• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GENERAL SPLIT FEASIBILITY PROBLEMS FOR TWO FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES?

    2016-09-26 03:45:53JinfangTANG唐金芳
    關(guān)鍵詞:劉敏

    Jinfang TANG(唐金芳)

    Department of Mathematics,Yibin University,Yibin 644007,China

    E-mail∶jinfangt 79@163.com

    Shih-sen CHANG(張石生)

    Center for General Education,China Medical University,Taichung 40402,Taiwan

    E-mail∶changss2013@163.com

    Min LIU(劉敏)

    Department of Mathematics,Yibin University,Yibin 644007,China

    E-mail∶liuminybsc@163.com

    ?

    GENERAL SPLIT FEASIBILITY PROBLEMS FOR TWO FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES?

    Jinfang TANG(唐金芳)

    Department of Mathematics,Yibin University,Yibin 644007,China

    E-mail∶jinfangt 79@163.com

    Shih-sen CHANG(張石生)

    Center for General Education,China Medical University,Taichung 40402,Taiwan

    E-mail∶changss2013@163.com

    Min LIU(劉敏)

    Department of Mathematics,Yibin University,Yibin 644007,China

    E-mail∶liuminybsc@163.com

    The purpose of this article is to introduce a general split feasibility problems for two families of nonexpansive mappings in Hilbert spaces.We prove that the sequence generated by the proposed new algorithm converges strongly to a solution of the general split feasibility problem.Our results extend and improve some recent known results.

    General split feasibility problems;nonexpansive mappings;Hilbert space;strong convergence

    2010 MR Subject Classification90C25;47H09;47J25

    1 Introduction

    Let H and K be infinite-dimensional real Hilbert spaces,and let A:H→K be a bounded linear operator.Letandbe the families of nonempty closed convex subsets of H and K,respectively.Let F(T)be the fixed point of the mapping T.

    (a)The convex feasibility problem(CFP)is formulated as the problem of finding a point x?with the property:

    (b)The split feasibility problem(SFP)is formulated as the problem of finding a point x?with the property:

    where C and Q are nonempty,closed and convex subsets of H and K,respectively.

    (c)The multiple-set split feasibility problem(MSSFP)is formulated as the problem of finding a point x?with the property:

    (d)The general split feasibility problem(GSFP)is formulated as the problem of finding a point x?with the property:

    There is a considerable investigation on CFP in view of its applications in various disciplines such as image restoration,computer tomograph,and radiation therapy treatment planning[1]. The split feasibility problem SFP in the setting of finite-dimensional Hilbert spaces was first introduced by Censor and Elfving[2]for modelling inverse problems which arise from phase retrievals and in medical image reconstruction[3].Since then,a lot of work has been done on finding a solution of SFP and MSSFP;see,for example,[2-17].

    In 2010,Xu[13]considered the SFP in the setting of infinite-dimensional Hilbert spaces and studied some algorithms and its convergence.In particular,he applied Mann's algorithm to the SFP and proposed an algorithm which is proved to be weakly convergent to a solution of the SFP.He also established the strong convergence result,which shows that the minimum-norm solution can be obtained.

    In 2011,Wang and Xu[14]proposed the following cyclic algorithm to solve MSSFP:

    where[n]:=n(modp)(mod function take values in{1,2,···,p},andThey shown that the sequence{xn}converged weakly to a solution of MSSFP provided the solution exists.

    To study strong convergence to a solution of MSSFP,in 2013,Eslamian and Latif[15]proposed the following algorithm to solve GSFP:

    In 2013,He and Zhao[16]introduced the following relaxed CQ algorithm such that the strong convergence was guaranteed in infinite-dimensional Hilbert spaces:

    To further study strong convergence to a solution of GSFP,first we introduce a general form of the general split feasibility problem for two families of firmly nonexpansive mappings as follows:

    (e)General split feasibility problem for two families of firmly nonexpansive mappings is to find a point x?such that

    where{Si},{Ti}are two families of firmly nonexpansive mappings.We denote by ? the solution set of the problem(1.8).

    Motivated and inspired by the researches going on in the sections of split feasibility problems,the purpose of this article is to introduce a new viscosity iterative algorithm for general split feasibility problems(1.8)in infinite dimensional Hilbert spaces.Under suitable conditions we prove the sequence converges strongly to a point in the set of solutions of general split feasibility problems for two families of firmly nonexpansive mappings.Our result extends and improves the corresponding results of some others.

    2 Preliminaries and Lemmas

    Throughout the rest of this article,we assume that H,H1,and H2are real Hilbert spaces,A is a bounded linear operator from H1to H2,and I is the identity operator on H,H1,or H2. If f:H→R is a differentiable function,then we denote by?f the gradient of the function f.We will also use the notations:→to denote the strong convergence,?to denote the weak convergence and

    to denote the weak limit set of{xn}.

