賀嫣然,張婷,張光遠,陸建美,韓明暖,王艷芳,俞捷,趙榮華
(云南中醫(yī)學(xué)院,云南 昆明 650500)
天然藥物對動脈粥樣硬化中炎癥的調(diào)控及機理研究進展△
賀嫣然,張婷,張光遠,陸建美,韓明暖,王艷芳,俞捷*,趙榮華*
(云南中醫(yī)學(xué)院,云南 昆明650500)
動脈粥樣硬化(atherosclerosis,AS)是動脈的慢性退化和動脈壁逐漸變化的過程,炎癥貫穿于病變發(fā)生和發(fā)展的全過程。目前AS的研究主要集中于炎癥細胞、炎性介質(zhì)及免疫機制的相互作用方面。大量研究顯示,天然藥物對AS中炎癥反應(yīng)有明顯的調(diào)節(jié)作用。本文對炎癥的觸發(fā)機制、AS初期、AS中炎癥發(fā)展與并發(fā)癥三個方面以及涉及的天然藥物對AS治療的相關(guān)研究進行總結(jié),以期為今后天然藥物對AS中炎癥的調(diào)控及機理研究提供參考。
動脈粥樣硬化;炎癥;天然藥
動脈粥樣硬化(atherosclerosis,AS)致病原因的學(xué)說有多種[1],早期研究多認為AS與脂質(zhì)含量、生長因子及平滑肌增殖最為相關(guān)。然而,近十年來研究者們?nèi)諠u意識到炎癥在AS及其并發(fā)癥中的重要地位,AS從觸發(fā)、形成、發(fā)展到形成斑塊就是一個慢性炎癥的過程,AS的各個環(huán)節(jié)都涉及到炎癥反應(yīng)。
天然藥物在AS的治療中具有重要的作用及廣闊的前景。本文從炎癥的觸發(fā)機制、AS初期、AS中炎癥發(fā)展與并發(fā)癥三個方面針對天然藥物對AS治療的相關(guān)研究進行總結(jié),為天然藥物對AS中炎癥的調(diào)控及機理研究提供依據(jù)。
1.1代謝綜合征
代謝綜合征(metabolicsyndrome,MS)是AS的高危致病因素之一,MS是一組復(fù)雜的代謝紊亂癥候群,包括糖代謝紊亂、中央性肥胖、高血壓、血脂異常[2]。在代謝綜合征中,低密度脂蛋白(lowdensitylipoprotein,LDL)水平經(jīng)常保持在正常范圍,然而其粒子結(jié)構(gòu)可能發(fā)生質(zhì)的改變,體積變得更小,密度更高,使其特別容易被氧化,從而引發(fā)炎癥;高密度脂蛋白(highdensitylipoprotein,HDL)水平降低,且常伴有甘油三酯的升高,HDL是一個內(nèi)源性抗炎因子[3]。
有研究表明,大豆異黃酮(Soyisoflavones)可調(diào)節(jié)代謝綜合征模型大鼠血脂,而產(chǎn)生抗動脈粥樣硬化作用[4]。長期灌服芫荽(CoriandrumsativumL.)種子水提物,可使肥胖-高血糖-高血脂模型摩洛哥沙鼠的血糖、胰島素、甘油三酯水平趨于正常,并降低動脈粥樣硬化的風險[5]。西洋蒲公英(Taraxacumofficinale)通過降低膽固醇飲食家兔血清中甘油三酯,增加血清中高密度脂蛋白膽固醇(high density lipoprotein cholesterol,HDL-C)的含量來緩解動脈粥樣硬化[6]。獐牙菜苦苷(swertiamarin)能顯著地升高通過腹腔注射泊洛沙姆-407誘導(dǎo)的高脂血癥大鼠血清HDL水平,起到防治動脈粥樣硬化的作用[7]。
1.2低密度脂蛋白膽固醇
血漿膽固醇水平升高導(dǎo)致膽固醇在動脈血管壁過量沉積,這是動脈粥樣硬化和冠狀動脈疾病過早致死的主要危險因素。而血液中的膽固醇依靠脂蛋白微粒轉(zhuǎn)運,這些脂蛋白微粒中約70%為低密度脂蛋白(lowdensitylipoproteincholesterol,LDL-C)[8]。血液中LDL-C水平升高是動脈粥樣硬化的主要危險因子之一[9]。
以含有7.5%可可油和1.25%膽固醇的高脂飼料飼喂雄性大鼠,長期給予隔山消(Cynanchumwilfordii)乙醇提取物,可降低高脂引起的大鼠血清LDL-C的增加,并通過減少動脈內(nèi)膜中層厚度來保持內(nèi)膜的光滑[10]。在阿江欖仁樹(Terminaliaarjuna)樹皮乙醇提取物對高脂喂養(yǎng)家兔血脂和動脈粥樣硬化影響的研究中,阿江欖仁樹樹皮提取物顯著地降低了血液中LDL-C、甘油三酯等的含量,阻止了動脈粥樣硬化的發(fā)生[11]。梔子苷(geniposide)能使ApoE-/-小鼠血清中LDL-C和總膽固醇顯著下降,其中梔子苷在一定程度內(nèi)通過脂質(zhì)和免疫調(diào)節(jié)來改善動脈粥樣病變進程[12]。
1.3脂蛋白a
