吳圣勇,徐麗榮,李 寧,王登杰,雷仲仁,4
(1中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所植物病蟲(chóng)害生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100193;2湖北黃岡市農(nóng)業(yè)科學(xué)院,湖北黃岡 438000;3四川省達(dá)州市達(dá)川區(qū)植保植檢站,四川達(dá)州 635000;4閩臺(tái)特色作物病蟲(chóng)生態(tài)防控協(xié)同創(chuàng)新中心,福州350002)
天敵昆蟲(chóng)在誘集植物上的多樣性及對(duì)溫室蚜蟲(chóng)的防治作用
吳圣勇1,徐麗榮2,李 寧2,王登杰3,雷仲仁1,4
(1中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所植物病蟲(chóng)害生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100193;2湖北黃岡市農(nóng)業(yè)科學(xué)院,湖北黃岡 438000;3四川省達(dá)州市達(dá)川區(qū)植保植檢站,四川達(dá)州 635000;4閩臺(tái)特色作物病蟲(chóng)生態(tài)防控協(xié)同創(chuàng)新中心,福州350002)
【目的】針對(duì)天敵昆蟲(chóng)的保護(hù)和利用,通過(guò)混合種植不同誘集植物,分析天敵昆蟲(chóng)的多樣性特征及與其影響因子間的關(guān)系;通過(guò)篩選和貯存誘集植物上的優(yōu)勢(shì)天敵,并構(gòu)建儲(chǔ)蓄植物系統(tǒng),應(yīng)用于溫室黃瓜中,評(píng)價(jià)其對(duì)目標(biāo)害蟲(chóng)蚜蟲(chóng)的防治效果。【方法】2012、2013和2015年分別在河北廊坊和湖北黃岡兩試驗(yàn)基地混合種植5種誘集植物:玉米、紫花苜蓿、向日葵、小麥和大豆。通過(guò)調(diào)查天敵昆蟲(chóng)類(lèi)群,計(jì)算2012和2015年的天敵群落特征參數(shù),并用冗余分析法(redundancy analysis,RDA)分析天敵群落結(jié)構(gòu)與誘集植物種類(lèi)、調(diào)查時(shí)間和植物花期的關(guān)系;2013年通過(guò)收集并貯存誘集植物中的優(yōu)勢(shì)天敵瓢蟲(chóng),構(gòu)建出小麥-麥蚜-瓢蟲(chóng)的儲(chǔ)蓄植物系統(tǒng),并在系統(tǒng)中接種不同密度瓢蟲(chóng)后應(yīng)用于溫室黃瓜中防治蚜蟲(chóng),比較各瓢蟲(chóng)密度下的儲(chǔ)蓄植物系統(tǒng)對(duì)蚜蟲(chóng)的防治效果。【結(jié)果】誘集植物上天敵昆蟲(chóng)的Shannon-Wiener多樣性指數(shù)、Simpson優(yōu)勢(shì)集中性指數(shù)和Pielou均勻性指數(shù)總體上隨著調(diào)查時(shí)間的變化呈現(xiàn)顯著差異;通過(guò)對(duì)天敵的等級(jí)劃分,蚜繭蜂和龜紋瓢蟲(chóng)為優(yōu)勢(shì)類(lèi)群,二者的個(gè)體數(shù)量均占所有誘集天敵數(shù)量的10%以上;RDA分析結(jié)果表明,誘集植物種類(lèi)、調(diào)查時(shí)間和植物花期對(duì)天敵群落結(jié)構(gòu)均有顯著影響,三者總和對(duì)2012和2015年天敵多樣性信息的總變異可分別解釋26.02%和17.20%;2012和2015年的RDA排序圖均表明,小花蝽和中華草蛉與植物花期相關(guān)性較高;將小麥-麥蚜-瓢蟲(chóng)的儲(chǔ)蓄植物系統(tǒng)應(yīng)用于溫室后的第2周,接種200頭瓢蟲(chóng)的處理,蚜蟲(chóng)密度顯著低于其他處理,防治效果為69.4%。【結(jié)論】采用協(xié)調(diào)天敵誘集和助增策略,通過(guò)混合種植不同誘集植物,誘集到了多種自然天敵類(lèi)群,并將篩選出的優(yōu)勢(shì)天敵構(gòu)建成儲(chǔ)蓄植物系統(tǒng),應(yīng)用于溫室黃瓜中,其中,接種高密度瓢蟲(chóng)的儲(chǔ)蓄植物系統(tǒng)對(duì)蚜蟲(chóng)具有一定的控制作用。因此,以天敵昆蟲(chóng)誘集、保護(hù)、篩選和利用為一體的害蟲(chóng)生物防治思路在實(shí)踐中具有可行性。
誘集植物;天敵昆蟲(chóng);冗余分析;儲(chǔ)蓄植物系統(tǒng);釋放應(yīng)用;蚜蟲(chóng)
【研究意義】天敵昆蟲(chóng)作為自然生態(tài)系統(tǒng)中的組成部分,在調(diào)控農(nóng)業(yè)害蟲(chóng)種群方面具有重要的生態(tài)功能[1]。由于傳統(tǒng)的化學(xué)農(nóng)藥在害蟲(chóng)防治中并不具有選擇性,從而殺害了大量的天敵昆蟲(chóng),破壞了生態(tài)系統(tǒng),顯著降低了自然天敵的控害效果[2]。通過(guò)生境管理,即在農(nóng)業(yè)生態(tài)系統(tǒng)中建立適宜的生態(tài)基礎(chǔ)設(shè)施,為天敵昆蟲(chóng)在不利的自然環(huán)境中提供食物資源(花粉、蜜露、替代獵物/寄主)或庇護(hù)場(chǎng)所,可提高天敵昆蟲(chóng)的種群和害蟲(chóng)生物防治能力。其中,種植天敵昆蟲(chóng)的誘集植物是應(yīng)用較為廣泛且相對(duì)成功的措施[3]。此外,助增天敵昆蟲(chóng)的主動(dòng)調(diào)控作用,如構(gòu)建儲(chǔ)蓄植物系統(tǒng)(banker plant system)(基于陳學(xué)新等[4]的建議,本文統(tǒng)一用“儲(chǔ)蓄植物系統(tǒng)”作為中文名稱(chēng)),可顯著提高天敵昆蟲(chóng)控害的功效[5-6]。