    Let C be a closed and convex subset of H.For every point x∈H,there exists a unique nearest point in C,denoted by PCx satisfing

    The operator PCis called the metric projection of H onto C.The metric projection PCis characterized by the following inequality:

    Recall that a mapping T:H→H is said to be nonexpansive if

    A mapping T:H→H is said to be firmly nonexpansive if

    A mapping T:H→H is said to be demi-closed at origin if for any sequencewith xn?x?and

    It is easy to prove that if T:H→H is a firmly nonexpansive mapping,then T is demiclosed at origin.

    A function f:H→R is called convex if

    Lemma 2.1[17]Let T:H2→H2be a firmly nonexpansive mapping such that||(I?T)x|| is a convex function from H2toˉR=[?∞,+∞].Let A:H1→H2be a bounded linear operator and

    Then

    (i)?f(x)=A?(I?T)Ax,x∈H1.

    (ii)?f is||A||2-Lipschitz,that is,||?f(x)??f(y)||≤||A||2||x?y||,x,y∈H1.

    Lemma 2.2[17]Let T:H→H be an operator.The following statements are equivalent:

    (i)T is firmly nonexpansive.

    (ii)||Tx?Ty||2≤〈x?y,Tx?Ty〉,?x,y∈H.

    (iii)I?T is firmly nonexpansive.

    The following results play an important role in this article.

    Lemma 2.4[18]Let X be a real Hilbert space,then we have

    Lemma 2.5[19]Let H be a Hilbert space and let{xn}be a sequence in H.Then for any given sequenceand for any positive integer i,j with i<j,

    Lemma 2.6[20]Let{an}be a sequence of nonnegative real numbers such that

    where{γn}is a sequence in(0,1),and{σn}is a sequence in R such that

    Lemma 2.7[21]Let{tn}be a sequence of real numbers such that there exists a subsequence{ni}of{n}such that tni<tni+1for all i∈N.Then,there exists a nondecreasing sequence{τ(n)}?N such that τ(n)→∞,and the following properties are satisfied by all(sufficiently large)numbers n∈N:

    In fact,

    3 Main Result

    In the following,we propose an algorithm and prove that the sequence generated by the proposed method converges strongly to a solution of the GSFP(1.8).

    Theorem 3.1Let H1,H2be two real Hilbert spaces.Let A:H1→H2be a bounded linear operatorbe a family of firmly nonexpansive mappings,and{Ti:be another family of firmly nonexpansive mappings such that for any i∈N,is a convex function from H2toAssume that GSFP(1.8)has a nonempty solution set ?.Suppose that h:H1→H1is a α-contraction mapping and let{xn}be a sequence generated by x0∈H1as follows

    If the sequences{ρn}?(0,4),{αn},{βn},{γn,i}?(0,1)satisfy the following conditions:

    then the sequence{xn}converges strongly to x?∈?,where x?=

    ProofFirst,we show that{xn}is bounded.In fact,for any p∈?,we haveObserving that each I?Tiis firmly nonexpansive, from Lemma 2.2(ii)we have

    Hence,for any i∈N we have

    This implies that for any i∈N,

    From(3.1)and(3.4),we have

    By induction,we have

    which implies that{xn}is bounded,and so is{h(xn)}.

    Using Lemma 2.5 and(3.3),for any p∈? and i∈N,we have

    On the other hand,without loss of generality,we may assume that there exists a constant σ>0 such that

    Hence,for each i∈N,we have

    As P?h is a contraction of H1into itself,there exists a unique element x?∈? such that x?=P?h(x?).

    Now,we prove xn→x?as n→∞by employing the technique studied by Maing′e[21]. For the purpose,we consider two cases.

    Case 1Assume that{||xn?p||}is a monotone sequence.In other words,for n0large enough,{||xn?p||}n≥n0is either nondecreasing or nonincreasing.As{||xn?p||}is bounded, so{||xn?p||}is convergent.Asis bounded,from(3.6)we get

    and

    By condition(ii)we obtain

    Now,we prove that

    It follows from Lemma 2.1(ii)that for all n≥1 and i∈N,

    This implies that for each i∈N,{||?fi(xn)||}is bounded.From(3.8)it yields that for each i∈N,fi(xn)→0,namely for each i∈N,

    By the way,we have

    As{xn}is bounded,there exists a subsequence{xnk}of{xn}which converges weakly to w∈H1,that is,w∈ww(xn).From the definition of A,we have

    In fact,from(3.10)we have

    As each Tiis demi-closed at origin,from(3.12)and(3.13)we have Aw∈F(Ti),that is,

    Thus,we have

    It follows from(3.9)and(3.11)that

    In view of xnk?w and each Si(i∈N)being demi-closed at origin,we get wHence w∈? and then ww(xn)??.

    Therefore,in view of x?=P?h(x?),from the characteristic of metric projection P?,we have

    Finally,we prove that xn→x?=P?h(x?).Applying Lemma 2.4 and(3.4),we have

    This implies that

    Case 2Assume that{||xn?p||}is not a monotone sequence.Then,we can define an integer sequence{τ(n)}for all n≥n0(for some n0large enough)by

    Clearly,τ(n)is a nondecreasing sequence such that τ(n)→∞as n→∞and for all n≥n0,

    From(3.6)we obtain

    and

    Following an argument similar to that in Case 1,we have ww(xτ(n))??.Therefore,from the characteristic of metric projection P?,we have

    And by similar argument,we have

    Therefore,the sequence{xn}converges strongly to x?=P?h(x?).