脂蛋白a[liporotein (a),Lp(a)]的結(jié)構(gòu)與LDL相似,是載脂蛋白a與載脂蛋白B-100通過二硫鍵共價結(jié)合而來的,在肝臟中合成[13]。高水平的Lp(a)是一個獨立影響AS發(fā)展的危險因素[14]。有研究顯示,姜黃(CurcumalongaL.)提取物姜黃素(curcumin)可能通過肝和腎上腺對Lp(a)的代謝產(chǎn)生影響,使血液中Lp(a)的含量降低,從而起到抗AS作用[15]。
2.1單核細胞的粘附
2.1.1粘附分子 內(nèi)皮功能障礙是AS初期的重要事件,而參與內(nèi)皮功能障礙的機制包括過度氧化及粘附分子的高表達,如血管細胞粘附分子-1(vascularcelladhesionmolecule-1,VCAM-1)、細胞間粘附分子-1(intercellularadhesionmolecule-1,ICAM-1)等[16]。AS被認為最初是由內(nèi)皮白細胞粘附分子表達增加引起的,如VCAM-1、ICAM-1等[17]。
觀察香青蘭總黃酮(totalflavonoidsofDracocephalummoldavica)對腫瘤壞死因子-α(tumour necrosis factor-α,TNF-α)誘導(dǎo)的大鼠平滑肌細胞增殖、遷移和粘附分子表達影響的研究,通過免疫組織化學(xué)染色及定量實時聚合酶鏈反應(yīng)測定VCAM-1和ICAM-1的含量。結(jié)果顯示,香青蘭總黃酮對這兩種粘附分子的表達表現(xiàn)出劑量依賴性抑制作用[18]。密蒙花(BuddlejaofficinalisMaxim.)水提物劑量依賴性地抑制TNF-α誘導(dǎo)的人臍靜脈內(nèi)皮細胞(human umbilical vein endothelial cells,HUVECs)VCAM-1和ICAM-1高表達[19]。對冠狀動脈內(nèi)皮細胞的體外研究顯示,三七皂苷(notoginsenoside)可下調(diào)VCAM-1和ICAM-1的表達,并呈濃度依賴性[20]。柚皮苷(naringin)能抑制HUVECs中VCAM-1、ICAM-1蛋白和mRNA的過度表達[21]。
2.1.2潛在AS保護作用因子 氧化應(yīng)激也參與AS的發(fā)展,抗氧化劑可以減緩動脈壁的增厚及AS的發(fā)展,如谷胱甘肽、超氧化物歧化酶(superoxide dismutase,SOD)、過氧化氫酶等保護動脈因子[22]。此外,一氧化氮(nitric oxide,NO)可調(diào)節(jié)血壓、舒張血管、抑制血小板凝聚和白細胞粘附以及平滑肌細胞的增殖,預(yù)防早期AS。內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)是血管內(nèi)皮合成NO的關(guān)鍵酶,代表著大部分具生物活性的NO來源[23]。
低切應(yīng)力誘導(dǎo)的氧化性損傷研究顯示,白藜蘆醇(resveratrol)可通過增加eNOS的mRNA表達及提高SOD水平來防治AS[24]。吊蘭(Chlorophytumborivilianum)根水提物通過提高NO和超氧化物等的表達,展現(xiàn)出較高的抗氧化能力,從而降低AS風險[25]。在氧化性低密度脂蛋白(oxdized low density lipoprotein,ox-LDL)誘導(dǎo)單核內(nèi)皮細胞向HUVECs粘附及提高內(nèi)皮通透性的研究中,丹參(SalviamiltiorrhizaBge.)提取物隱丹參酮(cryptotanshinone)能顯著提高NO濃度[26]。高脂飲食誘導(dǎo)ApoE-/-小鼠血管功能障礙,長期灌服隔山消醇提物可恢復(fù)小鼠大動脈組織中eNOS表達水平,降低血管炎癥[27]。
2.2白細胞化學(xué)誘導(dǎo)性機制——趨化因子
趨化因子是一類小分子堿性蛋白,根據(jù)其N端半胱氨酸殘基的位置和數(shù)目不同可分為4個亞族:C、CC、CXC和CX3C[28]。趨化因子通過募集白細胞從管腔進入到皮下炎癥組織而參與斑塊的發(fā)展[29]。復(fù)雜的趨化因子信號和不同的趨化因子通路參與AS的不同階段。在AS初期,ox-LDL誘導(dǎo)血管平滑肌細胞和內(nèi)皮細胞中單核細胞趨化蛋白-1(monocytechemotacticprotein-1,MCP-1)或CCL2趨化因子[chemokine(C-Cmotif)ligand2,CCL2)]和CX3CL1趨化因子[chemokine(C-X3-Cmotif)ligand1,CX3CL1]的表達[29]。CC趨化因子受體(C-Cchemokinereceptortype2,CCR2)及其配體MCP-1,以及CX3C趨化因子受體1(CXC3Cchemokinereceptor1,CXC3CR1)及其配體CX3CL1的結(jié)合促使單核細胞向斑塊聚集[30]。