• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      生防型菌肥對(duì)黃瓜生長(zhǎng)及根結(jié)線蟲病的影響

      2016-09-16 03:57:57馬玉琴茆振川楊宇紅馮東昕謝丙炎
      關(guān)鍵詞:菌肥線蟲病盆栽

      馬玉琴,魏 偲,茆振川,楊宇紅,馮東昕,謝丙炎

      (中國(guó)農(nóng)業(yè)科學(xué)院蔬菜花卉研究所農(nóng)業(yè)部蔬菜遺傳改良重點(diǎn)開放實(shí)驗(yàn)室,北京 100081)

      生防型菌肥對(duì)黃瓜生長(zhǎng)及根結(jié)線蟲病的影響

      馬玉琴,魏 偲,茆振川,楊宇紅,馮東昕,謝丙炎

      (中國(guó)農(nóng)業(yè)科學(xué)院蔬菜花卉研究所農(nóng)業(yè)部蔬菜遺傳改良重點(diǎn)開放實(shí)驗(yàn)室,北京 100081)

      【目的】評(píng)價(jià)短短芽孢桿菌、淡紫擬青霉、交枝頂孢霉、鉤狀木霉等生防菌劑配比的生物有機(jī)菌肥對(duì)黃瓜根結(jié)線蟲病的防治效果以及對(duì)黃瓜生長(zhǎng)、產(chǎn)量的影響, 確定高效菌肥組合。【方法】將4種菌劑按照國(guó)家標(biāo)準(zhǔn)分別與有機(jī)肥進(jìn)行配比形成單菌劑、多菌劑等1—10號(hào)菌肥試驗(yàn)設(shè)置,以不施肥為空白對(duì)照,以有機(jī)肥、噻唑膦分別為肥料及化學(xué)藥劑對(duì)照。通過盆栽接種根結(jié)線蟲、根結(jié)線蟲病溫室小區(qū)試驗(yàn)及無根結(jié)線蟲病田間測(cè)產(chǎn)試驗(yàn)等對(duì)10種不同配比組合的生物菌肥進(jìn)行試驗(yàn),通過對(duì)黃瓜產(chǎn)量、株高、地上部鮮重以及黃瓜根結(jié)線蟲病病情指數(shù)的調(diào)查分析,比較不同配比組合的生物菌肥對(duì)黃瓜根結(jié)線蟲病防治效果以及對(duì)黃瓜生長(zhǎng)勢(shì)、產(chǎn)量的影響?!窘Y(jié)果】在盆栽試驗(yàn)中,化學(xué)藥劑對(duì)照噻唑膦處理防治效果最高達(dá)到89.2%,顯著高于其他處理。在菌肥處理中,5號(hào)、6號(hào)、9號(hào)菌肥處理,防治效果為分別為52.5%、52.5%、54.2%,均在50%以上,顯著高于其他菌肥處理。在溫室小區(qū)試驗(yàn)中,5號(hào)、6號(hào)、9號(hào)生物菌肥處理的防治效果分別為56.8%、57.6%、59.3%,與化學(xué)藥劑對(duì)照噻唑膦處理(61.3%)之間沒有顯著差異。通過相關(guān)性分析證實(shí)盆栽試驗(yàn)與溫室小區(qū)試驗(yàn)中各處理防治效果呈顯著正相關(guān),而且多菌劑配比防效好于單菌劑菌肥。同時(shí)綜合對(duì)比盆栽、溫室及田間測(cè)產(chǎn)試驗(yàn)中各處理的黃瓜株高、地上部鮮重、產(chǎn)量,與空白對(duì)照相比,各菌肥處理均具有極顯著的促生長(zhǎng)和增產(chǎn)作用(P<0.01),但是不同試驗(yàn)及不同菌肥處理之間存在差異。在田間測(cè)產(chǎn)試驗(yàn)中,增產(chǎn)幅度范圍為31.7%—74.9%,其中以6號(hào)菌肥效果最佳,增產(chǎn)達(dá)到74.9%。在盆栽試驗(yàn)和溫室小區(qū)試驗(yàn)中,1—10號(hào)處理中增產(chǎn)效果最為顯著的為9號(hào)處理,增產(chǎn)分別達(dá)到了60.4%和68.1%;其次為1號(hào)處理,比對(duì)照增產(chǎn)50.8%和55.8%。5號(hào)、6號(hào)、9號(hào)處理不僅可以有效地防治根結(jié)線蟲病,而且增產(chǎn)促生長(zhǎng)作用較為明顯,其中9號(hào)處理效果最為顯著。綜合比較盆栽、溫室試驗(yàn)的結(jié)果,發(fā)現(xiàn)菌肥對(duì)根結(jié)線蟲的防治效果與其對(duì)黃瓜的增產(chǎn)作用具有一定相關(guān)性,但并不顯著?!窘Y(jié)論】多菌種復(fù)合菌肥(5號(hào)、6號(hào)、9號(hào))對(duì)黃瓜根結(jié)線蟲病防治及增產(chǎn)促生長(zhǎng)作用顯著,是實(shí)現(xiàn)安全高效防治根結(jié)線蟲病及增產(chǎn)的途徑之一,具有重要的應(yīng)用價(jià)值和開發(fā)前景。