    This completes the proof.

    RemarkIt should be pointed out that the condition“||(I?Ti)x||is a convex function from H2toˉR”in Theorem 3.1 can be replaced by the condition“the function fi(x)=is G′ateaux differentiable and?fi(x)=A?(I?Ti)Ax”.

    4 An Application and a Numerical Example for Split Equilibrium Problems in Hilbert Spaces

    In this section,we shall utilize Theorem 3.1 to give a numerical example for split equilibrium problems in Hilbert spaces.

    Let D be a nonempty closed and convex subset of a real Hilbert space H.A bifunction g:D×D→(?∞,+∞)is said to be a equilibrium function,if it satisfies the following conditions:

    (A1)g(x,x)=0,for all x∈D;

    (A2)g is monotone,that is,g(x,y)+g(y,x)≤0 for all x,y∈D;

    The“so-called”equilibrium problem with respect to the equilibrium function g is

    Its solution set is denoted by EP(g).

    For given λ>0 and x∈H,the resolvent of the equilibrium function g is the operator Rλ,g:H→D defined by

    Proposition 4.1[22]The resolvent operator Rλ,gof the equilibrium function g has the following properties:

    (1)Rλ,gis single-valued;

    (2)F(Rλ,g)=EP(g)is a nonempty closed and convex subset of D;

    (3)Rλ,gis a firmly nonexpansive mapping.

    Let H1and H2be two real Hilbert spaces.Let C be a nonempty closed convex subset of H1,Q be a nonempty closed convex subset of H2.Let h:C×C→R and g:Q×Q→R be two equilibrium functions.Let A:H1→H2be a bounded linear operator with adjoint operator A?.For given λ>0,let Rλ,hand Rλ,gbe the resolvent of h and g(defined by(4.2)),respectively.

    The“so-called”split equilibrium problem with respect to the equilibrium function h,g is to find x?∈C such that

    Let H1=H2=R2with standard norm and inner product.For each α=(α1,α2)and z=(z1,z2)∈R2,define operators A as

    It is easy to prove that

    Then,A is a bounded linear operator from R2into R2and A?:R2→R2is the adjoint operator of A.The norm of A

    Put

    For each α=(α1,α2)∈C and β=(β1,β2)∈Q,define functions:

    Let

    It is easy to know that h:C×C→R and g:Q×Q→R both are the equilibrium functions satisfying conditions(A1)-(A4).Let EP(h)(resp.EP(g))be the set of solutions of equilibrium problem with respect to h(resp.g).It is not hard to verify that

    This implies that(x?,y?)=((0,3),(?3,3))∈C×Q is the unique solution of the following split equilibrium problem with respect to h,g

    Denote by ? the set of solutions of the split equilibrium problem(4.8),then we have

    For given λ>0,let Rλ,hand Rλ,gbe the resolvent of h and g(defined by(4.2)),respectively. Let S=Rλ,hand T=Rλ,g.By Proposition 4.1,T and S both are firmly nonexpansive mappings and F(S)=EP(h),F(xiàn)(T)=EP(g).Hence from Theorem 3.1,we can obtain the following

    Theorem 4.2Let H1=H2=R2,T,S,A,A?and C,Q be the same as above.Let the function|(I?T)Ax||2be G′ateaux differentiable and?f(x)=A?(I?T)Ax.Suppose further that h:R2→R2is a α-contraction mapping and{xn}is a sequence generated by x0∈R2

    where{αn},{βn},{γn}?(0,1)with αn+βn+γn=1,?n≥1,A?(I?T)Axn6=0,?n≥1 and

    If the sequences satisfy the following conditions:

    then the sequence{xn}converges strongly to x?=(0,3)with Ax?=(?3,3)and ?={(x?,Ax?)}(the solution set of the split equilibrium problem(4.8)).

    References

    [1]Combettes P L.The convex feasibility problem in image recovery.Advances in Imaging and Electron Physics,1996,95:155-270

    [2]Censor Y,Elfving T.A multiprojection algorithm using Bregman projections in a product space.Numerical Algorithms,1994,8:221-239

    [3]Byrne C.Iterative oblique projection onto convex sets and the split feasibility problem.Inverse Problems,2002,18(2):441-453

    [4]Aleyner A,Reich S.Block-iterative algorithms for solving convex feasibility problems in Hilbert and in Banach spaces.Journal of Mathematical Analysis and Applications,2008,343(1):427-435

    [5]Bauschke H H,Borwein J M.On projection algorithms for solving convex feasibility problems.SIAM Review,1996,8(3):367-426

    [6]Moudafi A.A relaxed alternating CQ-algorithm for convex feasibility problems.Nonlinear Analysis,2013,79:117-121