干擾素γ(interferon gamma,IFN-γ)能誘導(dǎo)內(nèi)皮細胞與趨化因子受體CXCR3+(C-X-C chemokine receptor3positive,CXCR3+)T細胞相互作用,使CXC趨化因子顯著表達,包括CXCL9趨化因子[chemokine(C-X-C motif)ligand9,CXCL9]或γ干擾素誘導(dǎo)的單核因子(monokine induced by gamma interferon,MIG)、CXCL10趨化因子[chemokine(C-X-C motif)ligand10,CXCL10]或γ干擾素誘導(dǎo)的蛋白10(interferon gamma-induced protein10,IP-10)、CXCL11趨化因子 [chemokine(C-X-C motif) ligand11,CXCL11]或干擾素誘導(dǎo)的T細胞α趨化因子(interferon-inducible T-cell alpha chemoattractant,I-TAC)等,從而促使這些趨化因子蓄積,并向炎性血管壁遷移[30]。白介素-8(interleukin-8,IL-8)是CXC趨化因子,白介素-8通過與其受體CXCR1或CXCR2結(jié)合形成對中性粒細胞、嗜堿性白細胞和T細胞的強有力的化學(xué)誘導(dǎo)物因子[31]。
丹參酮IIA(tanshinone IIA)能減少TNF-α誘導(dǎo)的趨化因子/CX3CL1在HUVECs的mRNA表達[32]。牙齦卟啉單胞菌誘導(dǎo)ApoE-/-小鼠形成AS,給予綠茶(Green tea)提取物表兒茶素沒食子酸酯(epigallocatechin-3-gallate)后,血清中MCP-1的濃度下降,并下調(diào)主動脈中CCL2基因的高表達[33]。丹參提取物丹參酚酸B(salvianolic acid B)對IFN-γ誘導(dǎo)的信號傳導(dǎo)和轉(zhuǎn)錄激活子(signal transducers and activators of transcription1,STAT1)信號途徑下游目標CXC趨化因子IP-10、MIG和I-TAC的表達均有抑制作用,并且抑制IP-10啟動子活性和IP-10蛋白分泌[34]。體外實驗采用TNF-α誘導(dǎo)單核細胞向HUVECs粘附的方法,通過給予不同濃度的染料木黃酮(genistein)刺激,使用酶聯(lián)免疫吸附測定細胞培養(yǎng)上清液中MCP-1和IL-8的濃度。結(jié)果顯示,與對照組相比,0.1μM濃度的染料木黃酮可顯著性抑制MCP-1和IL-8的表達[35]。
2.3白細胞在內(nèi)膜的激活機制
2.3.1清道夫受體 一旦附著到動脈內(nèi)膜,單核細胞就獲得了巨噬細胞特性,并經(jīng)過一系列變化最終生成泡沫細胞。巨噬細胞內(nèi)吞修飾了的LDL(即ox-LDL)是通過清道夫受體,如清道夫受體AI(scavengerreceptorclassAtypeI,SR-AI)、清道夫受體AII(scavengerreceptorclassAtypeII,SR-AII)和B類清道夫受體CD36蛋白等來介導(dǎo)的[36]。CD36是一種膜糖蛋白,存在于各種類型的細胞中,包括單核細胞、巨噬細胞、微血管內(nèi)皮細胞、脂肪細胞和血小板,它作用于ox-LDL的吸收和泡沫細胞的形成,是AS初期的關(guān)鍵階段[37]。而清道夫受體BI(scavengerreceptorclassBtypeI,SR-BI)是一種具有高度親和力的HDL受體,介導(dǎo)選擇性HDL脂質(zhì)吸收,是抗AS因子[36]。
研究肉桂(CinnamomumcassiaPresl)水提物對單核細胞分化成巨噬細胞這一過程及巨噬細胞清道夫受體活性可能產(chǎn)生的影響,結(jié)果發(fā)現(xiàn),在分化這一階段中,肉桂水提物能下調(diào)巨噬細胞SR-A和CD36基因表達,對CD36的表達抑制呈濃度依賴性。100ug·mL-1的肉桂水提物幾乎可完全阻斷巨噬細胞集落刺激因子(macrophage-colony stimulating factor,M-CSF)誘導(dǎo)的SR-A蛋白合成增加[38]。淫羊藿苷(icariin)也呈劑量依賴性地下調(diào)CD36在脂多糖激活了的巨噬細胞中的表達,并減少CD36的過度表達,使其恢復(fù)對泡沫細胞形成的抑制作用;淫羊藿苷可上調(diào)SR-BI蛋白表達,并具有劑量依賴性,SR-BI的基因沉默恢復(fù)了淫羊藿苷對泡沫細胞的抑制作用[39]。通過以ox-LDL誘導(dǎo)人單核細胞白血病細胞(THP-1)、小鼠單核細胞白血病細胞(RAW264.7)及主要巨噬細胞(從C57BL/6小鼠獲得)表面CD36表達增加為模型,給予丹參酚酸B不同濃度刺激液后,這3種不同細胞中的CD36mRNA表達大都呈濃度依賴性減少;體內(nèi)實驗以高脂飼養(yǎng)ApoE-/-小鼠,8周后觀察脂質(zhì)吸收和CD36的表達。結(jié)果顯示,丹參酚酸B顯著性下調(diào)小鼠腹腔巨噬細胞CD36的mRNA高表達,提示丹參酚酸B是潛在抗AS作用的天然產(chǎn)物[40]。