采用協(xié)調(diào)天敵誘集和助增策略,將天敵誘集與溫室應(yīng)用結(jié)合,可為利用天敵昆蟲(chóng)控制害蟲(chóng)提供理論和實(shí)踐基礎(chǔ)?!厩叭搜芯窟M(jìn)展】THIES等[7]早在1999年就研究發(fā)現(xiàn),景觀作物的豐富性有助于天敵昆蟲(chóng)的遷移和對(duì)周?chē)魑锖οx(chóng)的持續(xù)防控。此外,在保護(hù)地作物周?chē)N植開(kāi)花性植物,可為多種天敵昆蟲(chóng),如瓢蟲(chóng)、草蛉、食蚜蠅和寄生蜂等提供補(bǔ)充食物,從而顯著提高天敵昆蟲(chóng)的壽命和繁殖率[8-10]。進(jìn)一步研究發(fā)現(xiàn),很多捕食性和寄生性天敵對(duì)花粉和蜜露釋放出的揮發(fā)性有機(jī)物表現(xiàn)出明顯的趨性[9,11-13],LI等[14]研究發(fā)現(xiàn),在作物或天敵儲(chǔ)蓄植物中添加花粉對(duì)小花蝽和瓢蟲(chóng)具有明顯的誘集作用。關(guān)于用儲(chǔ)蓄植物增殖和釋放天敵的措施防治害蟲(chóng)已有 40年的歷史[4],多種天敵昆蟲(chóng),如蚜繭蜂(Aphidiid)、麗蚜小蜂(Encarsia formosa)、食蚜癭蚊(Aphidoletes aphidimyza)、食蚜蠅 (Scaeva pyrastri)和植綏螨(Phytoseiidae)等都有應(yīng)用,防治對(duì)象包括蚜蟲(chóng)、粉虱、薊馬和葉螨等[5,15]?!颈狙芯壳腥朦c(diǎn)】作物花期對(duì)天敵昆蟲(chóng)具有誘集性[11],且增加作物種類(lèi)有助于天敵遷移和棲息以及提高天敵多樣性[16],因此,本研究通過(guò)3年在不同地點(diǎn)混合種植5種誘集植物,分析所誘集天敵的多樣性特征;此外,將誘集到的優(yōu)勢(shì)天敵昆蟲(chóng)通過(guò)儲(chǔ)蓄植物繁育后,應(yīng)用于溫室黃瓜中防治瓜蚜。【擬解決的關(guān)鍵問(wèn)題】分析誘集植物中的天敵多樣性特征及與誘集植物種類(lèi)、調(diào)查時(shí)間和植物花期的關(guān)系,篩選出優(yōu)勢(shì)天敵種類(lèi),并在溫室中應(yīng)用,評(píng)價(jià)其對(duì)黃瓜蚜蟲(chóng)的防治效果。
天敵昆蟲(chóng)的誘集試驗(yàn)于2012和2013年在河北省廊坊市的中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所試驗(yàn)基地(116°69′ E,39°52′ N)開(kāi)展,2015在湖北省黃岡市農(nóng)業(yè)科學(xué)院梅家墩試驗(yàn)基地(114°55′ E,30°34′ N)開(kāi)展。儲(chǔ)蓄植物系統(tǒng)的溫室應(yīng)用于2013年在河北省廊坊市中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所試驗(yàn)基地進(jìn)行。
1.1供試植物
誘集植物包括玉米、紫花苜蓿、向日葵、小麥和大豆。其中,玉米、紫花苜蓿和向日葵種子購(gòu)自北京鑫農(nóng)豐農(nóng)業(yè)技術(shù)研究所;小麥和大豆分別為當(dāng)?shù)卦囼?yàn)基地提供。
1.2天敵昆蟲(chóng)誘集試驗(yàn)
在兩個(gè)試驗(yàn)基地中,每種作物設(shè)置一個(gè)小區(qū),小區(qū)面積為3 m×3 m,小區(qū)重復(fù)3次,5種作物共15個(gè)小區(qū),按照隨機(jī)區(qū)組排列,每個(gè)小區(qū)間隔1 m(圖1),試驗(yàn)區(qū)周?chē)鸀槌R?guī)作物。根據(jù)誘集植物的生長(zhǎng)周期差異,先后安排種植不同作物。試驗(yàn)期間,小麥處于苗期,玉米處于抽雄吐絲期,紫花苜蓿和向日葵經(jīng)歷現(xiàn)蕾期和花期,大豆經(jīng)歷出枝期、開(kāi)花期和結(jié)莢期。調(diào)查采用5點(diǎn)取樣法,每點(diǎn)選擇0.5 m×0.5 m的面積,其中,玉米、向日葵和大豆每點(diǎn)取樣6株,用直接觀察法調(diào)查取樣點(diǎn)內(nèi)的所有天敵種類(lèi)。調(diào)查時(shí)同時(shí)記錄作物的生長(zhǎng)時(shí)期。每周調(diào)查一次,若遇到陰雨天氣,提前或延后1 d調(diào)查。廊坊調(diào)查時(shí)間為2012年5月30日至7月3日(由于收集天敵會(huì)影響調(diào)查結(jié)果,所以2013年只收集天敵而不做調(diào)查,并構(gòu)建儲(chǔ)蓄植物系統(tǒng)和開(kāi)展溫室應(yīng)用試驗(yàn)),黃岡調(diào)查時(shí)間為2015年7月18日至8月21日。試驗(yàn)調(diào)查期間,誘集植物的栽培管理措施按照常規(guī)農(nóng)事操作進(jìn)行,每天用滴灌澆水,全苗生育階段,不定期鋤草,不使用除草劑和任何藥劑。
圖1 2012、2013和2015年誘集植物小區(qū)分布Fig. 1 Distribution of plots for trapping crops in 2012, 2013 and 2015
1.3儲(chǔ)蓄植物系統(tǒng)在溫室中的應(yīng)用
基于2012年廊坊試驗(yàn)基地天敵昆蟲(chóng)的誘集效果,2013年將誘集植物中的瓢蟲(chóng)卵塊(包括龜紋瓢蟲(chóng)(Propylaea japonica)、異色瓢蟲(chóng)(Harmonia axyridis)、七星瓢蟲(chóng)(Coccinella septempunctata)和二星瓢蟲(chóng)(Adalia bipunctata)收集起來(lái),放入透明塑料杯(上口直徑10 cm,下口直徑6 cm,高16 cm)中,上口用紗布封蓋,然后置于溫度為(10±1)℃,相對(duì)濕度(70±5)%,光周期L∶D=16 h∶8 h的人工氣候箱中貯存?zhèn)溆谩?/p>