    [7]Masad E,Reich S.A note on the multiple-set split convex feasibility problem in Hilbert space.Journal of Nonlinear and Convex Analysis,2007,8:367-371

    [8]Yao Y,Chen R,Marino G,et al.Applications of fixed point and optimization methods to the multiple-sets split feasibility problem.Journal of Applied Mathematics,2012,2012:Article ID 927530

    [9]Yang Q.The relaxed CQ algorithm for solving the split feasibility problem.Inverse Problems,2004,20:1261-1266

    [10]Zhao J,Yang Q.Several solution methods for the split feasibility problem.Inverse Problems,2005,21:1791-1799

    [11]Quan J,Chang S.S,Zhang X.Multiple-set split feasibility problems for κ-strictly pseudononspreading mappings in Hilbert spaces.Abstract and applied analysis,2013.article ID 342545

    [12]Xu H K.A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem.Inverse Problems,2006,22:2021-2034

    [13]Xu H K.Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces.Inverse Problems,2010,26:Article ID 105018

    [14]Wang F,Xu H K.Cyclic algorithms for split feasibility problems in Hilbert spaces.Nonlinear Analysis:Theory,Methods and Applications,2011,74(12):4105-4111

    [15]Eslamian M,Latif A.General split feasibility problems in Hilbert spaces.Abstract and Applied Analysis Volume 2013.Article ID 805104

    [16]He S,Zhao Z.Strong Convergence of A Relaxed CQ Algorithm for the Split Feasibility Problem.Journal of Inequalities and Applications,2013.doi:10.1186/1029-242X-2013-197

    [17]Tang J F,Chang S S,Yuan F.A strong convergence theorem for equilibrium problems and split feasibility problems in Hilbert spaces.Fixed point theory and applications,2014,2014:36

    [18]Chang S S.On Chidume’s open questions and approximate solutions for multi-valued strongly accretive mapping equations in Banach spaces.J.Math.Anal.Applications,1997,216:94-111

    [19]Chang S S,Kim J K,Wang X R,Modified block iterative algorithm for solving convex feasibility problems in Banach spaces.Journal of Inequalities and Applications,2010.Article ID869684

    [20]Xu H K.Iterative algorithms for nonlinnear operators.J Lond Math Soc,2002,66:240-256

    [21]Maing′e P E.Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization.Set-Valued Analysis,2008,16:899-912

    [22]Blum E,Oettli W.From optimization and variational inequalities to equilibrium problems.Math Stud,1994,63:123-145

    December 15,2014;revised July 11,2015.Supported by the Scientific Research Fund of Sichuan Provincial Department of Science and Technology(2015JY0165,2011JYZ011),the Scientific Research Fund of Sichuan Provincial Education Department(14ZA0271),the Scientific Research Project of Yibin University(2013YY06),the Natural Science Foundation of China Medical University,Taiwan,and the National Natural Science Foundation of China(11361070).