2.3.2巨噬細胞集落刺激因子(M-CSF)與粒細胞巨噬細胞集落刺激因子(GM-CSF) 在AS初期,M-CSF和其他先天或后天免疫性介質(zhì)刺激大部分單核細胞分化成巨噬細胞[41]。巨噬細胞按其表型主要可分為兩種類型,即經(jīng)典活化的M1型和選擇性活化的M2型。M1型巨噬細胞是促炎因子,而M2型巨噬細胞有助于傷口愈合和控制炎癥進程。粒細胞巨噬細胞集落刺激因子(granulocyte and macrophage colony-stimulating factor,GM-CSF)刺激骨髓前體生成M1型巨噬細胞,而M-CSF促進M2型巨噬細胞的生成[42]。
在小鼠巨噬細胞的體外實驗研究中,香莢蘭乙酮(apocynin)抑制ox-LDL誘導(dǎo)的GM-CSF的mRNA表達,以阻止AS進程[43]。經(jīng)過13周高脂飼喂并分別灌胃大黃素(emodin)、辛伐他汀及蒸餾水,用免疫組織化學(xué)染色法對ApoE-/-小鼠主動脈根斑塊中的GM-CSF進行檢測,結(jié)果可以看出,與模型組相比,大黃素可顯著性減少小鼠主動脈根中GM-CSF表達[44]。云芝多糖(polysaccharide ofTrametesversicolor)可誘導(dǎo)小鼠巨噬細胞M-CSF的基因表達及分泌,以阻止巨噬細胞發(fā)生氧化損傷,提示云芝多糖通過對巨噬細胞M-CSF的轉(zhuǎn)錄誘導(dǎo)來實現(xiàn)這種抗氧化功能[45]。
3.1斑塊破裂和不連續(xù)的AS進展:血小板衍生生長因子(PDGF) 平滑肌細胞(smooth muscle cells,SMCs)的增殖被認為是動脈粥樣硬化斑塊發(fā)生的關(guān)鍵事件?!皳p傷反應(yīng)學(xué)說”假說強調(diào):AS病因是血小板在內(nèi)皮損傷或破裂以致SMCs增殖部位釋放PDGF。PDGF通過結(jié)合它的受體PDGFR作用于細胞增殖,PDGFR功能則是作為下游信號感受器的對接/激活點[46]。SMCs在正常情況下保持靜止和不遷移狀態(tài),當受到不同生長因子和細胞因子刺激時,譬如血小板衍生生長因子-BB(platelet-derived growth factor-BB,PDGF-BB)等,SMCs的增殖和遷移就會明顯增加。PDGF-BB主要由血管內(nèi)皮細胞和血小板在血管損傷部分釋放,被認為是血管平滑肌細胞增殖和遷移的強效刺激物,并通過一些轉(zhuǎn)錄因子和關(guān)鍵分子信號通路來調(diào)節(jié)。PGDF通路中信號蛋白的表達增加已被證明出現(xiàn)在AS等疾病中[47]。
蓽茇(PiperlongumL.)提取物蓽茇酰胺(piperlongumine)抑制PDGF-BB刺激的VSMC遷移和增生,并阻斷血小板衍生生長因子-β受體(platelet-derived growth factor receptor β,PDGF-Rβ)(活化的PDGF-Rβ可刺激很多下游信號蛋白,如磷酸脂酶C-γ等)介導(dǎo)的信號通路,即PDGF-BB誘導(dǎo)的PDGF-Rβ磷酸化作用[48]。通過測定AS大鼠血清中PDGF水平,與模型組相比,川芎嗪(ligustrazine)可明顯降低PDGF濃度,抑制平滑肌細胞的遷移和增殖,從而發(fā)揮抗AS功能[49]。
3.2炎癥導(dǎo)致各種形式的斑塊破裂
3.2.1細胞因子 細胞因子包括白介素-1β(interleukin-1β,IL-1β)和TNF-α等能分泌炎癥介質(zhì),其作用于血管壁組件,特別是內(nèi)皮細胞,可能涉及動脈閉塞和修復(fù)機制[50]。早前研究顯示,心血管疾病病人有著高水平的IL-1β和TNF-α,其為重要的血管炎癥細胞因子,與AS有高度關(guān)聯(lián)性[51]。另外,CD154是AS發(fā)展中的重要角色,為CD40的配體,主要存在于T細胞、血小板、單核細胞、內(nèi)皮細胞和平滑肌細胞等中,在各種血管細胞中介導(dǎo)炎癥活動,從而導(dǎo)致AS起始和發(fā)展[52]。一旦CD40與其配體CD40L(又名CD154)在T細胞上結(jié)合,便作為一個跨膜信號傳感器,以激活細胞內(nèi)激酶和轉(zhuǎn)錄因子,產(chǎn)生炎癥反應(yīng)[53]。