      生防型菌肥;黃瓜;根結(jié)線蟲;防治效果;增產(chǎn)作用

      0 引言

      【研究意義】根結(jié)線蟲(Meloidogyne spp.)嚴(yán)重制約了蔬菜的產(chǎn)量,每年對(duì)農(nóng)作物造成的損失達(dá)到幾十億美元[1-2]。施用化學(xué)殺線劑防治根結(jié)線蟲病雖然見效快,但會(huì)因農(nóng)藥殘留而極大降低蔬菜品質(zhì),污染環(huán)境,破壞生態(tài)平衡,嚴(yán)重威脅農(nóng)業(yè)的可持續(xù)發(fā)展。利用抗性品種被認(rèn)為是經(jīng)濟(jì)、安全、高效的方法,種植抗病品種比感病品種可提高產(chǎn)量 50%[3],但是作物中可利用的抗線蟲基因稀少,只有Mi-1基因成功應(yīng)用于番茄育種。目前在黃瓜中尚未發(fā)現(xiàn)可用于抗根結(jié)線蟲育種的抗性基因[4-5]。利用生物防治替代化學(xué)防治是減輕根結(jié)線蟲危害的重要策略之一,將生物有機(jī)肥與生物菌劑相結(jié)合的可持續(xù)治理體系日益受到重視,選擇合適的生防菌株,并進(jìn)行搭配組合,使之由單一菌肥向復(fù)合菌肥、單功能向多功能方面發(fā)展具有重要意義?!厩叭搜芯窟M(jìn)展】生物菌肥可以通過微生物的生命活動(dòng)使作物獲得特定的肥料效應(yīng),該效應(yīng)中活性微生物起關(guān)鍵作用[6]。目前所使用的菌種已達(dá)到100多種,包括細(xì)菌、真菌、放線菌及藍(lán)藻等。據(jù)報(bào)道,淡紫擬青霉(Paecilomyces lilacinus)顆粒劑對(duì)黃瓜根結(jié)線蟲的生防效果為39.8%,同時(shí)可增加黃瓜產(chǎn)量[7];交枝頂孢霉(Acremonium implicatum)為線蟲條件致病真菌,對(duì)南方根結(jié)線蟲(Meloidogyne incognita)的寄生率為33.8%[8];木霉屬(Trichoderma spp.)中的特定種可以成功拮抗及殺死植物寄生性線蟲,鉤狀木霉(Trichoderma hamatum)具有生防活性[9];BECKER等[10]報(bào)道了假單胞菌(Pseudomonas spp.)和芽孢桿菌(Bacillus spp.)對(duì)根結(jié)線蟲病害的防治作用。目前國(guó)內(nèi)生物菌肥生產(chǎn)中還存在著產(chǎn)品活菌數(shù)低、品種少、效果不穩(wěn)定、成本和價(jià)格較高等問題,有待于深入研究解決。但是從整體來看,研究的范圍、深度極其有限,仍需不斷地探索。因此亟需加強(qiáng)生物菌肥由單一菌肥向復(fù)合菌肥方面的發(fā)展, 由單功能向多功能方面發(fā)展,最大程度地發(fā)揮在農(nóng)業(yè)生產(chǎn)中應(yīng)有的經(jīng)濟(jì)效益、社會(huì)效益和生態(tài)效益[11]?!颈狙芯壳腥朦c(diǎn)】針對(duì)黃瓜根結(jié)線蟲危害成災(zāi)的問題,將生防菌與有機(jī)肥相結(jié)合,研究活性菌肥對(duì)黃瓜根結(jié)線蟲的防病增產(chǎn)作用。芽孢桿菌[12-13]、交枝頂孢霉[9]、木霉[14]、淡紫擬青霉[15]均為重要的生防菌,對(duì)根結(jié)線蟲病均有一定防效。目前菌肥主要集中在土壤肥料轉(zhuǎn)化及提高作物抗性等方面,針對(duì)黃瓜生長(zhǎng)及根結(jié)線蟲防治的菌肥研究尚未見詳細(xì)報(bào)道?!緮M解決的關(guān)鍵問題】利用實(shí)驗(yàn)室分離到的短短芽孢桿菌(Brevibacillus brevis)、淡紫擬青霉、交枝頂孢霉、鉤狀木霉4種生防菌與生物有機(jī)肥進(jìn)行合理的配比,制備成具有生物防治作用的菌肥;通過盆栽、溫室及田間測(cè)產(chǎn)試驗(yàn)研究其對(duì)黃瓜根結(jié)線蟲病的防治效果及對(duì)黃瓜的促生長(zhǎng)、增產(chǎn)作用,為研發(fā)替代或減施化學(xué)農(nóng)藥及化肥、環(huán)境友好型的生防型菌肥提供依據(jù)。

      1 材料與方法

      1.1試驗(yàn)材料

      1.1.1病原線蟲 供試線蟲為南方根結(jié)線蟲,由中國(guó)農(nóng)業(yè)科學(xué)院蔬菜花卉研究所病害組提供。南方根結(jié)線蟲2齡幼蟲(J2)培養(yǎng)在溫室辣椒(茄門甜椒品種)植株上,挑取根部的線蟲卵塊,用0.5%的NaClO消毒3—5 min,用無菌水沖洗3—4次,28℃條件下黑暗孵化,收集新鮮的J2用于盆栽接種試驗(yàn)。北京順義綠奧基地溫室土壤中根結(jié)線蟲種類分子鑒定為南方根結(jié)線蟲[16],通過多點(diǎn)取樣,采用淺盤法分離根結(jié)線蟲[17],測(cè)定土壤中J2的種群密度為24.3條/100 g土。

      1.1.2黃瓜 供試黃瓜(Cucumis sativus)品種為中農(nóng)16,購自中蔬種業(yè)科技(北京)有限公司。

      1.1.3生防型菌株 短短芽孢桿菌、交枝頂孢霉(CGMCC8300)、淡紫擬青霉和鉤狀木霉(CGMCC NO. 10923)4種菌株,由中國(guó)農(nóng)業(yè)科學(xué)院蔬菜花卉研究所病害組分離鑒定并保存。4種生防菌的菌劑加工由西安德龍生物技術(shù)有限公司完成。

      1.1.4有機(jī)肥、基質(zhì)及其他藥劑 供試有機(jī)肥為西安德龍生物技術(shù)有限公司生產(chǎn)的“家家肥”牌生物有機(jī)肥(JJF)?;瘜W(xué)藥劑處理采用10%的噻唑膦顆粒劑(福氣多),由日本石原株式會(huì)社生產(chǎn)。基質(zhì)為德國(guó)進(jìn)口無菌育苗基質(zhì),蛭石購自中國(guó)農(nóng)業(yè)科學(xué)院蔬菜花卉研究所花卉市場(chǎng)。