    ?Corresponding author

    猜你喜歡
    劉敏
    失控的逆襲:何苦死磕“渣男”成網(wǎng)紅
    Analysis on the cation distribution of MgxNi1-xFe2O4(x=0,0.25,0.5,0.75,1)using M¨ossbauer spectroscopy and magnetic measurement
    飛翔的風(fēng)箏
    小讀者之友(2021年8期)2021-09-10 05:08:49
    血型也會(huì)改變
    抗癌之窗(2021年3期)2021-02-12 08:59:08
    我在聽(tīng)你歌唱
    歌海(2020年5期)2020-11-16 06:04:02
    還手絹
    金山(2018年3期)2018-04-12 09:19:46
    掙夠50萬(wàn)去離婚:摳門(mén)花心老公必須付出代價(jià)
    都是愛(ài)
    詩(shī)選刊(2015年4期)2015-10-26 08:45:21
    神秘枕邊人,王子和魔鬼只隔一個(gè)微信的距離
    Kinetic and Thermodynamic Studies of Acid Scarlet 3R Adsorption onto Low-cost Adsorbent Developed from Sludge and Straw*
    免费在线观看完整版高清| 激情视频va一区二区三区| 久久久久久久久久久久大奶| 天天躁夜夜躁狠狠躁躁| 欧美久久黑人一区二区| 最近2019中文字幕mv第一页| 午夜影院在线不卡| 最近中文字幕高清免费大全6| 麻豆av在线久日| 国产精品国产av在线观看| 免费黄色在线免费观看| 18禁裸乳无遮挡动漫免费视频| 精品免费久久久久久久清纯 | 久久久久视频综合| 人妻 亚洲 视频| 在线 av 中文字幕| 久久久精品国产亚洲av高清涩受| 亚洲在久久综合| 如何舔出高潮| 久久久精品国产亚洲av高清涩受| 99re6热这里在线精品视频| 久久久久精品国产欧美久久久 | 嫩草影院入口| 国产 一区精品| 精品少妇黑人巨大在线播放| 国产一级毛片在线| 久久午夜综合久久蜜桃| 亚洲av日韩在线播放| 我要看黄色一级片免费的| 亚洲国产精品一区二区三区在线| 久久久久久久大尺度免费视频| 精品一区二区免费观看| 亚洲男人天堂网一区| 亚洲精品第二区| 中文字幕av电影在线播放| 免费观看a级毛片全部| 尾随美女入室| 不卡av一区二区三区| 大片电影免费在线观看免费| 久久99一区二区三区| a级片在线免费高清观看视频| 在线亚洲精品国产二区图片欧美| 亚洲国产精品成人久久小说| 搡老乐熟女国产| 久久久久视频综合| 免费观看a级毛片全部| 51午夜福利影视在线观看| 久久久精品免费免费高清| 人人妻,人人澡人人爽秒播 | 国产 一区精品| 午夜福利网站1000一区二区三区| 国产一卡二卡三卡精品 | 国产精品一二三区在线看| 久久精品国产亚洲av涩爱| 国产精品麻豆人妻色哟哟久久| 丰满乱子伦码专区| 超色免费av| 免费看不卡的av| 人人妻,人人澡人人爽秒播 | 电影成人av| 欧美精品高潮呻吟av久久| 黄色 视频免费看| 好男人视频免费观看在线| 亚洲精品aⅴ在线观看| 丰满饥渴人妻一区二区三| 日本vs欧美在线观看视频| 久久av网站| 悠悠久久av| 国产视频首页在线观看| 亚洲国产精品一区二区三区在线| 极品少妇高潮喷水抽搐| 免费在线观看视频国产中文字幕亚洲 | 51午夜福利影视在线观看| 黄色视频在线播放观看不卡| 十八禁人妻一区二区| 男女床上黄色一级片免费看| 国产精品免费视频内射| 日日啪夜夜爽| 一边摸一边抽搐一进一出视频| 国产欧美日韩综合在线一区二区| 国产精品.久久久| 丝袜喷水一区| 我要看黄色一级片免费的| 可以免费在线观看a视频的电影网站 | 中文字幕精品免费在线观看视频| 亚洲一区二区三区欧美精品| 亚洲国产精品999| 男女无遮挡免费网站观看| 嫩草影视91久久| 国产av国产精品国产| 精品一区二区免费观看| 国产黄频视频在线观看| 国产精品av久久久久免费| 精品人妻熟女毛片av久久网站| 久热这里只有精品99| 男人舔女人的私密视频| a级毛片黄视频| 久久国产亚洲av麻豆专区| 色视频在线一区二区三区| 婷婷色综合大香蕉| 十八禁人妻一区二区| 国产伦人伦偷精品视频| 国产精品一区二区在线观看99| 在线观看人妻少妇| 国产精品国产三级国产专区5o| www日本在线高清视频| 精品一区二区三区av网在线观看 | av女优亚洲男人天堂| 人人妻人人添人人爽欧美一区卜| 日韩中文字幕视频在线看片| 久久久亚洲精品成人影院| 国产免费又黄又爽又色| 视频区图区小说| 欧美成人精品欧美一级黄| 