溫室應(yīng)用前,將培養(yǎng)箱溫度調(diào)至(26±1)℃,待卵孵化后,將1—2齡期的幼蟲(chóng)接入帶有麥蚜的小麥上(小麥提前移栽到盆口直徑為20 cm的花盆中),并用100目的紗網(wǎng)籠罩,即構(gòu)建出了以麥蚜為替代獵物,小麥為儲(chǔ)蓄植物的小麥-麥蚜-瓢蟲(chóng)儲(chǔ)蓄植物系統(tǒng),并應(yīng)用于溫室黃瓜中防治蚜蟲(chóng),即瓜蚜(Aphis gossypii)。試驗(yàn)設(shè)置3個(gè)瓢蟲(chóng)密度梯度,A:50頭;B:100頭;C:200頭;D:空白對(duì)照。將蚜蟲(chóng)發(fā)生密度相對(duì)均勻的區(qū)域劃分為12個(gè)小區(qū),每區(qū)為一畦,每畦25顆黃瓜,小區(qū)之間用100目的防蟲(chóng)網(wǎng)隔開(kāi)。小區(qū)隨機(jī)排列。每個(gè)小區(qū)中間安排一個(gè)處理,每個(gè)處理重復(fù)3次。在每個(gè)小區(qū)內(nèi)定點(diǎn)調(diào)查5株黃瓜苗,每株選取上、中、下相對(duì)位置上各一片葉子,調(diào)查整張葉片正反面上的所有活蚜蟲(chóng)數(shù)量,每周調(diào)查一次,連續(xù)調(diào)查兩周。儲(chǔ)蓄植物系統(tǒng)應(yīng)用前,先調(diào)查各處理中的蚜蟲(chóng)基數(shù)。
1.4數(shù)據(jù)處理
采用冗余分析(redundancy analysis,RDA)方法分析不同寄主作物上的天敵群落與其影響因子(誘集植物種類(lèi)、調(diào)查時(shí)間和植物花期)間的關(guān)系[19]。冗余分析是約束排序中的重要類(lèi)型,能夠很好地分析物種多樣性特征(群落結(jié)構(gòu)和分布)與其影響因子的關(guān)系,而且可以降低個(gè)別優(yōu)勢(shì)類(lèi)群對(duì)群落結(jié)構(gòu)的影響權(quán)重。在采用冗余分析前,先利用除趨勢(shì)對(duì)應(yīng)分析(detrended correspondence analysis,DCA)對(duì)不同日期下不同誘集植物上的天敵昆蟲(chóng)群落組成進(jìn)行調(diào)查,根據(jù)得到的排序軸的梯度長(zhǎng)度(lengths of gradient)來(lái)選擇排序的類(lèi)型(線性模型(RDA)或者單峰模型(CCA))。如果DCA 排序前4個(gè)軸中的最大值超過(guò)4,選擇單峰模型合適,如果<3選擇線性模型比較合適;如果介于3—4兩種模型都可行[20]。在本研究中,2012年和 2015年寄主作物上的天敵分布的梯度長(zhǎng)度最大值分別為1.17和1.42,均小于3。利用R語(yǔ)言中vegan 軟件包的‘diversity’函數(shù)計(jì)算H′、D和J。利用vegan軟件包的‘rda’函數(shù)實(shí)現(xiàn)RDA分析[21]。所有原始數(shù)據(jù)均經(jīng)過(guò)lg(x+1)轉(zhuǎn)化。
不同調(diào)查日期間的天敵群落特征參數(shù)用單因素方差分析(One-way ANOVA,SPSS13.0),方差若有顯著性,采用Turky-HSD法比較,顯著性差異為P=0.05水平。
儲(chǔ)蓄植物系統(tǒng)防治溫室蚜蟲(chóng)的效果,根據(jù)應(yīng)用前后各小區(qū)的活蚜數(shù)進(jìn)行統(tǒng)計(jì),并按下列公式計(jì)算其蟲(chóng)口減退率(%)及防治效果(%):
蟲(chóng)口減退率(%)= [(防治前蟲(chóng)口數(shù)-防治后蟲(chóng)口數(shù))/防治前蟲(chóng)口數(shù)]×100
防治效果(%)= [(處理區(qū)蟲(chóng)口減退率-對(duì)照區(qū)蟲(chóng)口減退率)/(1-對(duì)照區(qū)蟲(chóng)口減退率)]×100
不同處理下的蚜蟲(chóng)防治效果用單因素方差分析(One-way ANOVA,SPSS13.0),方差若有顯著性,采用Turky-HSD法比較,顯著性差異為P=0.05水平。
2.1天敵昆蟲(chóng)多樣性特征及與其影響因子間的關(guān)系
誘集植物上天敵昆蟲(chóng)的群落特征參數(shù),Shannon-Wiener多樣性指數(shù)、Simpson優(yōu)勢(shì)集中性指數(shù)和Pielou均勻性指數(shù)隨著調(diào)查時(shí)間的變化,總體上呈現(xiàn)顯著差異(圖2)。按照個(gè)體數(shù)量占到所有天敵數(shù)量的10%以上為優(yōu)勢(shì)類(lèi)群的劃分依據(jù)[22],2012年的優(yōu)勢(shì)類(lèi)群為蚜繭蜂、小花蝽和龜紋瓢蟲(chóng);2015年的優(yōu)勢(shì)類(lèi)群為蚜繭蜂和龜紋瓢蟲(chóng)。其中,兩年的蚜繭蜂類(lèi)群分別占22.5%和14.7%。
