播放器 马上看| 韩国av在线不卡| 日韩免费高清中文字幕av| 精品人妻熟女av久视频| av黄色大香蕉| 伊人久久国产一区二区| 男人狂女人下面高潮的视频| 国产精品久久久久久精品电影小说| 色婷婷久久久亚洲欧美| 国产中年淑女户外野战色| 热re99久久精品国产66热6| 视频中文字幕在线观看| 亚洲av男天堂| 精品久久国产蜜桃| 国产成人a∨麻豆精品| 久久99热这里只频精品6学生| 91久久精品国产一区二区三区| 国国产精品蜜臀av免费| www.色视频.com| 亚洲国产av新网站| 欧美bdsm另类| 亚洲av.av天堂| 一本—道久久a久久精品蜜桃钙片| xxx大片免费视频| 国产男人的电影天堂91| 大片电影免费在线观看免费| 成人特级av手机在线观看| 观看美女的网站| 午夜福利视频精品| 插阴视频在线观看视频| 日韩亚洲欧美综合| 99热全是精品| 久久久久久人妻| 日韩一区二区视频免费看| 日本黄色日本黄色录像| 久久精品国产自在天天线| 一级毛片久久久久久久久女| 国产精品国产三级国产专区5o| 成年女人在线观看亚洲视频| 插逼视频在线观看| 日韩三级伦理在线观看| 日韩亚洲欧美综合| 另类亚洲欧美激情| 日本与韩国留学比较| 国产精品欧美亚洲77777| 女性被躁到高潮视频| 国产乱人偷精品视频| 亚洲人成网站在线观看播放| 性高湖久久久久久久久免费观看| 国产av码专区亚洲av| 国产精品国产三级专区第一集| 搡女人真爽免费视频火全软件| 日韩中文字幕视频在线看片| 最近中文字幕高清免费大全6| 插阴视频在线观看视频| 国产成人aa在线观看| 婷婷色av中文字幕| 久久久久久久久久久丰满| 日本欧美视频一区| 欧美高清成人免费视频www| 十八禁网站网址无遮挡 | 日本猛色少妇xxxxx猛交久久| 一级二级三级毛片免费看| 亚洲成人手机| a 毛片基地| 极品教师在线视频| 久久久国产欧美日韩av| 另类亚洲欧美激情| 深夜a级毛片| 亚洲情色 制服丝袜| 在线免费观看不下载黄p国产| 男人添女人高潮全过程视频| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 婷婷色av中文字幕| 国产男女超爽视频在线观看| 国产伦精品一区二区三区视频9| 91精品国产国语对白视频| 国产一级毛片在线| 免费av不卡在线播放| 国产极品粉嫩免费观看在线 | 夜夜骑夜夜射夜夜干| 十八禁高潮呻吟视频 | 午夜福利影视在线免费观看| 夜夜爽夜夜爽视频| 国产精品国产三级专区第一集| 在线观看国产h片| 秋霞在线观看毛片| 久久久久国产网址| 国产一区二区在线观看日韩| 色哟哟·www| 亚洲综合精品二区| 国产91av在线免费观看| 色5月婷婷丁香| 免费人妻精品一区二区三区视频| 日日爽夜夜爽网站| 免费黄频网站在线观看国产| 高清午夜精品一区二区三区| a级毛片免费高清观看在线播放| 久久人人爽人人片av| 久久毛片免费看一区二区三区| 久久久午夜欧美精品| 久久影院123| 久久久久国产精品人妻一区二区| av黄色大香蕉| 国产一区二区三区综合在线观看 | 免费看av在线观看网站| 九九爱精品视频在线观看| 成人综合一区亚洲| 日日摸夜夜添夜夜添av毛片| 黑丝袜美女国产一区| 男女边摸边吃奶| 人人妻人人澡人人看| 国产亚洲午夜精品一区二区久久| 在线观看美女被高潮喷水网站| 精品卡一卡二卡四卡免费| 国产 精品1| 久久精品国产亚洲av天美| 91精品一卡2卡3卡4卡| 免费观看av网站的网址| 日韩伦理黄色片| 噜噜噜噜噜久久久久久91| 