在新西蘭兔體內(nèi)實驗中,穿心蓮內(nèi)酯(andrographolide)能顯著地下調(diào)IL-1β在動脈粥樣硬化兔血清中的濃度[54]。類黃酮芹黃素(apigenin)能減少脂多糖刺激的人類THP-1衍生巨噬細胞中IL-1β的產(chǎn)生,是通過抑制半胱天冬酶在NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NOD-like receptor family,pyrin domain containing3,NLRP3)炎性小體分裂的激活,及抑制細胞外調(diào)節(jié)蛋白激酶1/2(extracellular regulated protein kinases1/2,ERK1/2)激活來減少IL-1β的mRNA穩(wěn)定性來實現(xiàn)的。此外類黃酮芹黃素可使脂多糖誘導(dǎo)的小鼠J774A.1巨細胞中IL-1β和TNF-α的表達減少[55]。青蒿素(artemisinin)能抑制丙二醇甲醚醋酸酯(phorbol12-myristate13-acetate,PMA)誘導(dǎo)的人THP-1巨噬細胞中IL-1β和TNF-α的mRNA表達,并呈劑量依賴性[56]。丹參酚酸B可顯著減少ox-LDL誘導(dǎo)的人類單核細胞衍生樹突細胞中TNF-α的生成[57]。
研究丹參酚酸B對AS CD40-CD40L信號通路的影響,結(jié)果顯示,丹參酚酸B可降低兔主動脈CD40L的表達(P<0.01)[58]。研究南蛇藤素(celastrol)對高脂飼養(yǎng)ApoE-/-小鼠主動脈斑塊CD40配體表達等影響,結(jié)果表明,南蛇藤素可能通過減少ApoE-/-小鼠斑塊內(nèi)CD40配體表達和巨噬細胞的聚積來抑制AS斑塊中炎癥反應(yīng),從而發(fā)揮穩(wěn)定斑塊的作用[59]。
3.2.2血管內(nèi)皮生長因子 血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)是冠狀動脈粥樣硬化斑塊產(chǎn)生不穩(wěn)定的一種機制[60]。在兔頸動脈粥樣硬化模型中,南蛇藤醇能顯著性下調(diào)兔右頸總動脈中VEGF的高表達,而陽性藥阿托伐他汀并沒有下調(diào)作用[61]。芍藥苷(paeonol)可抑制血管內(nèi)皮細胞釋放VEGF,調(diào)節(jié)內(nèi)皮細胞炎癥反應(yīng)與增殖[62]。白藜蘆醇下調(diào)由高糖引起的VEGF的高表達[63]。
大量的文獻顯示,天然藥物在癌癥、瘧疾和心腦血管疾病等領(lǐng)域都有一定的治療作用,對AS發(fā)生、發(fā)展中的多個環(huán)節(jié)都具有調(diào)節(jié)作用,是抗AS藥物開發(fā)的重要來源。
然而,我們也注意到,治療AS領(lǐng)域雖然多種天然產(chǎn)物可通過對AS炎癥不同環(huán)節(jié)涉及的炎癥細胞、炎癥介質(zhì)和炎癥機制等進行調(diào)控來實現(xiàn)防治作用,然而多數(shù)研究也僅涉及天然產(chǎn)物對AS發(fā)生發(fā)展中少數(shù)炎癥因子或環(huán)節(jié)的調(diào)控,其完整作用機理及信號通路的研究尚未完全闡明,仍需要進行深入研究。利用現(xiàn)代藥理分析法等技術(shù)手段去解決這些問題,將會為天然藥物治療AS及相關(guān)疾病的進一步深入開發(fā)利用開拓更美好的前景。
[1]RossR,GlomsetJA.Thepathogenesisofatherosclerosis[J].NewEnglJMed,1976,295(7/8):369-377.
[2]PrasadH,RyanDA,CelzoMF,etal.Metabolicsyndrome:definitionandtherapeuticimplications[J].PostgradMed,2012,124(1):21-30.
[3]LibbyP.Inflammationinatherosclerosis[J].Nature,2001,420(6917):868-874.
[4] 劉莉,李鑫,劉豐,等.大豆異黃酮對代謝綜合征模型大鼠抗動脈粥樣硬化作用的機制[J].中國動脈粥樣硬化雜志,2008,16(12):928-932.
[5]AissaouiA,ZiziS,IsrailiZH,etal.HypoglycemicandhypolipidemiceffectsofCoriandrumsativumL.in Meriones shawi rats[J].J Ethnopharmacol,2011,137(1):652-661.