圖3為RDA排序圖,箭頭表示影響因子,箭頭連線在兩個(gè)軸上的投影長(zhǎng)度代表某個(gè)影響因子對(duì)研究對(duì)象影響的大小,連線在軸上的投影越長(zhǎng)代表該影響因子對(duì)研究對(duì)象的分布影響越大,箭頭連線與排序軸的夾角代表該影響因子與排序軸的相關(guān)性大小,夾角越小則相關(guān)性越高。2012和2015年的天敵昆蟲(chóng)RDA分析結(jié)果表明,2012年,不同誘集植物上的天敵昆蟲(chóng)多樣性信息總變異中的26.02%能夠被誘集植物種類(lèi)、調(diào)查時(shí)間和植物花期這 3個(gè)變量解釋?zhuān)‵=3.048,P=0.001),其中第一軸解釋了約 15.00%變異信息,第二軸解釋了約 7.07%變異信息,第三軸解釋了約3.95%變異信息。2015年,誘集植物種類(lèi)、調(diào)查時(shí)間和植物花期能夠解釋 17.20%的天敵昆蟲(chóng)多樣性信息的總變異(F=1.801,P=0.027),其中第一軸解釋了約11.50%變異信息,第二軸解釋了約4.20%變異信息,第三軸解釋了約1.50%的變異信息。
誘集植物種類(lèi)、調(diào)查時(shí)間和植物花期對(duì)天敵群落結(jié)構(gòu)均有顯著影響(2012年,誘集植物:r2=0.476,P <0.001;調(diào)查時(shí)間:r2=0.484,P<0.001;植物花期:r2=0.455,P<0.001;2015年:誘集植物:r2=0.604,P=0.001;調(diào)查時(shí)間:r2=0.218,P=0.029;植物花期:r2=0.215,P=0.044)。兩年的PDA排序圖反映出一個(gè)共同的信息,即小花蝽和中華草蛉(Chrysoperla sinica)與植物花期的相關(guān)性較高。
2.2儲(chǔ)蓄植物系統(tǒng)對(duì)溫室蚜蟲(chóng)的防治效果
2013年溫室試驗(yàn)之前,各處理中的蚜蟲(chóng)初始密度沒(méi)有顯著差異(F3,8=1.79,P=0.23),平均每片葉子上蚜蟲(chóng)為102頭(圖4)。構(gòu)建的小麥-麥蚜-瓢蟲(chóng)的儲(chǔ)蓄植物系統(tǒng),在應(yīng)用后的第一周,接種200頭瓢蟲(chóng)的處理對(duì)蚜蟲(chóng)種群具有壓制作用,但各處理間的蚜蟲(chóng)密度沒(méi)有顯著差異(F3,8=2.65,P=0.12),兩周后,接種200頭瓢蟲(chóng)的處理中的蚜蟲(chóng)密度顯著低于其他處理(F3,8=5.18,P=0.03),防治效果為69.4%(表1)。
圖2 2012和2015年誘集植物上天敵多樣性指數(shù)的時(shí)間動(dòng)態(tài)Fig. 2 Temporal dynamics of natural enemy diversity on trapping crops in 2012 and 2015
表1 接種不同瓢蟲(chóng)密度的儲(chǔ)蓄植物系統(tǒng)對(duì)蚜蟲(chóng)的防治效果Table 1 Control efficacy of banker plant system inoculated at different densities of ladybird beetle against A. gossypii
圖3 誘集植物上天敵群落結(jié)構(gòu)與其影響因子間RDA排序圖Fig. 3 Graph of RDA for natural enemy community structure and its factors
近年來(lái),基于害蟲(chóng)生物防治的天敵昆蟲(chóng)控害機(jī)理和可持續(xù)利用方面,國(guó)內(nèi)外開(kāi)展了大量的工作[2,23-24]。其中,利用天敵昆蟲(chóng)對(duì)害蟲(chóng)的自然調(diào)控是今后研究的熱點(diǎn)方向[10]。相比于害蟲(chóng),天敵昆蟲(chóng)的不同種群對(duì)地理分布、生態(tài)環(huán)境和人為干擾等方面存在不對(duì)稱(chēng)性或不同步行,從而導(dǎo)致天敵昆蟲(chóng)對(duì)害蟲(chóng)的防控效應(yīng)存在“時(shí)空錯(cuò)位”和“控制乏力”[24]。由于天敵昆蟲(chóng)對(duì)害蟲(chóng)的“跟隨效應(yīng)”以及化學(xué)農(nóng)藥對(duì)自然天敵的殺傷作用,因此,通過(guò)人為誘集、保育和助增等方式,對(duì)天敵昆蟲(chóng)種群進(jìn)行主動(dòng)調(diào)節(jié),并通過(guò)促進(jìn)天敵昆蟲(chóng)與害蟲(chóng)的時(shí)空同步性,保持對(duì)害蟲(chóng)的“高壓”態(tài)勢(shì),是害蟲(chóng)可持續(xù)控制的重要措施。
圖4 接種不同瓢蟲(chóng)密度的儲(chǔ)蓄植物系統(tǒng)處理中蚜蟲(chóng)種群數(shù)量Fig. 4 A. gossypii population in treatments of banker plant system inoculated at different densities of ladybird beetle
開(kāi)花作物、蜜露可為天敵昆蟲(chóng)提供補(bǔ)充食物,從而有助于天敵的誘集和定殖[11,25-26],作物多樣性影響天敵昆蟲(chóng)的食物網(wǎng)[27-28]和在作物上的天敵種類(lèi)、種群結(jié)構(gòu)和分布[16,29-30],本研究在不同地點(diǎn)混合種植的 5種誘集植物中,玉米、向日葵和紫花苜蓿均具有顯著的誘集天敵作用[3,31-32],大豆和小麥對(duì)誘集害蟲(chóng)效果較好,從而起到豐富天敵食物網(wǎng)的作用[33]。相對(duì)于傳統(tǒng)的生態(tài)系統(tǒng)中生物多樣性的分析,本研究采用的冗余分析(RDA)是一種直接梯度分析方法,該方法能夠在不同變量因子組合下對(duì)單個(gè)變量進(jìn)行統(tǒng)計(jì)學(xué)特征描述,從而揭示各變量因子對(duì)生物多樣性的貢獻(xiàn)率[34]。本研究不僅將作物種類(lèi)和調(diào)查時(shí)間作為常規(guī)的影響因子分析其對(duì)天敵昆蟲(chóng)多樣性的影響,并且將植物花期也作為一個(gè)重要影響因子進(jìn)行研究。