最近中文字幕高清免费大全6| 亚洲五月色婷婷综合| 国产精品 欧美亚洲| 国产精品人妻久久久影院| 久久性视频一级片| 亚洲精品日韩在线中文字幕| 欧美在线一区亚洲| 欧美日韩一区二区视频在线观看视频在线| 亚洲男人天堂网一区| 国产一卡二卡三卡精品 | 久久毛片免费看一区二区三区| 免费黄频网站在线观看国产| 精品人妻一区二区三区麻豆| 狠狠精品人妻久久久久久综合| 亚洲三区欧美一区| 国产成人啪精品午夜网站| 少妇人妻 视频| 午夜日本视频在线| 久久天堂一区二区三区四区| 欧美成人午夜精品| 日韩免费高清中文字幕av| 午夜福利视频精品| 久久ye,这里只有精品| 人人妻人人澡人人看| 最新的欧美精品一区二区| 在线看a的网站| 国产成人精品在线电影| 免费在线观看完整版高清| 在线天堂中文资源库| 国产成人精品在线电影| 老鸭窝网址在线观看| 亚洲欧美成人综合另类久久久| 亚洲精品日韩在线中文字幕| 亚洲天堂av无毛| 久久久精品国产亚洲av高清涩受| 人人妻人人澡人人爽人人夜夜| 午夜免费观看性视频| 午夜精品国产一区二区电影| 男人爽女人下面视频在线观看| 观看美女的网站| 各种免费的搞黄视频| 亚洲美女视频黄频| 制服诱惑二区| 欧美激情高清一区二区三区 | 国产欧美日韩综合在线一区二区| 人体艺术视频欧美日本| 一本一本久久a久久精品综合妖精| 国产深夜福利视频在线观看| 嫩草影视91久久| 如何舔出高潮| 国产亚洲一区二区精品| 在现免费观看毛片| 中文字幕精品免费在线观看视频| 久久人人爽av亚洲精品天堂| 国产成人啪精品午夜网站| 国产麻豆69| 大香蕉久久成人网| 国产成人精品福利久久| 两个人免费观看高清视频| 日韩欧美一区视频在线观看| 日韩 欧美 亚洲 中文字幕| 国产爽快片一区二区三区| 日韩 亚洲 欧美在线| 曰老女人黄片| 国产精品国产三级国产专区5o| 97人妻天天添夜夜摸| 九色亚洲精品在线播放| 美女视频免费永久观看网站| 丰满饥渴人妻一区二区三| 悠悠久久av| 老司机靠b影院| 国产一级毛片在线| 国产爽快片一区二区三区| 一个人免费看片子| 午夜免费男女啪啪视频观看| 1024香蕉在线观看| 精品一品国产午夜福利视频| 日韩电影二区| 亚洲精华国产精华液的使用体验| 在线天堂中文资源库| av.在线天堂| 国产极品天堂在线| 国产欧美日韩综合在线一区二区| 国产精品亚洲av一区麻豆 | 韩国精品一区二区三区| 日韩视频在线欧美| 18禁国产床啪视频网站| 亚洲视频免费观看视频| 欧美激情极品国产一区二区三区| 午夜福利视频在线观看免费| av在线app专区| 亚洲成人免费av在线播放| 国产色婷婷99| 久久国产精品男人的天堂亚洲| 男女无遮挡免费网站观看| 在线观看免费视频网站a站| 亚洲精华国产精华液的使用体验| 亚洲国产日韩一区二区| 天天添夜夜摸| 亚洲欧美精品自产自拍| 欧美在线一区亚洲| 丝袜人妻中文字幕| 免费人妻精品一区二区三区视频| 久久精品久久久久久噜噜老黄| 久久这里只有精品19| 精品久久久久久电影网| 欧美中文综合在线视频| 中文字幕色久视频| 男女高潮啪啪啪动态图| 久久精品国产综合久久久| 狠狠精品人妻久久久久久综合| 国产成人午夜福利电影在线观看| 男人添女人高潮全过程视频| 亚洲视频免费观看视频| 国产成人精品在线电影| 制服丝袜香蕉在线| 成人手机av| 伊人亚洲综合成人网| 精品免费久久久久久久清纯 | www.熟女人妻精品国产| 两个人看的免费小视频| 毛片一级片免费看久久久久| 2021少妇久久久久久久久久久| 国产老妇伦熟女老妇高清| 久久久久久免费高清国产稀缺| 亚洲伊人色综图| 久久久欧美国产精品| 九草在线视频观看| 精品免费久久久久久久清纯 | 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看免费日韩欧美大片| 免费不卡黄色视频| 欧美国产精品一级二级三级| 久久青草综合色| 我要看黄色一级片免费的| 亚洲精品在线美女| 丁香六月天网| 午夜福利乱码中文字幕| 久久久精品免费免费高清| 看十八女毛片水多多多| 精品免费久久久久久久清纯 | av国产久精品久网站免费入址| 高清欧美精品videossex| 久久精品久久久久久久性| 亚洲精品一区蜜桃| kizo精华| 久久精品人人爽人人爽视色| 香蕉丝袜av| 老鸭窝网址在线观看| 少妇被粗大猛烈的视频| 可以免费在线观看a视频的电影网站 | 99国产综合亚洲精品| 国产成人精品福利久久| 国产有黄有色有爽视频| 国产精品 国内视频| 日本色播在线视频| 桃花免费在线播放| 久久久久人妻精品一区果冻| av国产久精品久网站免费入址| a级毛片黄视频| 99九九在线精品视频| 嫩草影院入口| 97人妻天天添夜夜摸| 亚洲国产成人一精品久久久| 国产免费又黄又爽又色| 国产成人精品福利久久| 