一级毛片久久久久久久久女| 国精品久久久久久国模美| 你懂的网址亚洲精品在线观看| 欧美+日韩+精品| 久久久国产精品麻豆| 亚洲真实伦在线观看| 国产欧美另类精品又又久久亚洲欧美| 人人妻人人添人人爽欧美一区卜| 毛片一级片免费看久久久久| 人妻系列 视频| 熟女人妻精品中文字幕| 高清毛片免费看| 中文资源天堂在线| 在线看a的网站| 国内揄拍国产精品人妻在线| 一级a做视频免费观看| 久久青草综合色| 久久久久网色| 少妇人妻精品综合一区二区| 国产精品国产三级国产专区5o| 晚上一个人看的免费电影| 在线天堂最新版资源| av播播在线观看一区| 男女边吃奶边做爰视频| 国产黄色视频一区二区在线观看| 亚洲国产毛片av蜜桃av| 久久人妻熟女aⅴ| 日韩三级伦理在线观看| 亚洲综合精品二区| 又爽又黄a免费视频| 大陆偷拍与自拍| 久久久久久伊人网av| 精品国产国语对白av| 中文在线观看免费www的网站| 久久人妻熟女aⅴ| 国产熟女午夜一区二区三区 | 我的女老师完整版在线观看| 亚洲婷婷狠狠爱综合网| 亚洲av不卡在线观看| 欧美激情极品国产一区二区三区 | 亚洲精品乱码久久久v下载方式| a 毛片基地| 在线观看美女被高潮喷水网站| av不卡在线播放| 伊人久久国产一区二区| 国产男女超爽视频在线观看| 美女大奶头黄色视频| 国产精品免费大片| 卡戴珊不雅视频在线播放| 麻豆精品久久久久久蜜桃| 97超碰精品成人国产| 这个男人来自地球电影免费观看 | 性高湖久久久久久久久免费观看| 免费观看a级毛片全部| 久久久久人妻精品一区果冻| 一本久久精品| 特大巨黑吊av在线直播| 99热这里只有是精品50| 十八禁网站网址无遮挡 | 久久久久久人妻| 精品国产一区二区三区久久久樱花| 十分钟在线观看高清视频www | 嘟嘟电影网在线观看| 亚洲国产日韩一区二区| 亚洲欧美精品专区久久| 少妇人妻久久综合中文| 久久久精品94久久精品| 王馨瑶露胸无遮挡在线观看| 99热6这里只有精品| av在线老鸭窝| 久久久久久久久久人人人人人人| 日本色播在线视频| 国产视频首页在线观看| 精品人妻熟女av久视频| 亚洲国产毛片av蜜桃av| 国产男女超爽视频在线观看| 国产一区二区在线观看日韩| 国产综合精华液| 韩国av在线不卡| 两个人免费观看高清视频 | 老司机亚洲免费影院| 丝袜喷水一区| freevideosex欧美| 国内精品宾馆在线| 成年人免费黄色播放视频 | 国产在线一区二区三区精| 国产女主播在线喷水免费视频网站| 校园人妻丝袜中文字幕| 日韩欧美一区视频在线观看 | 亚洲第一av免费看| 免费播放大片免费观看视频在线观看| 少妇 在线观看| av天堂中文字幕网| 美女xxoo啪啪120秒动态图| 国产在线一区二区三区精| 亚洲精品亚洲一区二区| 欧美 亚洲 国产 日韩一| 欧美老熟妇乱子伦牲交| 一边亲一边摸免费视频| videos熟女内射| 亚洲精品日韩在线中文字幕| 一区二区三区乱码不卡18| 久久亚洲国产成人精品v| 色吧在线观看| 在线亚洲精品国产二区图片欧美 | 国产成人精品婷婷| 国产色爽女视频免费观看| 纵有疾风起免费观看全集完整版| 欧美日韩国产mv在线观看视频| 另类亚洲欧美激情| av又黄又爽大尺度在线免费看| 国产乱来视频区| 高清午夜精品一区二区三区| 国产成人免费无遮挡视频| h视频一区二区三区| 日本午夜av视频| 成年人午夜在线观看视频| 久久亚洲国产成人精品v| 十分钟在线观看高清视频www | 亚洲av欧美aⅴ国产| av国产精品久久久久影院| 亚洲第一av免费看| 日韩精品有码人妻一区| 