2012和2015年的研究結(jié)果表明,作物種類(lèi)、調(diào)查時(shí)間和植物花期共對(duì)天敵昆蟲(chóng)多樣性信息的總變異可分別解釋 26.02% 和17.20%,即80%左右的變異受到其他因子的影響,如作物的種植面積和周?chē)脖唬?3]、農(nóng)業(yè)景觀格局[35-36]等對(duì)昆蟲(chóng)群落均有影響。此外,氣候條件、地理位置、作物生長(zhǎng)階段和季節(jié)動(dòng)態(tài)等也對(duì)誘集植物上的天敵多樣性產(chǎn)生影響。因此,作物對(duì)天敵昆蟲(chóng)的誘集效果應(yīng)在大尺度空間范圍內(nèi)綜合考慮。本研究所在的廊坊和黃岡試驗(yàn)基地分別占地33和60 hm2,兩個(gè)基地主要種植的作物均為棉花、小麥、玉米、花生、大豆和蔬菜等作物,種植結(jié)構(gòu)相似,所以誘集的天敵昆蟲(chóng)類(lèi)群相近,如試驗(yàn)過(guò)程中,兩基地的小麥中蚜繭蜂數(shù)量較多,成為誘集植物上的優(yōu)勢(shì)群體,此外,廊坊和黃岡分別在試驗(yàn)的第6周和第5周降雨,對(duì)天敵種群的影響較大,群落參數(shù)均明顯下降。
很多研究表明,提高作物多樣性能為天敵提供更適合的微觀環(huán)境、食物、替代寄主或獵物等資源[3],尤其是蜜源植物能夠增加天敵的多樣性和適合度[37-38],然而,天敵間存在兼性捕食/寄生作用(intraguild predation,IGP)[39],此外,很多植物也同時(shí)具有對(duì)害蟲(chóng)的誘集作用[33],因此,天敵多樣性的提高并不意味著能夠降低害蟲(chóng)種群[40-41]。鑒于誘集植物在天敵昆蟲(chóng)利用方面具有風(fēng)險(xiǎn),本研究通過(guò)在自然生態(tài)系統(tǒng)中將幾種誘集植物組合,在田間“招募”各類(lèi)自然天敵,形成天敵昆蟲(chóng)的開(kāi)放式儲(chǔ)蓄庫(kù),之后針對(duì)目標(biāo)作物上害蟲(chóng)的發(fā)生種類(lèi)與發(fā)生密度,從天敵庫(kù)中有意識(shí)地“調(diào)用”優(yōu)勢(shì)天敵昆蟲(chóng),并臨時(shí)構(gòu)建出儲(chǔ)蓄植物系統(tǒng),應(yīng)用于目標(biāo)作物上防治害蟲(chóng),探索集天敵誘集、保護(hù)、篩選與釋放應(yīng)用為一體的天敵昆蟲(chóng)利用新途徑。2012和2013年在廊坊種植的誘集植物中,蚜繭蜂和瓢蟲(chóng)均為優(yōu)勢(shì)天敵類(lèi)群,且在植物上以僵蚜、瓢蟲(chóng)卵和低齡幼蟲(chóng)的定殖蟲(chóng)態(tài)容易收集和貯存。本研究在2013年的誘集植物中,僅收集了瓢蟲(chóng)卵,并就地取材,將帶有麥蚜的小麥作為儲(chǔ)蓄植物,從而構(gòu)建出“小麥-麥蚜-瓢蟲(chóng)”儲(chǔ)蓄植物系統(tǒng)。2015年,在黃岡種植了同樣布局的誘集植物,進(jìn)一步驗(yàn)證了誘集結(jié)果。該研究思路不僅節(jié)約了天敵大量飼養(yǎng)的成本,避免了天敵利用的風(fēng)險(xiǎn),也為生態(tài)系統(tǒng)中提高天敵功效所需的功能植物的篩選、搭配和布局提供參考。
儲(chǔ)蓄植物系統(tǒng)綜合了天敵的保護(hù)與助增的特點(diǎn)[5],即通過(guò)建立一個(gè)自我維持的系統(tǒng)以降低有害生物的種群水平[15]。儲(chǔ)蓄植物系統(tǒng)的應(yīng)用時(shí)間直接決定著對(duì)害蟲(chóng)的防治效果[42],提早預(yù)防性引入儲(chǔ)蓄植物系統(tǒng),往往會(huì)取得明顯的防治效果,且成本較低。本研究在溫室中引入儲(chǔ)蓄植物時(shí),黃瓜葉片上的蚜蟲(chóng)密度已經(jīng)較高,所以沒(méi)有取得良好的防治效果。試驗(yàn)中,盡管接種200頭瓢蟲(chóng)的儲(chǔ)蓄植物在第2周的防治效果近70%,仍壓制不住蚜蟲(chóng)種群的暴發(fā),后期植物由于蚜蟲(chóng)的嚴(yán)重為害而枯萎。因此,誘集植物的種植、天敵昆蟲(chóng)的收集和保存、儲(chǔ)蓄植物的構(gòu)建和引入應(yīng)綜合考慮目標(biāo)作物害蟲(chóng)的發(fā)生時(shí)間和發(fā)生密度等信息。
目前,中國(guó)的農(nóng)業(yè)害蟲(chóng),尤其是入侵性害蟲(chóng)表現(xiàn)出對(duì)環(huán)境的適應(yīng)性高、繁殖速度快和競(jìng)爭(zhēng)能力強(qiáng)等特點(diǎn)[43]。通過(guò)保護(hù)和利用天敵,充分發(fā)揮天敵對(duì)害蟲(chóng)的持續(xù)有效控制是生物防治研究中一個(gè)始終不渝的努力方向[4]。本研究協(xié)調(diào)天敵誘集和助增策略,在小范圍內(nèi)探索了誘集植物上天敵多樣性特征及與其影響因子間的關(guān)系,并以溫室黃瓜害蟲(chóng)(蚜蟲(chóng))為實(shí)踐對(duì)象,將誘集到的優(yōu)勢(shì)天敵構(gòu)建成儲(chǔ)蓄植物系統(tǒng),評(píng)價(jià)了其對(duì)溫室蚜蟲(chóng)的防治效果,為天敵昆蟲(chóng)的保護(hù)和利用提供了理論和實(shí)踐基礎(chǔ)。
誘集植物種類(lèi)、調(diào)查時(shí)間和植物花期顯著影響天敵昆蟲(chóng)的群落結(jié)構(gòu);構(gòu)建的優(yōu)勢(shì)天敵儲(chǔ)蓄植物系統(tǒng),在應(yīng)用時(shí)應(yīng)考慮目標(biāo)害蟲(chóng)的發(fā)生時(shí)間和密度。以天敵昆蟲(chóng)誘集、保護(hù)、篩選和利用為一體的害蟲(chóng)生物防治思路在實(shí)踐中具有可行性。