[6] Choi U K,Lee O H,Yim J H,et al.Hypolipidemic and antioxidant effects of dandelion (Taraxacumofficinale) root and leaf on cholesterol-fed rabbits[J].Int J Mol Sci,2010,11(1):67-78.
[7] Vaidya H,Rajani M,Sudarsanam V,et al.Antihyperlipidaemic activity of swertiamarin,a secoiridoid glycoside in poloxamer-407-induced hyperlipidaemic rats[J].J Nat Med,2009,63(4):437-442.
[8] Canuel M,Sun X,Asselin M C,et al.Proprotein convertase subtilisin/kexin type9(PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein1(LRP-1)[J].Plos One,2013,8(5):e64145.
[9] Nakamura H,Amkma K,Itakura H,et al.Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA Study):a prospective randomised controlled trial[J].Lancet,2006,368(9542):1155-1163.
[10] Choi D H,Lee Y J,Kim J S,et al.Cynanchumwilfordiiameliorates hypertension and endothelial dysfunction in rats fed with high fat/cholesterol diets[J].Immunopharmacol Immunotoxicol,2012,34(1):4-11.
[11] Subramaniam S,Subramaniam R,Rajapandian S,et al.Anti-atherogenic activity of ethanolic fraction ofTerminaliaarjunabark on hypercholesterolemic rabbits[J].Evid Based Complement Alternat Med,2011,2011:Article ID487916,8pages.
[12] Liao P,Liu L,Wang B,et al.Baicalin and geniposide attenuate atherosclerosis involving lipids regulation and immunoregulation in ApoE-/-mice[J].Eur J Pharmacol,2014,740:488-495.
[13] Maranh?o R C,Carvalho P O,Strunz C C,et al.Lipoprotein (a):structure,pathophysiology and clinical implications[J].Arq Bras Cardiol,2014,103(1):76-84.
[14] Safarova M S,Ezhov M V,Afanasieva O I,et al.Dramatic fate of a young coronary heart disease patient rescued with specific lipoprotein(a) apheresis[J].J Clin Apher,2014(19).Doi:10.1002/jca.21356.
[15] 沃興德,洪行球,趙革平,等.姜黃素對低密度脂蛋白和脂蛋白(a)代謝的影響[J].中國動脈硬化雜志,1999,7(4):339-341.
[16] Kong B S,Cho Y H,Lee E J.G protein-coupled estrogen receptor-1is involved in the protective effect of protocatechuic aldehyde against endothelial dysfunction[J].Plos One,2014,9(11):e113242.
[17] Sato J,Kinugasa M,Satomi-Kobayashi S,et al.Family with sequence similarity5,member C (FAM5C) increases leukocyte adhesion molecules in vascular endothelial cells:implication in vascular inflammation[J].Plos One,2014,9(9):e107236.
[18] Xing J,Peng K,Cao W,et al.Effects of total flavonoids fromDracocephalummoldavicaon the proliferation,migration,and adhesion molecule expression of rat vascular smooth muscle cells induced by TNF-α[J].Pharm Biol,2013,51(1):74-83.
[19] Lee Y J,Moon M K,Hwang S M,et al.Anti-inflammatory effect ofBuddlejaofficinalison vascular inflammation in human umbilical vein endothelial cells[J].Am J Chin Med,2010,38(3):585-598.
[20] Wan J B,Lee S M,Wang J D,et al.Panaxnotoginsengreduces atherosclerotic lesions in ApoE-deficient mice and inhibits TNF-alpha-induced endothelial adhesion molecule expression and monocyte adhesion[J].J Agric Food Chem,2009,57(15):6692-6697.
[21] Li W,Wang C,Peng J,et al.Naringin inhibits TNF-α induced oxidative stress and inflammatory response in HUVECs via Nox4/NF-κB and PI3K/Akt pathways[J].Curr Pharm Biotechnol,2014,15(12):1173-1182.
[22] Zhang P Y,Xu X,Li X C.Cardiovascular diseases:oxidative damage and antioxidant protection[J].Eur Rev Med Pharmacol Sci,2014,18(20):3091-3096.
[23] Kim G K,Ryan J J,Archer S L.The role of redox signaling in epigenetics and cardiovascular disease[J].Antioxid Redox Signal,2013,18(15):1920-1936.
[24] Wang Z,Zhang J,Li B,et al.Resveratrol ameliorates low shear stress-induced oxidative stress by suppressing ERK/eNOS-Thr495in endothelial cells[J].Mol Med Rep,2014,10(4):1964-1972.
[25] Visavadiya N P,Soni B,Dalwadi N,et al.Chlorophytumborivilianumas potential terminator of free radicals in variousinvitrooxidation systems[J].Drug Chem Toxicol,2010,33(2):173-182.
[26] Ang K P,Tan H K,Selvaraja M,et al.Cryptotanshinone attenuatesinvitrooxLDL-induced pre-lesional atherosclerotic events[J].Planta Med,2011,77(16):1782-1787.