国产精品久久久久久精品古装| 三级国产精品欧美在线观看| 大片免费播放器 马上看| av视频免费观看在线观看| 成人国产麻豆网| 午夜激情福利司机影院| 永久网站在线| 午夜老司机福利剧场| 伦精品一区二区三区| 又粗又硬又长又爽又黄的视频| 亚洲av不卡在线观看| 日韩av在线免费看完整版不卡| 午夜91福利影院| 欧美+日韩+精品| 一边亲一边摸免费视频| 老熟女久久久| 国产熟女午夜一区二区三区 | 赤兔流量卡办理| 国产成人免费观看mmmm| 内地一区二区视频在线| 哪个播放器可以免费观看大片| 国产精品久久久久久精品电影小说| 久久久国产精品麻豆| 久久影院123| 精品久久久噜噜| 99热国产这里只有精品6| 黄色视频在线播放观看不卡| 午夜福利在线观看免费完整高清在| av在线播放精品| 久久毛片免费看一区二区三区| 国产精品国产三级国产av玫瑰| 极品教师在线视频| 中文欧美无线码| 亚洲va在线va天堂va国产| 国产成人一区二区在线| 日韩强制内射视频| 精品视频人人做人人爽| 亚洲国产欧美在线一区| 精品亚洲成a人片在线观看| 黄片无遮挡物在线观看| 国产精品国产三级国产专区5o| 亚洲av日韩在线播放| 18禁在线无遮挡免费观看视频| 日日摸夜夜添夜夜添av毛片| 少妇的逼好多水| 亚洲不卡免费看| 亚洲真实伦在线观看| 男人爽女人下面视频在线观看| 久久久久久久久久人人人人人人| 在线观看免费高清a一片| 久热这里只有精品99| 丰满人妻一区二区三区视频av| 午夜精品国产一区二区电影| 美女主播在线视频| 亚洲精品成人av观看孕妇| av.在线天堂| 男男h啪啪无遮挡| 久久久久久久久久成人| 搡老乐熟女国产| 亚洲丝袜综合中文字幕| 久久久国产一区二区| 乱码一卡2卡4卡精品| 最新中文字幕久久久久| 免费看av在线观看网站| 亚洲美女黄色视频免费看| 少妇人妻精品综合一区二区| 一级,二级,三级黄色视频| 男人和女人高潮做爰伦理| 三级经典国产精品| 91精品伊人久久大香线蕉| 内射极品少妇av片p| 日韩强制内射视频| 人人妻人人看人人澡| 在线观看三级黄色| 欧美一级a爱片免费观看看| 久久久久久伊人网av| 国产爽快片一区二区三区| 深夜a级毛片| 久久精品国产亚洲网站| 日韩一本色道免费dvd| 在现免费观看毛片| 日本黄大片高清| 丰满少妇做爰视频| 大陆偷拍与自拍| 国产成人a∨麻豆精品| 国产成人freesex在线| 一级二级三级毛片免费看| av视频免费观看在线观看| 久久久国产一区二区| 国产一区有黄有色的免费视频| 亚洲国产av新网站| 日日啪夜夜爽| av免费在线看不卡| 乱码一卡2卡4卡精品| 国产伦精品一区二区三区视频9| 中文字幕制服av| 日本与韩国留学比较| 秋霞在线观看毛片| 国产黄色免费在线视频| 麻豆精品久久久久久蜜桃| 日韩av在线免费看完整版不卡| 简卡轻食公司| 久久久久久久久久久久大奶| 亚洲人与动物交配视频| 久久久午夜欧美精品| 国产成人aa在线观看| 交换朋友夫妻互换小说| 曰老女人黄片| a级毛片在线看网站| 欧美日韩av久久| 我的老师免费观看完整版| 亚洲va在线va天堂va国产| 国产高清不卡午夜福利| 亚洲综合精品二区| 亚洲第一区二区三区不卡| 亚洲欧美清纯卡通| 日本免费在线观看一区| 色婷婷久久久亚洲欧美| 美女大奶头黄色视频| 下体分泌物呈黄色| 日韩av在线免费看完整版不卡| 国产黄色视频一区二区在线观看| freevideosex欧美| 免费看av在线观看网站| 3wmmmm亚洲av在线观看| 国产深夜福利视频在线观看| 