References
[1] NAEEM S, BUNKER D E, HECTOR A, LOREAU M, PERRINGS C. Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective. Oxford: Oxford University Press, 2009.
[2] CROWDER D W, NORTHFIELD T D, STRAND M R, SNYDER W E. Organic agriculture promotes evenness and natural pest control. Nature, 2010, 466 (7302): 109-112.
[3] LANDIS D A, WRATTEN S D, GURR G M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 2000, 45(1): 175-201.
[4] 陳學(xué)新, 劉銀泉, 任順祥, 張帆, 張文慶, 戈峰. 害蟲(chóng)天敵的植物支持系統(tǒng). 應(yīng)用昆蟲(chóng)學(xué)報(bào), 2014, 51(1): 1-12. CHEN X X, LIU Y Q, REN S X, ZHANG F, ZHANG W Q, GE F. Plant-mediated support system for natural enemies of insect pests. Chinese Journal of Applied Entomology, 2014, 51(1): 1-12. (in Chinese)
[5] FRANK S D. Biological control of arthropod pests using banker plant systems: Past progress and future directions. Biological Control, 2010,52(1): 8-16.
[6] XIAO Y F, OSBORNE L, CHEN J , MCKENZIE C, HOUBEN K,IRIZARRY F. Evaluation of corn plant as potential banker plant for supporting predatory gall midge, Feltiella acarisuga (Diptera:Cecidomyiidae) against Tetranychus urticae (Acari: Tetranychidae) in greenhouse vegetable production. Crop Protection, 2011, 30(12):1635-1642.
[7] THIES C, TSCHARNTKE T. Landscape structure and biological control in agroecosystems. Science, 1999, 285(5429): 893-895.
[8] HICKMAN J M, WRATTEN S D. Use of Phacelia tanacetifolia strips to enhance biological control of aphids by hoverfly larvae in cereal fields. Journal of Economic Entomology, 1996, 89(4): 832-840. [9] W?CKERS F L. Assessing the suitability of flowering herbs as parasitoid food sources: flower attractiveness and nectar accessibility. Biological Control, 2004, 29(3): 307-314.
[10] BIANCHI F J, BOOIJ C J, TSCHARNTKE T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proceedings of the Royal Society B: Biological Sciences, 2006, 273(1595): 1715-1727.
[11] WINKLER K, W?CKERS F, BUKOVINSZKINE-KISS G, VAN LENTEREN J. Sugar resources are vital for Diadegma semiclausum fecundity under field conditions. Basic and Applied Ecology, 2006,7(2): 133-140.
[12] OSAWA N. Ecology of Harmonia axyridis in natural habitats within its native range. BioControl, 2011, 56(4): 613-621.
[13] WAJNBERG E, COLAZZA S. Chemical Ecology of Insect Parasitoids.John Wiley and Sons, Inc., 2013.
[14] LI S, TAN X, DESNEUX N, BENELLI G, ZHAO J, LI X H,ZHANG F, GAO X W, WANG S. Innate positive chemotaxis to pollen from crops and banker plants in predaceous biological control agents: towards new field lures? Scientific Reports, 2015, 5: Article number 12729.