      1.1.5生防型生物有機(jī)菌肥種類及配比 根據(jù)國(guó)家菌肥生產(chǎn)標(biāo)準(zhǔn)(GB20287-2006),依據(jù)正交試驗(yàn)設(shè)計(jì)方法,將生防菌劑按照下表與“家家肥”(JJF)有機(jī)肥進(jìn)行配比,使得每種生防菌的孢子含量為0.2 億/g,得到1—10號(hào)菌肥,具體配方見表1。

      表1 生防型菌肥各處理的配比Table 1 Formulation of compound microorganism bioorganic fertilizer

      1.2試驗(yàn)方法

      1.2.1盆栽試驗(yàn) 試驗(yàn)于2015年9—11月在北京順義綠奧基的溫室中進(jìn)行。將黃瓜種子用5% NaClO消毒10 min,用無菌水清洗干凈后,放置于含有濕潤(rùn)濾紙的培養(yǎng)皿中,28℃催芽1 d,播種于育苗盤中。黃瓜苗在 25—28℃溫室中培養(yǎng)至第一片真葉完全展開時(shí)進(jìn)行移栽。每盆加入生長(zhǎng)基質(zhì)約1.5 kg,菌肥20 g。在移栽前混合均勻,然后將黃瓜苗移栽到試驗(yàn)盆中(高:25 cm×直徑:25 cm)。根據(jù)菌肥配方分別設(shè)置為1 —10號(hào)菌肥,化學(xué)藥劑對(duì)照為每盆施用0.15 g 10%噻唑膦,以“家家肥”肥料處理為肥料對(duì)照,清水處理為空白對(duì)照。每盆種植1株黃瓜苗,每個(gè)處理10盆,設(shè)3次重復(fù)。

      在黃瓜苗移栽一周后,進(jìn)行根結(jié)線蟲接種,在距離黃瓜根5 cm處的基質(zhì)中均勻打3個(gè)1 cm深的小孔,注入線蟲懸浮液,每株接種根結(jié)線蟲2齡幼蟲1 000條,接種后進(jìn)行正常的肥水管理。10、30、60 d時(shí)分別檢測(cè)黃瓜的株高,并在第60天檢測(cè)地上部及地下部鮮重、產(chǎn)量的差別以及根結(jié)線蟲的病情指數(shù)[18]。

      根據(jù)根結(jié)線蟲田間調(diào)查方法,對(duì)10個(gè)處理及肥料對(duì)照、化學(xué)藥劑對(duì)照和空白對(duì)照處理的根部發(fā)病情況進(jìn)行調(diào)查,根據(jù)病害癥狀描述,逐份材料進(jìn)行調(diào)查,記載病情級(jí)別。根結(jié)等級(jí)采用 GARABEDIAN等[18]的分級(jí)標(biāo)準(zhǔn),0 級(jí):根系健康,無根結(jié);1 級(jí):有極少量根結(jié),占全根系1%—20%;2級(jí):有少量根結(jié),占全根系21%—40%;3 級(jí):根結(jié)數(shù)量中等,占全根系41%—60%;4 級(jí):根結(jié)數(shù)量很多,占全根系61% —80%;5 級(jí):根結(jié)數(shù)量極其多且大,占全根系81% —100%。計(jì)算出根結(jié)指數(shù),確定防治效果。計(jì)算公式如下:

      1.2.2溫室小區(qū)試驗(yàn) 于2015年8—11月在北京順義綠奧基地日光溫室進(jìn)行生防型菌肥防治黃瓜根結(jié)線蟲病及對(duì)黃瓜產(chǎn)量影響的試驗(yàn)。試驗(yàn)設(shè)置 1—10號(hào)菌肥處理,以不施肥為空白對(duì)照,施用有機(jī)肥或噻唑膦分別為肥料或化學(xué)藥劑對(duì)照,共13個(gè)處理。在移栽前將菌肥作為底肥進(jìn)行溝施,施肥量為 0.40 kg·m-2,高壟雙行種植,株距30 cm,行距50 cm,共種植30 株/小區(qū),每個(gè)小區(qū)10 m2,其他栽培管理措施按當(dāng)?shù)厣a(chǎn)習(xí)慣統(tǒng)一操作,確保植株生長(zhǎng)環(huán)境一致。各處理隨機(jī)排列,每個(gè)處理3個(gè)小區(qū),共計(jì)39個(gè)小區(qū)。在生長(zhǎng)期對(duì)黃瓜生長(zhǎng)情況進(jìn)行3次測(cè)量,記錄株高變化,分析生長(zhǎng)勢(shì)。在收獲期按批次采摘黃瓜,記錄每小區(qū)的產(chǎn)量。在生長(zhǎng)期末(80 d),將根系挖出,逐一檢查根結(jié)線蟲發(fā)生情況,記錄病情級(jí)別,計(jì)算防治效果,方法同 1.2.1。同時(shí)記錄株高及鮮重,分析長(zhǎng)勢(shì)差別。

      1.2.3田間測(cè)產(chǎn)試驗(yàn) 試驗(yàn)于2015年8—11月在中國(guó)農(nóng)業(yè)科學(xué)院國(guó)際農(nóng)業(yè)高新技術(shù)產(chǎn)業(yè)園進(jìn)行,選擇沒有根結(jié)線蟲發(fā)生的田塊進(jìn)行 10種不同配比組合的生物菌肥對(duì)黃瓜生長(zhǎng)及產(chǎn)量的試驗(yàn),確定生防型菌肥對(duì)黃瓜生長(zhǎng)的影響。具體方法參考溫室試驗(yàn)。在生長(zhǎng)期至收獲期對(duì)黃瓜生長(zhǎng)情況進(jìn)行3次測(cè)量,記錄株高變化,分析生長(zhǎng)勢(shì)。在生長(zhǎng)期間按批次收獲黃瓜,記錄每小區(qū)的產(chǎn)量,分析不同菌肥處理對(duì)黃瓜生長(zhǎng)的影響。