七月丁香在线播放| 一个人免费看片子| 国产一区亚洲一区在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲av成人精品一二三区| 乱系列少妇在线播放| 国产成人精品久久久久久| 我要看黄色一级片免费的| 国产高清不卡午夜福利| 免费观看的影片在线观看| 久久精品国产亚洲av涩爱| 七月丁香在线播放| 免费黄频网站在线观看国产| 女人精品久久久久毛片| 亚洲成人一二三区av| 欧美精品人与动牲交sv欧美| 秋霞在线观看毛片| 国产真实伦视频高清在线观看| 免费看日本二区| 免费观看a级毛片全部| 亚洲精品456在线播放app| 中文欧美无线码| 婷婷色av中文字幕| 久久久久精品久久久久真实原创| av黄色大香蕉| 在线观看三级黄色| 午夜视频国产福利| 久久午夜综合久久蜜桃| 国产成人freesex在线| 亚洲,一卡二卡三卡| 女性生殖器流出的白浆| 日韩免费高清中文字幕av| 日本-黄色视频高清免费观看| 国产精品久久久久成人av| 男女免费视频国产| 97精品久久久久久久久久精品| 日日啪夜夜撸| 国产精品伦人一区二区| 日韩不卡一区二区三区视频在线| 亚洲av在线观看美女高潮| 美女国产视频在线观看| 精品久久久噜噜| 丝袜在线中文字幕| 亚洲欧洲国产日韩| 亚洲精品一区蜜桃| 爱豆传媒免费全集在线观看| 日本欧美视频一区| 91久久精品国产一区二区三区| 中文资源天堂在线| 啦啦啦视频在线资源免费观看| 久久久国产精品麻豆| 午夜91福利影院| 久久人妻熟女aⅴ| 国产淫片久久久久久久久| 日韩欧美 国产精品| 国产精品一区www在线观看| 在线观看av片永久免费下载| 国产69精品久久久久777片| 国产熟女午夜一区二区三区 | 亚洲成色77777| 亚洲va在线va天堂va国产| 寂寞人妻少妇视频99o| 亚洲国产精品成人久久小说| 国产成人精品无人区| 亚洲人与动物交配视频| 少妇人妻一区二区三区视频| 99久久人妻综合| 亚洲精品乱久久久久久| a级一级毛片免费在线观看| 激情五月婷婷亚洲| 一个人看视频在线观看www免费| 国产高清有码在线观看视频| 纯流量卡能插随身wifi吗| av福利片在线| 涩涩av久久男人的天堂| 国产男人的电影天堂91| 亚洲精华国产精华液的使用体验| 日韩成人av中文字幕在线观看| 岛国毛片在线播放| 亚洲欧美清纯卡通| 日韩av不卡免费在线播放| 国产69精品久久久久777片| 精品国产乱码久久久久久小说| 高清在线视频一区二区三区| 国产男女内射视频| 亚洲,欧美,日韩| 91精品伊人久久大香线蕉| 夜夜看夜夜爽夜夜摸| 国产 精品1| 国产黄频视频在线观看| 黑人巨大精品欧美一区二区蜜桃 | 日本午夜av视频| 亚洲国产精品国产精品| 日韩av免费高清视频| 尾随美女入室| 亚洲成人手机| 边亲边吃奶的免费视频| 亚洲成人一二三区av| 九九久久精品国产亚洲av麻豆| 久久国产精品男人的天堂亚洲 | 亚洲一级一片aⅴ在线观看| 日韩精品免费视频一区二区三区 | 日本与韩国留学比较| 狠狠精品人妻久久久久久综合| 色吧在线观看| 免费看不卡的av| 亚洲,一卡二卡三卡| 夜夜看夜夜爽夜夜摸| 狂野欧美激情性bbbbbb| 亚洲天堂av无毛| 中文在线观看免费www的网站| 一级a做视频免费观看| 欧美+日韩+精品| 91九色精品人成在线观看| 伊人亚洲综合成人网| 国产精品久久久久久精品古装| 日韩一卡2卡3卡4卡2021年| 日韩电影二区| 精品一区二区三区av网在线观看 | 久久久久久久久久久久大奶| 