[27] Choi D H,Lee Y J,Oh H C,et al.Improved endothelial dysfunction byCynanchumwilfordiiin apolipoprotein E(-/-) mice fed a high fat/cholesterol diet[J].J Med Food,2012,15(2):169-179.
[28] 吳鳳霞,袁國華.趨化因子及其受體研究進展[J].川北醫(yī)學(xué)院學(xué)報,2008,23(3):297-300.
[29] Hajjar D P,Gotto AMJr.Biological relevance of inflammation and oxidative stress in the pathogenesis of arterial diseases[J].Am J Pathol,2013,182(5):1474-1481.
[30] Apostolakis S,Spandidos D.Chemokines and atherosclerosis:focus on the CX3CL1/CX3CR1pathway[J].Acta Pharmacol Sin,2013,34(10):1251-1256.
[31] Luo S J,Wang F,Li Z D,et al.Effect of the+781C/T polymorphism in the interleukin-8gene on atherosclerotic cerebral infarction,and its interaction with smoking and drinking[J].Plos One,2013,8(11):e80246.
[32] Chang C C,Chu C F,Wang C N,et al.The anti-atherosclerotic effect of tanshinone IIA is associated with the inhibition of TNF-α-induced VCAM-1,ICAM-1and CX3CL1expression[J].Phytomedicine,2014,21(3):207-216.
[33] Cai Y,Kurita-Ochiai T,Hashizume T,et al.Green tea epigallocatechin-3-gallate attenuates porphyromonas gingivalis-induced atherosclerosis[J].Pathog Dis,2013,67(1):76-83.
[34] Chen S C,Lin Y L,Huang B,et al.Salvianolic acid B suppresses IFN-γ-induced JAK/STAT1activation in endothelial cells[J].Thromb Res,2011,128(6):560-564.
[35] Jia Z,Babu P V,Si H,et al.Genistein inhibits TNF-α-induced endothelial inflammation through the protein kinase pathway A and improves vascular inflammation in C57BL/6mice[J].Int J Cardiol,2013,168(3):2637-2645.
[36] Al-Jarallah A,Chen X,González L,et al.High density lipoprotein stimulated migration of macrophages depends on the scavenger receptor class B,type I,PDZK1and Akt1and is blocked by sphingosine1phosphate receptor antagonists[J].Plos One,2014,9(9):e106487.
[37] Park Y M.CD36,a scavenger receptor implicated in atherosclerosis[J].Exp Mol Med,2014,46(6):e99.
[38] Kang H,Park S H,Yun J M,et al.Effect of cinnamon water extract on monocyte-to-macrophage differentiation and scavenger receptor activity[J].BMC Complement Altern Med,2014,14:90.
[39] Yang H,Yan L,Qian P,et al.Icariin inhibits foam cell formation by down-regulating the expression of CD36and up-regulating the expression of SR-BI[J].J Cell Biochem,2014.Doi:10.1002/jcb.25009.
[40] Bao Y,Wang L,Xu Y N,et al.Salvianolic acid B inhibits macrophage uptake of modified low density lipoprotein (mLDL) in a scavenger receptor CD36-dependent manner[J].Atherosclerosis,2012,223(1):152-159.
[41] Moore K J,Tabas I.Macrophages in the pathogenesis of atherosclerosis[J].Cell,2011,145(3):341-355.
[42] Zotes T M,Arias C F,F(xiàn)uster J J,et al.PI3K p110γ deletion attenuates murine atherosclerosis by reducing macrophage proliferation but not polarization or apoptosis in lesions[J].Plos One,2013,8(8):e72674.
[43] Kinoshita H,Matsumura T,Ishii N,et al.Apocynin suppresses the progression of atherosclerosis in apo E-deficient mice by inactivation of macrophages[J].Biochem Biophys Res Commun,2013,431(2):124-130.
[44] Zhou M,Xu H,Pan L,et al.Emodin promotes atherosclerotic plaque stability in fat-fed apolipoprotein E-deficient mice[J].Tohoku J Exp Med,2008,215(1):61-69.
[45] Pang Z J.Effect of polysaccharide Krestin on the up-regulation of macrophage colony-stimulating factor gene expression in protecting mouse peritoneal macrophages from oxidative injury[J].Am J Chin Med,2003,31(1):11-23.
[46] Bowen-Pope D F,Raines E W.History of discovery:platelet-derived growth factor[J].Arterioscler Thromb Vasc Biol,2011,3111):2397-2401.
[47] Li P,Liu Y,Yi B,et al.MicroRNA-638is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1[J].Cardiovasc Res,2013,99(1):185-193.
[48] Son D J,Kim S Y,Han S S,et al.Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling[J].Biochem Biophys Res Commun,2012,427(2):349-354.
[49] 李迎春,李迎秋.川芎嗪對動脈粥樣硬化大鼠血清血小板衍生化生長因子水平的影響[J].中國醫(yī)療前沿,2009,4(1):15-16.