      1.3數(shù)據(jù)分析

      采用SAS 9.1軟件的ANOVA和CORR程序,對(duì)盆栽試驗(yàn)、溫室試驗(yàn)及田間測(cè)產(chǎn)試驗(yàn)的黃瓜株高、鮮重、根結(jié)線蟲防治效果等數(shù)據(jù)進(jìn)行單因素方差分析及相關(guān)性分析。

      2 結(jié)果

      2.1生防型菌肥對(duì)黃瓜根結(jié)線蟲病的防治效果

      在盆栽試驗(yàn)中,接種根結(jié)線蟲60 d時(shí),將黃瓜根系從盆中倒出,將根系從栽培基質(zhì)中輕輕抖出,用清水沖洗干凈;在溫室小區(qū)試驗(yàn)中,在生長(zhǎng)期末(80 d),將根系挖出,去除莖稈,清洗根系。圖1所示為在盆栽條件下處理根系的部分圖片,圖2則為在溫室試驗(yàn)條件下處理根系的部分圖片。從圖1、圖2可以看出,空白處理中的植株根系根結(jié)大且多成串狀,菌肥處理的根系則恰恰相反,根系發(fā)達(dá),根系根結(jié)小而少;噻唑膦處理根系的癥狀與空白對(duì)照癥狀形成鮮明對(duì)比。

      對(duì)盆栽試驗(yàn)和溫室小區(qū)試驗(yàn)中黃瓜根系按照鑒定方法檢測(cè)根結(jié)發(fā)生情況,記載病情級(jí)別,計(jì)算根結(jié)指數(shù),確定防治效果。在盆栽試驗(yàn)中,噻唑膦處理防治效果最好,防效達(dá)到89.2%;1—10號(hào)生物菌肥處理中,5號(hào)(短短芽孢桿菌、交枝頂孢霉)、6號(hào)(短短芽孢桿菌、淡紫擬青霉)、9號(hào)(短短芽孢桿菌、淡紫擬青霉、交枝頂孢霉、鉤狀木霉)和10號(hào)(淡紫擬青霉、交枝頂孢霉、鉤狀木霉)處理防治效果為分別為52.5%、52.5%、54.2%和49.2%,這4種菌肥之間沒有顯著差異,但是顯著地高于其他菌肥處理;1號(hào)(短短芽孢桿菌)、2號(hào)(交枝頂孢霉)、3號(hào)(淡紫擬青霉)和 4號(hào)(鉤狀木霉)處理防治效果相對(duì)較低,防治效果為 30.0%—41.7%。由盆栽試驗(yàn)可以看出,復(fù)合菌肥配方(5—10號(hào))的防治效果要好于單菌劑配方(1—4號(hào))。在溫室小區(qū)試驗(yàn)中,噻唑膦防治效果達(dá)到了61.3%,雖然比盆栽試驗(yàn)中顯著降低,仍然為所有處理中防效最高的,但與5號(hào)、6號(hào)、9號(hào)生物菌肥處理的防治效果(56.8%、57.6%、59.3%)之間沒有顯著差異。其次,3號(hào)、7號(hào)、8號(hào)菌肥處理的防治效果分別為 50.4%、53.4%、54.3%,其余菌肥處理的防治效果為 5.6%—43.5%,與噻唑膦的防治效果存在極顯著差異(表2)。

      圖1 盆栽試驗(yàn)中根結(jié)線蟲防治效果Fig. 1 Control efficiency of root-knot nematode in the pot experiment by fertilizer with different combinations of microbes

      表2 生防型菌肥對(duì)黃瓜根結(jié)線蟲病的防治效果Table 2 Control efficiency of compound microorganism bioorganic fertilizer to cucumber root-knot nematode

      圖2 溫室試驗(yàn)中根結(jié)線蟲防治效果Fig. 2 Control efficiency of root-knot nematode in greenhouse plot by fertilizer with different combinations of microbes

      對(duì)盆栽接種及溫室小區(qū)試驗(yàn)中菌肥對(duì)根結(jié)線蟲防治效果進(jìn)行相關(guān)性分析,相關(guān)系數(shù)為0.84,顯著性水平為 0.0006<0.01,表明在盆栽試驗(yàn)和溫室小區(qū)試驗(yàn)條件下根結(jié)線蟲防治效果呈極顯著正相關(guān),說明菌肥對(duì)根結(jié)線蟲的防治效果是相對(duì)穩(wěn)定的。

      2.2生防型菌肥對(duì)黃瓜長(zhǎng)勢(shì)及產(chǎn)量的影響

      在盆栽試驗(yàn)中,1—10號(hào)處理黃瓜產(chǎn)量和生長(zhǎng)勢(shì)均極顯著高于空白對(duì)照,其中增產(chǎn)效果最為顯著的為9號(hào)處理,達(dá)到了60.4%;其次為1號(hào)處理,比對(duì)照增產(chǎn) 50.8%;其余各處理產(chǎn)量無顯著性差異,增產(chǎn)幅度為21.8%—35.9%(表3)。在溫室小區(qū)試驗(yàn)中,各處理在株高、產(chǎn)量、地上部鮮重方面均極顯著高于空白對(duì)照,與盆栽試驗(yàn)中結(jié)果基本相符。9號(hào)處理增產(chǎn)效果較為顯著,比對(duì)照增產(chǎn)68.1%;1號(hào)處理次之,達(dá)到55.8%;5號(hào)、8號(hào)處理增產(chǎn)幅度均在50%以上,分別為54.16%和53.74%;其余各處理增產(chǎn)幅度為24.5%—47.3%(表4)。