[15] 肖英方, 毛潤(rùn)乾, 沈國(guó)清, OSBORNE L S. 害蟲(chóng)生物防治新技術(shù)——載體植物系統(tǒng). 中國(guó)生物防治學(xué)報(bào), 2012, 28(1): 1-8. XIAO Y F, MAO R Q, SHEN G Q, OSBORNE L S. Banker plant system: a new approach for biological control of arthropod pests. Chinese Journal of Biological Control, 2012, 28(1): 1-8. (in Chinese)
[16] JOHNSON M T, LAJEUNESSE M J, AGRAWAL A A. Additive and interactive effects of plant genotypic diversity on arthropod communities and plant fitness. Ecology Letters, 2006, 9(1): 24-34.
[17] 趙志模, 郭依泉. 群落生態(tài)學(xué)原理與方法. 重慶: 科學(xué)技術(shù)文獻(xiàn)出版社重慶分社, 1990. ZHAO Z M, GUO Y Q. Community Ecology Principles and Methods. Chongqing: Chongqing Bureau of Science and Technology Press,1990. (in Chinese)
[18] MAGURRAN A E. Measuring Biological Diversity. Oxford:Blackwell Publishing, 2004: 256.
[19] HOULAHAN J E, KEDDY P A, MAKKAY K, FINDLAY C S. The effects of adjacent land use on wetland species richness and community composition. Wetlands, 2006, 26(1): 79-96.
[20] LEP? J, ?MILAUER P. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge, UK: Cambridge University Press, 2003. [21] OKSANEN J, KINDT R, LEGENDRE P, O’HARA B, STEVENS M H H, OKSANEN M J, SUGGESTS M A. Vegan: community ecology package R package version 2.2-1[OL]. [2016-02-02]. http://vegan.rforge.r- project.org/.
[22] 許洪軍, 于立忠, 黃選瑞, 朱教君, 楊晉宇, 高尚林, 王擁軍. 遼東山區(qū)次生林與人工林大型地表節(jié)肢動(dòng)物多樣性. 生態(tài)學(xué)雜志, 2015,34(3): 727-735. XU H J, YU L Z, HUANG X R, ZHU J J, YANG J Y, GAO S L,WANG Y J. Biodiversity of macro ground-dwelling arthropods in secondary forests and plantation forests of montane region of eastern Liaoning Province. Chinese Journal of Ecology, 2015, 34(3): 727-735. (in Chinese)
[23] MARTIN E A, REINEKING B, SEO B, STEFFAN-DEWENTER I. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(14): 5534-5539.
[24] 陳學(xué)新, 任順祥, 張帆, 彩萬(wàn)志, 曾凡榮, 張文慶. 天敵昆蟲(chóng)控害機(jī)制與可持續(xù)利用. 應(yīng)用昆蟲(chóng)學(xué)報(bào), 2013, 50(1): 9-18. CHEN X X, REN S X, ZHANG F, CAI W Z, ZENG F R, ZHANG W Q. Mechanism of pest management by natural enemies and their sustainable utilization. Chinese Journal of Applied Entomology, 2013,50(1): 9-18. (in Chinese)
[25] REBEK E J, SADOF C S, HANKS L M. Manipulating the abundance of natural enemies in ornamental landscapes with floral resource plants. Biological Control, 2005, 33: 203-216.
[26] 汪庚偉, 田俊策, 朱平陽(yáng), 鄭許松, 徐紅星, 楊亞軍. 蜜源食物對(duì)節(jié)肢動(dòng)物天敵壽命、繁殖力和控害能力的影響. 昆蟲(chóng)學(xué)報(bào), 2014,57(8): 979-990. WANG G W, TIAN J C, ZHU P Y, ZHENG X S, XU H X, YANG Y J. Effects of sugar-rich foods on the longevity, fecundity and pest control capacity of arthropod natural enemies. Acta Entomologica Sinica, 2014, 57(8): 979-990. (in Chinese)
[27] TYLIANAKIS J M, TSCHARNTKE T, LEWIS O T. Habitat modification alters the structure of tropical host-parasitoid food webs. Nature, 2007, 445(7124): 202-205.
[28] PAROLIN P, BRESCH C, PONCET C, DESNEUX N. Functional characteristics of secondary plants for increased pest management. International Journal of Pest Management, 2012, 58(4): 369-377.
[29] 尤民生, 劉雨芳, 侯有明. 農(nóng)田生物多樣性與害蟲(chóng)綜合治理. 生態(tài)學(xué)報(bào), 2004, 24(1): 117-122. YOU M S, LIU Y F, HOU Y M. Biodiversity and integrated pest management in agroecosystems. Acta Ecologica Sinica, 2004, 24(1):117-122. (in Chinese)
[30] GRIFFITHS G J, HOLLAND J M, BAILEY A, THOMAS M B. Efficacy and economics of shelter habitats for conservation biological control. Biological Control, 2008, 45(2): 200-209.
[31] KAJITA Y, EVANS E W. Alfalfa fields promote high reproductive rate of an invasive predatory lady beetle. Biological Invasions, 2010,12(7): 2293-2302.
[32] 雒珺瑜, 張帥, 王春義, 呂麗敏, 李春花, 崔金杰. 不同誘集作物對(duì)棉田刺吸性害蟲(chóng)及其天敵的生態(tài)作用比較. 中國(guó)棉花, 2014,41(8): 14-16. LUO J Y, ZHANG S, WANG C Y, Lü L M, LI C H, CUI J J. Ecological effects of different trap to sucking pests and natural enemies in cotton fields. China Cotton, 2014, 41(8): 14-16. (in Chinese)
[33] SHELTON A M, BADENES-PEREZ F R. Concepts and applications of trap cropping in pest management. Annual Review of Entomology,2006, 51: 285-308.