丝袜在线中文字幕| 亚洲成国产人片在线观看| av视频免费观看在线观看| 我的亚洲天堂| 中文字幕人妻丝袜制服| 亚洲熟女毛片儿| 热99re8久久精品国产| 美女中出高潮动态图| 黄片播放在线免费| 叶爱在线成人免费视频播放| 亚洲欧美日韩另类电影网站| 99香蕉大伊视频| 丝袜喷水一区| 欧美久久黑人一区二区| 国产精品av久久久久免费| 欧美日韩精品网址| 在线观看免费午夜福利视频| 精品一区二区三卡| 精品国产乱子伦一区二区三区 | 久久人人爽人人片av| 女警被强在线播放| 国产真人三级小视频在线观看| 亚洲情色 制服丝袜| 国产av精品麻豆| 一级黄色大片毛片| 国产麻豆69| 久久精品aⅴ一区二区三区四区| 久久青草综合色| 亚洲精品中文字幕一二三四区 | 亚洲成人免费电影在线观看| 亚洲精品日韩在线中文字幕| 秋霞在线观看毛片| 久久精品成人免费网站| 久久久久久人人人人人| 大片电影免费在线观看免费| 成年人免费黄色播放视频| 热99国产精品久久久久久7| 成人手机av| 无遮挡黄片免费观看| 亚洲精品国产色婷婷电影| 亚洲精品国产精品久久久不卡| 在线十欧美十亚洲十日本专区| 亚洲美女黄色视频免费看| 一个人免费看片子| 青青草视频在线视频观看| 欧美激情高清一区二区三区| 在线观看www视频免费| 成人国产av品久久久| 人人妻人人澡人人爽人人夜夜| 黄色视频在线播放观看不卡| 国产极品粉嫩免费观看在线| 人妻 亚洲 视频| 一级毛片精品| 老鸭窝网址在线观看| 午夜视频精品福利| 免费久久久久久久精品成人欧美视频| 久久久水蜜桃国产精品网| 成年人午夜在线观看视频| 99精品久久久久人妻精品| 日韩视频在线欧美| 日日爽夜夜爽网站| 美女大奶头黄色视频| 91字幕亚洲| 一级毛片电影观看| 国产精品自产拍在线观看55亚洲 | 欧美国产精品va在线观看不卡| 国产精品偷伦视频观看了| 日本五十路高清| 国产日韩一区二区三区精品不卡| 午夜福利在线免费观看网站| 黑人巨大精品欧美一区二区mp4| 色婷婷av一区二区三区视频| 国产伦理片在线播放av一区| 国产精品久久久久成人av| 后天国语完整版免费观看| 午夜影院在线不卡| 国产av国产精品国产| 老鸭窝网址在线观看| 国产欧美日韩一区二区三区在线| 国产精品欧美亚洲77777| 国产免费现黄频在线看| 一本大道久久a久久精品| 亚洲一码二码三码区别大吗| 久久久久久免费高清国产稀缺| 91麻豆av在线| 女性生殖器流出的白浆| 国产视频一区二区在线看| 18禁裸乳无遮挡动漫免费视频| www.999成人在线观看| 亚洲午夜精品一区,二区,三区| 日韩有码中文字幕| 他把我摸到了高潮在线观看 | 丝袜喷水一区| 国产99久久九九免费精品| 电影成人av| av在线app专区| 高潮久久久久久久久久久不卡| 精品福利永久在线观看| 人人妻,人人澡人人爽秒播| 国产精品一区二区免费欧美 | 激情视频va一区二区三区| 国产男人的电影天堂91| videosex国产| 国产精品一二三区在线看| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲欧美在线一区二区| 国产日韩欧美视频二区| 欧美一级毛片孕妇| videosex国产| 动漫黄色视频在线观看| 2018国产大陆天天弄谢| 免费高清在线观看日韩| 婷婷色av中文字幕| 午夜成年电影在线免费观看| 叶爱在线成人免费视频播放| 黄色 视频免费看| www.精华液| 国产精品av久久久久免费| 成人av一区二区三区在线看 | 欧美日韩中文字幕国产精品一区二区三区 |