      在田間測(cè)產(chǎn)試驗(yàn)中,各種菌肥處理的增產(chǎn)促生長(zhǎng)作用表現(xiàn)顯著,1—10號(hào)處理在株高、地上部鮮重、產(chǎn)量方面均極顯著高于空白對(duì)照。相對(duì)于空白對(duì)照,其增產(chǎn)幅度范圍為31.7%—74.9%,其中以6號(hào)菌肥效果最佳,增產(chǎn)達(dá)到74.9%,其次為2號(hào)、3號(hào)菌肥,分別為68.3%和68.0%,與6號(hào)菌肥之間無顯著差異(表 5)。通過試驗(yàn)還可以看出,單獨(dú)有機(jī)肥的增產(chǎn)為 39.6%(表 5),而多數(shù)菌肥增產(chǎn)作用均高于有機(jī)肥,說明生防菌劑對(duì)促進(jìn)生長(zhǎng)也有一定的貢獻(xiàn)。對(duì)黃瓜株高、地上部鮮重、產(chǎn)量進(jìn)行相關(guān)性分析,結(jié)果表明這3個(gè)指標(biāo)之間相關(guān)系數(shù)均>0.7,呈極顯著正相關(guān)(P<0.01),說明菌肥處理對(duì)黃瓜長(zhǎng)勢(shì)以及產(chǎn)量有顯著的影響。

      對(duì)盆栽、溫室和田間測(cè)產(chǎn)試驗(yàn)結(jié)果進(jìn)行相關(guān)性分析,結(jié)果表明盆栽試驗(yàn)結(jié)果與田間測(cè)產(chǎn)試驗(yàn)結(jié)果基本一致,與溫室試驗(yàn)結(jié)果則完全一致,株高、產(chǎn)量、地上部鮮重之間呈正相關(guān)。比較盆栽、溫室試驗(yàn)的結(jié)果可以看出,根結(jié)線蟲的防治效果與黃瓜的增產(chǎn)作用具有一定相關(guān)性,在盆栽試驗(yàn)中黃瓜增產(chǎn)幅度與根結(jié)線蟲防治效果之間相關(guān)系數(shù)為 0.22,而在溫室試驗(yàn)中為0.46,均不顯著(P>0.05),表明菌肥的增產(chǎn)作用是菌劑和有機(jī)肥兩種因素共同作用的結(jié)果。

      表3 盆栽試驗(yàn)調(diào)查結(jié)果Table 3 Growth promotion and yield of cucumber in pot experiment

      表4 溫室小區(qū)試驗(yàn)調(diào)查結(jié)果Table 4 Growth promotion and yield of cucumber in greenhouse plot

      3 討論

      在盆栽試驗(yàn)和溫室小區(qū)試驗(yàn)中,5號(hào)、6號(hào)、9號(hào)處理對(duì)黃瓜根結(jié)線蟲病具有控制作用,防治效果較高且穩(wěn)定。5號(hào)處理為短短芽孢桿菌、交枝頂孢霉和有機(jī)肥的結(jié)合,6號(hào)處理則為短短芽孢桿菌、淡紫擬青霉、有機(jī)肥的結(jié)合,9號(hào)處理則為短短芽孢桿菌、淡紫擬青霉、鉤狀木霉、交枝頂孢霉和有機(jī)肥的結(jié)合。表明短短芽孢桿菌與交枝頂孢霉或淡紫擬青霉相容性較好,對(duì)黃瓜根結(jié)線蟲病具有協(xié)同防治作用,一方面,淡紫擬青霉[19]和交枝頂孢霉[9]能定殖到植物根部,產(chǎn)生殺線蟲活性次級(jí)代謝產(chǎn)物;另一方面是因?yàn)榈蠑M青霉和交枝頂孢霉對(duì)根結(jié)線蟲具有很好的卵寄生能力,在侵染線蟲體表或者卵殼時(shí)會(huì)產(chǎn)生特殊的侵染結(jié)構(gòu)——附著孢,在此過程中分泌幾丁質(zhì)酶和蛋白酶,破壞卵殼的完整性,進(jìn)而殺死卵[9,20-22]。

      在田間測(cè)產(chǎn)試驗(yàn)中,沒有根結(jié)線蟲的發(fā)生,而在盆栽試驗(yàn)和溫室小區(qū)試驗(yàn)中,則有根結(jié)線蟲病的危害。在盆栽試驗(yàn)中,有機(jī)肥增產(chǎn)只有 25.2%,顯著低于沒有根結(jié)線蟲危害時(shí)田間測(cè)產(chǎn)試驗(yàn)的 39.6%,而在溫室小區(qū)試驗(yàn)中有機(jī)肥的增產(chǎn)效果只有1.3%,說明根結(jié)線蟲對(duì)產(chǎn)量具有顯著的影響。在盆栽試驗(yàn)和溫室小區(qū)試驗(yàn)中,增產(chǎn)效果最為顯著的為9號(hào)處理,其次為1號(hào)(短短芽孢桿菌、有機(jī)肥)處理,然而1號(hào)處理在防治根結(jié)線蟲病時(shí),較其他處理防效差,表明短短芽孢桿菌增產(chǎn)促生長(zhǎng)作用較為顯著。在田間測(cè)產(chǎn)試驗(yàn)中,6號(hào)菌肥效果最佳,增產(chǎn)達(dá)到 74.9%,進(jìn)一步說明了短短芽孢桿菌和淡紫擬青霉相容性好,在這一過程中,作用機(jī)制可能為短短芽孢桿菌起增產(chǎn)促生長(zhǎng)作用;淡紫擬青霉在黃瓜根部大量生長(zhǎng)、繁殖,從而形成優(yōu)勢(shì)菌落,對(duì)周圍微生物的抑制或拮抗作用在一定程度上減少了黃瓜其他病原菌引發(fā)的病癥,從而有利于黃瓜更好地生長(zhǎng)。

      表5 田間測(cè)產(chǎn)試驗(yàn)調(diào)查結(jié)果Table 5 Growth promotion and yield of cucumber in field trials