欧美精品一区二区大全| 亚洲激情五月婷婷啪啪| 成人黄色视频免费在线看| 日韩制服骚丝袜av| av网站在线播放免费| 日韩成人av中文字幕在线观看| 在现免费观看毛片| 亚洲国产成人一精品久久久| 日韩电影二区| 成人免费观看视频高清| 亚洲激情五月婷婷啪啪| 99久久精品国产亚洲精品| 青青草视频在线视频观看| 国产在视频线精品| 热re99久久精品国产66热6| 人人妻,人人澡人人爽秒播 | 国产在视频线精品| 黄网站色视频无遮挡免费观看| 国产淫语在线视频| 国产精品香港三级国产av潘金莲 | 午夜影院在线不卡| 黄色一级大片看看| 丝袜人妻中文字幕| xxx大片免费视频| 国语对白做爰xxxⅹ性视频网站| 丝袜在线中文字幕| 久久天堂一区二区三区四区| 最近最新中文字幕大全免费视频 | 亚洲人成电影观看| 夫妻午夜视频| 9191精品国产免费久久| 黄色 视频免费看| 亚洲,欧美精品.| 亚洲精品视频女| 日本猛色少妇xxxxx猛交久久| 欧美 亚洲 国产 日韩一| 亚洲国产成人一精品久久久| 18禁国产床啪视频网站| 美女大奶头黄色视频| av片东京热男人的天堂| 99久久综合免费| 18禁动态无遮挡网站| 亚洲,欧美,日韩| 欧美日韩成人在线一区二区| 亚洲精品国产色婷婷电影| 久久久久网色| 亚洲精品一区蜜桃| 国产精品.久久久| av免费观看日本| 青春草亚洲视频在线观看| 亚洲精品成人av观看孕妇| 午夜激情av网站| 三上悠亚av全集在线观看| 精品人妻在线不人妻| 国产成人精品久久久久久| 高清黄色对白视频在线免费看| 香蕉国产在线看| 男人操女人黄网站| √禁漫天堂资源中文www| 亚洲国产精品成人久久小说| 日韩 欧美 亚洲 中文字幕| 在线看a的网站| 亚洲av福利一区| 我要看黄色一级片免费的| 久久久国产欧美日韩av| 精品国产露脸久久av麻豆| 七月丁香在线播放| 国产免费视频播放在线视频| 黄色视频在线播放观看不卡| 大香蕉久久网| 午夜老司机福利片| 91精品国产国语对白视频| 国产精品久久久久久久久免| 亚洲图色成人| 丝袜美腿诱惑在线| av免费观看日本| 极品人妻少妇av视频| 伊人亚洲综合成人网| 国产亚洲av片在线观看秒播厂| 日日撸夜夜添| 男人舔女人的私密视频| 综合色丁香网| 大片免费播放器 马上看| 精品少妇一区二区三区视频日本电影 | 亚洲,一卡二卡三卡| 欧美精品亚洲一区二区| 久久婷婷青草| 欧美日韩一区二区视频在线观看视频在线| 日本vs欧美在线观看视频| 丰满少妇做爰视频| 亚洲成人免费av在线播放| 深夜精品福利| 两性夫妻黄色片| 久久ye,这里只有精品| 最近的中文字幕免费完整| 一级爰片在线观看| 成年人免费黄色播放视频| 国产精品无大码| 成人18禁高潮啪啪吃奶动态图| 久久精品久久久久久久性| 亚洲国产精品999| 午夜日本视频在线| 中文字幕最新亚洲高清| 亚洲欧美日韩另类电影网站| av视频免费观看在线观看| 在线看a的网站| 一级片'在线观看视频| 亚洲欧美中文字幕日韩二区| 一区二区日韩欧美中文字幕| 只有这里有精品99| 国产人伦9x9x在线观看| 亚洲熟女毛片儿| 黄色视频不卡| 精品一区二区三区四区五区乱码 | 亚洲美女黄色视频免费看| 91老司机精品| 国产欧美日韩一区二区三区在线| 九草在线视频观看| 久久久久视频综合| 亚洲欧美精品综合一区二区三区| 国产精品久久久人人做人人爽| 超色免费av| 丁香六月欧美| 涩涩av久久男人的天堂| 交换朋友夫妻互换小说| 亚洲欧洲日产国产| 国产成人欧美| 伦理电影大哥的女人| 亚洲美女视频黄频| 精品久久久精品久久久| 午夜免费观看性视频| av在线观看视频网站免费| 看免费av毛片| av在线app专区| 日韩一本色道免费dvd| 久久99热这里只频精品6学生| 99久久人妻综合| 制服丝袜香蕉在线| 国产精品久久久久久精品古装| 人妻一区二区av| 少妇人妻久久综合中文| 成年人午夜在线观看视频| kizo精华| 成人国产麻豆网| 一边摸一边抽搐一进一出视频| kizo精华| 久久久精品国产亚洲av高清涩受| 亚洲一区中文字幕在线| 亚洲,欧美,日韩| 性少妇av在线| 久久久久网色| a级片在线免费高清观看视频| 久久99精品国语久久久| 亚洲,一卡二卡三卡| 日韩视频在线欧美| 国产精品无大码| 亚洲四区av| avwww免费| 国产精品成人在线| 久久久久久久精品精品| 十八禁高潮呻吟视频| 国产极品天堂在线| 久久 成人 亚洲| 青春草视频在线免费观看| 国产精品一国产av| 一本大道久久a久久精品| 80岁老熟妇乱子伦牲交| 欧美日韩视频精品一区| 嫩草影院入口| 秋霞伦理黄片| 看非洲黑人一级黄片| 国产精品久久久久成人av| 国产毛片在线视频| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩精品网址| 亚洲国产日韩一区二区| 啦啦啦在线观看免费高清www| 性色av一级| 免费女性裸体啪啪无遮挡网站| 国产片内射在线| 国产野战对白在线观看| 十八禁人妻一区二区| 精品国产国语对白av| 国产不卡av网站在线观看| 日日撸夜夜添| 亚洲三区欧美一区| 精品国产一区二区三区久久久樱花| 久久ye,这里只有精品| 夫妻午夜视频| 夜夜骑夜夜射夜夜干| 亚洲第一青青草原| 亚洲一级一片aⅴ在线观看| 亚洲av综合色区一区| 国产成人精品久久久久久| 国产99久久九九免费精品| 久久精品熟女亚洲av麻豆精品| 免费在线观看黄色视频的| 久久久久国产精品人妻一区二区| 成人亚洲欧美一区二区av| www.