[50] Tarantino G,Costantini S,F(xiàn)inelli C,et al.Carotid intimamedia thickness is predicted by combined eotaxin levels and severity of hepatic steatosis atultrasonography in obese patients with nonalcoholic fatty liver disease[J].Plos One,2014,9(9):e105610.
[51] Kong L X,Luo C,Li X Y,et al.The anti-inflammatory effect of kaempferol on early atherosclerosis in high cholesterol fed rabbits[J].Lipids Health Dis,2013,12:115.
[52] Hassan G S,Yacoub D,Alaaeddine N,et al.CD154:the atherosclerotic risk factor in rheumatoid arthritis?[J].Arthritis Res Ther,2013,15(1):206.
[53] García-Bermúdez M,González-Juanatey C,López-Mejías R,et al.Study of association of CD40-CD154gene polymorphisms with disease susceptibility and cardiovascular risk in spanish rheumatoid arthritis patients[J].Plos One,2012,7(11):e49214.
[54] Al Batran R,Al-Bayaty F,Al-Obaidi M M,et al.Evaluation of the effect of andrographolide on atherosclerotic rabbits induced byPorphyromonasgingivalis[J].Biomed Res Int,2014,2014:Article ID724718,11pages.
[55] Zhang X X,Wang G J,Gurley E C,et al.Flavonoid apigenin inhibits lipopolysaccharide-Induced inflammatory response through multiple mechanisms in macrophages[J].Plos One,2014,9(9):e107072.
[56] Wang Y,Huang Z,Wang L,et al.The anti-malarial artemisinin inhibits pro-inflammatory cytokines via the NF-κB canonical signaling pathway in PMA-induced THP-1monocytes[J].Int J Mol Med,2011,27(2):233-241.
[57] Sun A J,Liu H Y,Wang S J,et al.Salvianolic acid B suppresses maturation of human monocyte-derived dendritic cells by activating PPARγ[J].Br J Pharmacol,2011,164(8):2042-2053.
[58] 張揚,薛凌.丹參酚酸B對動脈粥樣硬化CD40-CD40配體信號通路的影響[J].中國醫(yī)學(xué)工程,2012,20(11):6-7.
[59] 程軍,李金平,田卓,等.南蛇藤素對ApoE基因敲除小鼠主動脈粥樣硬化斑塊內(nèi)CD40配體表達、巨噬細胞和平滑肌細胞數(shù)量的影響[J].中國病理生理雜志,2009,25(3):601-603.
[60] Er?en B,ilar M,aboviM.Stable phase post-MI patients have elevated VEGF levels correlated with inflammation markers,but not with atherosclerotic burden[J].BMC Cardiovasc Disord,2014,14(1):166.
[61] Zhu F,Li C,Jin X P,et al.Celastrol may have an anti-atherosclerosis effect in a rabbit experimental carotid atherosclerosis model[J].Int J Clin Exp Med,2014,7(7):1684-1691.
[62] Chen J,Dai M,Wang Y.Paeonol inhibits proliferation of vascular smooth muscle cells stimulated by high glucose via ras-raf-ERK1/2signaling pathway in coculture model[J].Evid Based Complement Alternat Med,2014,2014:484269.
[63] Tian C,Zhang R,Ye X L,et al.Resveratrol ameliorates high-glucose-induced hyperpermeability mediated by caveolae via VEGF/KDR pathway[J].Genes Nutr,2013,8(2):231-239.
RecentAdvancesinRegulationofNaturalMedicineonInflammationinAtherosclerosis
HEYanran,ZHANGTing,ZHANGGuangyuan,LUJianmei,HANMingnuan,WANGYanfang,YUJie*,ZHAORonghua*
(YunnanUniversityofTraditionalChineseMedicine,Kunming650500,YunnanProvince,China)
Atherosclerosis (AS) is a chronic process of gradual degradation and changes in arteries.Inflammation is involved in the entire development process of atherosclerosis.Currently,researches of AS focus on the interaction of inflammatory cells,inflammatory mediators and immune mechanisms.A large number of studies have shown that natural medicine play a regulatory role on inflammation in AS.This review summarizes triggers for inflammation,initiation of the AS and inflammation in atheroma progression and complication,as well as researches involved in treatment of AS with natural medicine.This article may provide some theoretical basis for future researches on regulation and the mechanism of natural medicine treatment for inflammation in AS.
Atherosclerosis;inflammation;natural medicine
10.13313/j.issn.1673-4890.2016.7.027
2015-05-28)
國家自然科學(xué)基金(81260553,81460623);云南省應(yīng)用基礎(chǔ)研究重點項目 (2014FA035);南藥協(xié)同創(chuàng)新中心項目(30270100500);云南省中青年學(xué)術(shù)與技術(shù)帶頭人后備人才(2015HB053)
*
俞捷,博士,副教授,研究方向:生藥學(xué)、藥理學(xué)及藥物分析學(xué),E-mail:cz.yujie@gmail.com;趙榮華,教授,研究方向:中藥資源開發(fā)與利用,E-mail:kmzhaoronghua@hotmail.com