      5號(hào)、6號(hào)和9號(hào)這3種組合菌肥對(duì)黃瓜根結(jié)線蟲病防治及增產(chǎn)作用具有較好的綜合表現(xiàn),其中9號(hào)菌肥效果最好??赡苁怯捎谘挎邨U菌[23]、淡紫擬青霉[24-26]、交枝頂孢霉[27]、木霉[28]是防治根結(jié)線蟲病重要的生防菌,4種菌株協(xié)同作用,與黃瓜植株形成互利共生的統(tǒng)一體。首先,黃瓜定殖后,短短芽孢桿菌為植物根際促生細(xì)菌(PGPR)將發(fā)揮作用,能夠改善植物對(duì)礦物質(zhì)元素和水分的吸收、改變植物激素平衡、改善根部環(huán)境,且可以通過產(chǎn)生生長(zhǎng)素、赤霉素、細(xì)胞分裂素、乙烯、維生素及其他植物生長(zhǎng)調(diào)節(jié)劑來調(diào)節(jié)黃瓜的生長(zhǎng)[29-31];其次,淡紫擬青霉、交枝頂孢霉、鉤狀木霉定殖到黃瓜根部;最后,當(dāng)黃瓜根部受到根結(jié)線蟲的侵染后,淡紫擬青霉和交枝頂孢霉菌絲將對(duì)線蟲的卵進(jìn)行寄生,在卵殼表面形成侵染釘,然后穿透卵殼進(jìn)入卵內(nèi),導(dǎo)致卵殼被破壞,內(nèi)容物滲出,胚胎發(fā)育停止。此外,淡紫擬青霉也可寄生線蟲,從而可以殺死線蟲。鉤狀木霉不會(huì)寄生線蟲和卵,其發(fā)酵液對(duì)根結(jié)線蟲無致死作用(未發(fā)表數(shù)據(jù))。研究發(fā)現(xiàn)部分木霉菌株可定殖于植物根際,形成共生體,改變植物的代謝功能,表現(xiàn)在促進(jìn)植物生長(zhǎng)、增加養(yǎng)分吸收利用效率、提高農(nóng)作物產(chǎn)量以及誘導(dǎo)植物產(chǎn)生抗逆性等。鉤狀木霉可能通過誘導(dǎo)黃瓜產(chǎn)生局部或系統(tǒng)抗性來提高其抗線蟲病的能力[32-33]。4種菌株各司其職,從而達(dá)到防治黃瓜根結(jié)線蟲病和增產(chǎn)促生長(zhǎng)的目的。

      本研究以純天然、無害化處理的生物有機(jī)肥為載體與生防菌劑進(jìn)行配比,形成的生防型菌肥完全來自自然生物,具有綠色、安全、無污染、無殘留等特點(diǎn),不但可以改良土壤理化性質(zhì),而且增產(chǎn)及防病效果顯著。同時(shí),許多生防菌對(duì)植物病害具有協(xié)同防治作用[34],因此有關(guān)生防型菌肥對(duì)其他病害的防治效果和優(yōu)化配比還需進(jìn)一步研究,以便能夠更好地開發(fā)利用生防菌,最大效應(yīng)地發(fā)揮菌肥的作用潛力。

      4 結(jié)論

      通過盆栽、溫室、田間測(cè)產(chǎn)試驗(yàn),比較了10種不同配比組合的生防型菌肥對(duì)黃瓜生長(zhǎng)及根結(jié)線蟲病發(fā)生的影響,其中5號(hào)組合(短短芽孢桿菌、交枝頂孢霉)、6號(hào)組合(短短芽孢桿菌、淡紫擬青霉)、9號(hào)組合(短短芽孢桿菌、淡紫擬青霉、交枝頂孢霉、鉤狀木霉)等3種菌肥對(duì)黃瓜根結(jié)線蟲病防治及增產(chǎn)作用具有較好的綜合表現(xiàn),為進(jìn)一步開發(fā)利用菌肥、實(shí)現(xiàn)安全高效防治根結(jié)線蟲病及增產(chǎn)提供了依據(jù),具有重要的應(yīng)用價(jià)值和開發(fā)前景。

      References

      [1] ESCOBAR C, BARCALA M, CABRERA J, FENOLL C. Overview of root-knot nematodes and giant cells. Advances in Botanical Research, 2015, 73: 1-24.

      [2] WESEMAEL W M L, VIAENE N, MOENS M. Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology, 2011, 13(1): 3-16.

      [3] DJIAN-CAPORALINO C, PALLOIX A, FAZARI A, MARTEU N,BARBARY A, ABAD P, TAUSSIG C. Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability. BMC Plant Biology, 2014, 14(1): 53.

      [4] SKáLOVá D, NAVRáTILOVá B, LEBEDA A. Embryo rescue of cucumber (Cucumis sativus), muskmelon (C. melo) and some wild Cucumis species (C. anguria, C. zeyheri, and C. metuliferus). Journal of Applied Botany and Food Quality, 2008, 82(1): 83-89.

      [5] Walters S A, Wehner T C. Incompatibility in diploid and tetraploid crosses of Cucumis sativus and Cucumis metuliferus. Euphytica, 2002,128(3): 371-374.

      [6] 栗麗, 洪堅(jiān)平, 謝英荷, 楊彥, 張璐. 生物菌肥對(duì)采煤塌陷復(fù)墾土壤生物活性及盆栽油菜產(chǎn)量和品質(zhì)的影響. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2010, 18(5): 939-944. LI L, HONG J P, XIE Y H, YANG Y, ZHANG L. Effect of bacterial manure on soil biological activity, yield and quality of rape in reclaimed core-mining areas. Chinese Journal of Eco-Agriculture,2010, 18(5): 939-944. (in Chinese)

      [7] 席先梅, 白全江, 張慶萍, 李玉民, 賀小勇, 孔慶全, 魏海明, 趙存虎. 5種生物制劑對(duì)設(shè)施蔬菜根結(jié)線蟲防治技術(shù)研究. 植物保護(hù),2015, 41(4): 203-207. XI X M, BAI Q J, ZHANG Q P, LI Y M, HE X Y, KONG Q Q, WEI H M, ZHAO C H. Control effect of five biological agents on vegetable root-knot nematodes in greenhouse. Plant Protection, 2015,41(4): 203-207. (in Chinese)

      [8] YAO Y R, TIAN X L, SHEN B M, MAO Z C, CHEN G H, XIE B Y. Transformation of the endophytic fungus Acremonium implicatum with GFP and evaluation of its biocontrol effect against Meloidogyne incognita. World Journal of Microbiology and Biotechnology, 2015,31(4): 549-556.