[34] JACKSON M M, TURNER M G, PEARSON S M, IVES A R. Seeingthe forest and the trees: multilevel models reveal both species and community patterns. Ecosphere, 2012, 3(9): article 79.
[35] 鄭云開(kāi), 尤民生. 農(nóng)業(yè)景觀生物多樣性與害蟲(chóng)生態(tài)控制. 生態(tài)學(xué)報(bào),2009, 29(3): 1508-1518. ZHENG Y K, YOU M S. Biological diversity in support of ecologically-based pest management at landscape level. Acta Ecologica Sinica, 2009, 29(3): 1508-1518. (in Chinese)
[36] 張?chǎng)危?王艷輝, 劉云慧, 戴漂漂, 董杰, 宇振榮. 害蟲(chóng)生物防治的景觀調(diào)節(jié)途徑: 原理與方法. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2015, 31(5):617-624. ZHANG X, WANG Y H, LIU Y H, DAI P P, DONG J, YU Z R. Approaches biological control of pests of through landscape regulation: theory and practice. Journal of Ecology and Rural Environment, 2015, 31(5): 617-624. (in Chinese)
[37] HOGG B N, BUGG R L, DAANE K M. Attractiveness of common insectary and harvestable floral resources to beneficial insects. Biological Control, 2011, 56(1): 76-84.
[38] BALZAN M V, W?CKERS F L. Flowers to selectively enhance the fitness of a host-feeding parasitoid: Adult feeding by Tuta absoluta and its parasitoid Necremnus artynes. Biological Control, 2013, 67(1):21-31.
[39] FINKE D L, DENNO R F. Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecology Letters, 2005, 8(12): 1299-1306.
[40] STRAUB C S, FINKE D L, SNYDER W E. Are the conservation of natural enemy biodiversity and biological control compatiblegoals?Biological Control, 2008, 45(2): 225-237.
[41] RATNADASS A, FERNANDES P, AVELINO J, HABIB R. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agronomy for Sustainable Development, 2012, 32(1): 273-303.
[42] HUANG N X, ENKEGAARD A, OSBORNE L S, RAMAKERS P M J, MESSELINK G J, PIJNAKKER J, MURPHY G. The banker plant method in biological control. Critical Reviews in Plant Sciences, 2011,30(3): 259-278.
[43] WAN F H, YANG N W. Invasion and management of agricultural alien insects in China. Annual Review of Entomology, 2016, 61:77-98.
(責(zé)任編輯 岳梅)
Natural Enemy Diversity on Trapping Crops and Its Application for Control of Aphids in Greenhouse Cucumber
WU Sheng-yong1, XU Li-rong2, LI Ning2, WANG Deng-jie3, LEI Zhong-ren1,4
(1State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193;2Huanggang Academy of Agricultural Sciences, Huanggang 438000, Hubei;3Dachuan Plant Protection and Quarantine Station in Dazhou City of Sichuan Province, Dazhou 635000, Sichuan;4Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou 350002)
【Objective】Concern over protection and application of natural enemies for biological control of insect pests has increased considerably in recent years. The objective of this study is to assess the relationship between natural enemy diversity on multiple mixed trapping crops and its influence factors. Furthermore, the efficacy of banker plant system for control of the target pest aphids in cucumber greenhouse was evaluated. 【Method】Five species of trapping crops including maize, alfalfa, sunflower, wheatand soybean were mix-planted in the experiment stations of Langfang and Huanggang in 2012, 2103 and 2015, respectively. The species of natural enemies were investigated during the experimental period. The community parameters of natural enemies were calculated, and the relationship between community structure and its influence factors (plant species, sampling time and flowering phase) was analyzed by redundancy analysis. In 2013, the dominant natural enemy, i.e., ladybird beetle was collected from the trap cropping and stored in laboratory. In addition, the wheat aphid and wheat were selected as the alternative prey and banker plant of ladybird beetle with different densities, respectively, and the system for control of Aphis gossypii was introduced on greenhouse cucumber. The control efficacy among different treatments was compared.【Result】Analyses of community parameters of natural enemies, Shannon-Wiener diversity index (H’), Simpson’s diversity index (D) and Pielou’s evenness index (J) showed differences over the sampling time. Aphidius spp. and Propylaea japonica were determined as dominant natural enemies in two years. The abundances of both species accounted for over 10% in all natural species on the mixed trap cropping. Redundancy analysis results indicated that plant species, flowering phase and sampling time significantly affected the abundance of natural enemies, and in total explained 26.02% and 17.20% of the variance of the natural enemy community data in 2012 and 2015, respectively. Graph of RDA in 2012 and 2015 indicated that Orius spp. and Chrysoperla sinica displayed higher correlation with the flowering phase. When introduced the banker plant system with density of 200 ladybird beetles in greenhouse, the density of A. gossypii was significantly lower among the treatments, with a control efficacy of 69.4%. 【Conclusion】Attractiveness of natural enemies was integrated with the strategy of their enhanced abundance by means of artificial assistance. Different species of trapping crop plants were mix-planted,attracted multiple natural enemies groups. The dominant natural enemy attracted in the mixed plants was screened to develop the banker plant system, which was then introduced in greenhouse cucumber for control of aphids. The banker plant system with the highest density of ladybird beetle resulted in a certain reduction in aphids population. Therefore, it is practicable to integrated strategies involving the trapping, protection, screening and application of natural enemies for biological control of insect pests.
trap cropping; natural enemies; redundancy analysis; banker plant system; release and application; aphid
2016-02-02;接受日期:2016-04-22
國(guó)家大宗蔬菜產(chǎn)業(yè)技術(shù)體系(CARS-25-B-07)、國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)(201303019-02)
聯(lián)系方式:吳圣勇,E-mail:sywu@ippcaas.cn。徐麗榮,E-mail:300200100xlr@163.com。吳圣勇和徐麗榮為同等貢獻(xiàn)作者。通信作者雷仲仁,E-mail:leizhr@sina.com