熟女人妻精品国产| 国产在线一区二区三区精| 十八禁人妻一区二区| 亚洲自偷自拍图片 自拍| 99国产精品免费福利视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲婷婷狠狠爱综合网| h视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 国产 精品1| 国产精品一区二区在线观看99| 成人影院久久| 午夜福利视频在线观看免费| 中文字幕av电影在线播放| 老司机靠b影院| 精品福利永久在线观看| 91精品伊人久久大香线蕉| 国产av一区二区精品久久| 又大又黄又爽视频免费| 一级a爱视频在线免费观看| 国产熟女欧美一区二区| 最近中文字幕高清免费大全6| 国产淫语在线视频| 国产麻豆69| 蜜桃国产av成人99| 日韩av不卡免费在线播放| 亚洲精品国产av成人精品| 欧美日本中文国产一区发布| av网站在线播放免费| 九九爱精品视频在线观看| 黑丝袜美女国产一区| 十分钟在线观看高清视频www| 超碰97精品在线观看| 天天躁夜夜躁狠狠久久av| 一区二区三区乱码不卡18| 国产在线视频一区二区| 亚洲欧洲日产国产| 精品亚洲成国产av| 操出白浆在线播放| 啦啦啦啦在线视频资源| a级毛片在线看网站| 欧美 亚洲 国产 日韩一| 国产成人精品在线电影| 午夜免费鲁丝| kizo精华| svipshipincom国产片| 免费黄频网站在线观看国产| 久久久久精品久久久久真实原创| 国产精品蜜桃在线观看| 少妇人妻 视频| 十八禁高潮呻吟视频| 日韩中文字幕视频在线看片| 精品国产一区二区三区四区第35| 欧美中文综合在线视频| 人人妻人人爽人人添夜夜欢视频| 久久久久久久久免费视频了| 国产一区二区激情短视频 | 肉色欧美久久久久久久蜜桃| 亚洲精品av麻豆狂野| 亚洲视频免费观看视频| 亚洲av福利一区| 丝瓜视频免费看黄片| 欧美人与性动交α欧美精品济南到| 97人妻天天添夜夜摸| 久久精品国产亚洲av高清一级| 99九九在线精品视频| 黄色一级大片看看| 久久人人爽av亚洲精品天堂| 国产一卡二卡三卡精品 | av有码第一页| 在线观看国产h片| 午夜免费观看性视频| 午夜激情久久久久久久| 欧美av亚洲av综合av国产av | 亚洲成人一二三区av| 亚洲精品日韩在线中文字幕| 老司机亚洲免费影院| 亚洲成人av在线免费| 日本av手机在线免费观看| 久久天堂一区二区三区四区| 一边亲一边摸免费视频| 欧美av亚洲av综合av国产av | 国产精品久久久久久精品电影小说| 久久女婷五月综合色啪小说| 青青草视频在线视频观看| 亚洲欧美色中文字幕在线| 国产一区二区在线观看av| 亚洲精品中文字幕在线视频| 最新的欧美精品一区二区| 黄色视频在线播放观看不卡| 国产熟女欧美一区二区| 咕卡用的链子| 性高湖久久久久久久久免费观看| 久久久久久久精品精品| 欧美人与善性xxx| 成人18禁高潮啪啪吃奶动态图| 亚洲人成网站在线观看播放| 熟女少妇亚洲综合色aaa.| 亚洲欧美色中文字幕在线| 一级毛片 在线播放| 亚洲美女搞黄在线观看| 日本午夜av视频| 婷婷色av中文字幕| 91国产中文字幕| 亚洲精品成人av观看孕妇| 免费观看av网站的网址| 99九九在线精品视频| 国产精品一区二区在线观看99| 色播在线永久视频| 精品国产一区二区三区久久久樱花| 大片免费播放器 马上看| 国产在线视频一区二区| 亚洲色图综合在线观看| 在线天堂中文资源库| 亚洲,一卡二卡三卡| 黄色视频不卡| 国产成人a∨麻豆精品| 成人亚洲精品一区在线观看| 9色porny在线观看| 免费少妇av软件| av免费观看日本| 一区二区三区激情视频| 如日韩欧美国产精品一区二区三区| 韩国高清视频一区二区三区| 国产黄色免费在线视频| 午夜福利影视在线免费观看| 中文字幕人妻丝袜一区二区 | 一级a爱视频在线免费观看| 国产在线视频一区二区| 91精品伊人久久大香线蕉| 看十八女毛片水多多多| 亚洲国产欧美网| 国产av精品麻豆| 最近手机中文字幕大全| 男女之事视频高清在线观看 | 久久久精品国产亚洲av高清涩受|