      [9] KUBICEK C P, ESSER K, DRUZHININA I S. Environmental and Microbial Relationships. Springer Science & Business Media, 2007.

      [10] BECKER J O, ZAVALETA-MEJIA E, COLBERT S F, SCHROTH M N, WEINHOLD A R, HANCOCK J G, VAN GUNDY S D. Effects of rhizobacteria on root-knot nematodes and gall formation. Phytopathology,1988, 78(11): 1466-1469.

      [11] 葛均青, 于賢昌, 王竹紅. 微生物肥料效應(yīng)及其應(yīng)用展望. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2003, 11(3): 87-88. GE J Q, YU X C, WANG Z H. The function of microbial fertilizer and its application prospects. Chinese Journal of Eco-Agriculture, 2003,11(3): 87-88. (in Chinese)

      [12] GUO J H, QI H Y, GUO Y H, GE H L, GONG L Y, ZHANG L X,SUN P H. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control, 2004, 29: 66-72.

      [13] ALI N I, SIDDIQUI I A, SHAUKAT S S, ZAKI M J. Nematicidal activity of some strains of Pseudomonas spp. Soil Biology and Biochemistry, 2002, 34(8): 1051-1058.

      [14] 馬金慧, 朱萍萍, 茆振川, 張曉平, 謝丙炎, 李惠霞. 哈茨木霉菌株 TRI2 的鑒定及其對(duì)黃瓜根結(jié)線蟲的防治作用. 中國(guó)農(nóng)學(xué)通報(bào),2014, 30(22): 263-269. MA J H, ZHU P P, MAO Z C, ZHANG X P, XIE B Y, LI H X. Identification of Trichoderma harzianum TRI2 and its biological control effect against root-knot nematode. Chinese Agricultural Science Bulletin, 2014, 30(22): 263-269. (in Chinese)

      [15] ANASTASIADIS I A, GIANNAKOU I O, PROPHETOUATHANASIADOU D A, GOWEN S R. The combined effect of the application of a biocontrol agent Paecilomyces lilacinus, with various practices for the control of root-knot nematodes. Crop Protection,2008, 27(3): 352-361.

      [16] HU M X, ZHUO K, LIAO J L. Multiplex PCR for the simultaneous identification and detection of Meloidogyne incognita, M. enterolobii,and M. javanica using DNA extracted directly from individual galls.Phytopathology, 2011, 101(11): 1270-1277.

      [17] 方中達(dá). 植病研究方法. 北京: 中國(guó)農(nóng)業(yè)出版社, 1998: 307-311. FANG Z D. Plant Pathology Research Methods. Beijing: China Agriculture Press, 1998: 307-311. (in Chinese)

      [18] GARABEDIAN S, VAN GUNDY S D. Use of avermectins for the control of Meloidogyne incognita on tomatoes. Journal of Nematology,1983, 15(4): 503-510.

      [19] PARK J O, HARGREAVES J R, MCCONVILLE E J, STIRLING G R, GHISALBERTI E L, SIVASITHAMPARAM K. Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Letters in Applied Microbiology,2004, 38(4): 271-276.

      [20] HUANG X, ZHAO N, ZHANG K. Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Research in Microbiology, 2004, 155(10): 811-816.

      [21] BONANTS P J M, FITTERS P F L, THIJS H, DEN-BELDER E,WAALWIJK C, HENFLING J W. A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiology, 1995, 141(4): 775-784.

      [22] SINGH S, MATHUR N. In vitro studies of antagonistic fungi against the root-knot nematode, Meloidogyne incognita. Biocontrol Science and Technology, 2010, 20(3): 275-282.

      [23] ABBASI M W, ZAKI M J, ANIS M. Application of Bacillus species cultured on different low cost organic substrates for the control of root-knot nematode infection on okra (Abelmoschus esculentus Moench). Pakistan Journal of Botany, 2013, 45(3): 1079-1084.

      [24] KIEWNICK S, SIKORA R A. Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biological Control, 2006, 38(2): 179-187.

      [25] HUANG W K, CUI J K, LIU S M, KONG L A, WU Q S, PENG H,PENG D L. Testing various biocontrol agents against the root-knot nematode (Meloidogyne incognita) in cucumber plants identifies a combination of Syncephalastrum racemosum and Paecilomyces lilacinus as being most effective. Biological Control, 2016, 92: 31-37.

      [26] 林森, 武俠, 曹君正, 王鳳龍. 產(chǎn)生幾丁質(zhì)酶的交枝頂孢(Acremonium implicatum) 對(duì)南方根結(jié)線蟲生防潛力. 植物病理學(xué)報(bào), 2013, 43(5): 509-517. LIN S, WU X, CAO J Z, WANG F L. Biocontrol potential of chitinase-producing nematophagous fungus Acremonium implicatum against Meloidogyne incognita. Acta Phytopathologica Sinica, 2013,43(5): 509-517. (in Chinese)

      [27] ABD-EL-KHAIR H, EL-NAGDI W M A. Field application of bio-control agents for controlling fungal root rot and root-knot nematode in potato. Archives of Phytopathology and Plant Protection,2014, 47(10): 1218-1230.

      [28] CHRISTIANSEN-WENIGER C, VAN VEEN J A. NH4+-excreting Azospirillum brasilense mutants enhance the nitrogen supply of a wheat host. Applied and Environmental Microbiology, 1991, 57(10):3006-3012.

      [29] FULCHIEIR M, LUCANGELI C, BOTTINI R. Inoculation with Azospirillum lipoferum affect growth and gibberellin status on corn seedling roots. Plant Cell Physiology, 1993, 34(8): 1305-1309.

      [30] SCHIPPERS B, BAKKER A W, BAKKER A H M. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practice. Annual Review of Phytopathology, 1987, 25:339-358.

      [31] HARMAN G E, HOWELL C R, VITERBO A, CHET I, LORITO M. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2004, 2(1): 43-56.

      [32] BAE H, ROBERTS D, LIM H, STREM M, PARK S, RYU C,MELNICK R, BAILEY B. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Molecular Plant-Microbe Interactions, 2011, 24(3): 336-351.

      [33] BRUNNER K, ZEILINGER S, CILIENTO R, WOO S, LORITO M,KUBICEK C, MACH R. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Applied and Environmental Microbiology, 2005, 71(7): 3959-3965.

      [34] 王振, 李世東, 繆作清, 郭榮君, 孫漫紅. 有機(jī)物與淡紫紫孢霉對(duì)番茄根結(jié)線蟲病的協(xié)同防治. 中國(guó)生物防治學(xué)報(bào), 2015, 31(1):130-138. WANG Z, LI S D, MIAO Z Q, GUO R J, SUN M H. Synergistic efficacy of Purpureocillium lilacinum and organic material against tomato root-knot nematode. Chinese Journal of Biological Control,2015, 31(1): 130-138. (in Chinese)

      (責(zé)任編輯 岳梅)

      Effects of Bioorganic Fertilizers with Compound Microbes on Cucumber and Root-Knot Nematode

      MA Yu-qin, WEI Cai, MAO Zhen-chuan, YANG Yu-hong, FENG Dong-xin, XIE Bing-yan
      (Key Laboratory of Horticultural Crops Biology and Genetic Improvement, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081)

      【Objective】 The objective of this study is to evaluate the effects of bioorganic fertilizers with compound microbes (Brevibacillus brevis, Paecilomyces lilacinus, Acremonium implicatum, Trichoderma hamatum) on cucumber growth, yield and the control efficiency against root-knot nematode disease, then screen the efficient combinations of microbes.【Method】Experiments included 10 treatments of bioorganic fertilizers with compound microbes (No.1 to 10), which were from different compounds of thefour kinds of microbes B. brevis, P. lilacinus, A. implicatum, and T. hamatum, the bioorganic fertilizers and the 10% fosthiazate granules were as the fertilizer and chemical control, respectively, the treatment without any fertilizer and pesticide was as the negative control. Based on the experiments performed in greenhouse and field, the differences of 10 treatments were analyzed by measuring the root-knot nematode disease index, cucumber yield, plant height and shoot fresh weight, and then the effects of bioorganic fertilizers with compound microbes on cucumber production and control efficiency of root-knot nematode disease were evaluated.【Result】In pot experiments, the control efficiency of fosthiazate treatment was up to 89.2%, which was significantly higher than other treatments and controls. Among the 10 treatments of bioorganic fertilizers with compound microbes (No.1 to 10),the control efficiency of root-knot nematode of No. 5, No. 6, No. 9 treatments were 52.5%, 52.5%, and 54.2%, respectively, and the control efficiency of these treatments were higher than other fertilizer treatments. In the greenhouse plot, there was no significant difference in control efficiency among No. 5 (56.8%), No. 6 (57.6%), No. 9 treatments (59.3%) and fosthiazate treatment (61.3%). In addition, there was a significant positive correlation in the root-knot nematodes control efficiency between pot experiments and greenhouse plot, and the control efficiency of multi-microorganisms were better than that of single microorganism usually. Compared with the negative control, all fertilizer treatments increased cucumber growth and yield significantly (P<0.01), but there were some difference among bioorganic fertilizers with compound microbes (No.1 to 10). In field trials, the yield increase was in the range of 31.7%-74.9%, the best treatment was No. 6, and the increased range of which was 74.9%. In pot experiment and greenhouse plot,compared with the negative control, the control efficiency of No. 9 ranked the best in yield, and the increased range was 60.4% and 68.1%, followed by No. 9 treatment, the control efficiency of No.1 were 50.8% and 55.8%, respectively. No. 5, No. 6 and No. 9 treatments could not only control the root-knot nematode disease effectively, but also promoted cucumber growth and increased their production, among them No. 9 treatment was the most effective treatment. There was a correlation in control efficiency of root-knot nematode and production increasing between pot experiment and greenhouse plot, but the correlation level was low.【Conclusion】The bioorganic fertilizers with multi-microorganisms (No. 5, No. 6 and No. 9) have better effects on cucumber growth, yield and the control efficiency of root-knot nematode disease, thus prssessing an important utilization value and research potential in agriculture production.

      bioorganic fertilizers with compound microbes; cucumber; root-knot nematode; control effect; increase production

      2016-03-04;接受日期:2016-05-26

      國(guó)家自然科學(xué)基金(31371923)、國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金(CARS-25)、中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(CAAS-ASTIP)

      聯(lián)系方式:馬玉琴,Tel:18910754176;E-mail:1179228949@qq.com。通信作者茆振川,Tel:010-82109545;E-mail:maozhenchuan@caas.cn

      猜你喜歡
      菌肥線蟲病盆栽
      復(fù)合微生物菌肥在草莓上的肥效試驗(yàn)
      肉牛消化道線蟲病和呼吸道線蟲病的流行病學(xué)、臨床癥狀和防治
      家畜類圓線蟲病的分析、診斷和治療
      仙人掌盆栽
      童話世界(2020年8期)2020-06-15 11:32:34
      菌肥施用注意四問題
      盆栽
      松材線蟲病的發(fā)生防治及對(duì)策——以重慶市為例
      “丑八怪”的盆栽
      百泰微生物菌肥在番茄上的肥效試驗(yàn)
      2015年微生物菌肥試驗(yàn)總結(jié)報(bào)告
      陆川县| 连南| 九龙县| 景德镇市| 富民县| 宁化县| 延川县| 梅州市| 和静县| 如皋市| 长垣县| 定安县| 元阳县| 新河县| 云阳县| 华坪县| 贡嘎县| 孝昌县| 遵化市| 寿宁县| 贵溪市| 平乐县| 遵化市| 商都县| 介休市| 客服| 礼泉县| 南川市| 枝江市| 武义县| 博客| 亚东县| 长葛市| 泾源县| 叙永县| 邹城市| 闵行区| 漾濞| 东莞市| 肃宁县| 鄢陵县|