• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Epigenetic regulations of hematopoietic stem cells ageing and the regulation of traditional Chinese medicine

    2016-09-14 08:24:20DaoZhengYangXinYuanLuanShuBinWang
    Traditional Medicine Research 2016年2期

    Dao-Zheng Yang*, Xin-Yuan Luan, Shu-Bin Wang

    1 School of Life Science, Shandong University, Jinan, China; 2 Department of Surgery, Tianjin Nankai Hospital,Tianjin, China.

    Introduction

    Adult stem cells play essential roles in tissue self-healing and regeneration. Accumulating evidence shows that ageing is associated with the decrease and dysfunction of adult stem cells, which is thus considered to be one of important hallmarks of mammalian ageing [1]. Hematopoietic stem cells(HSCs), as one of adult stem cells, have been well functionally characterized recently. The capacity of long-term self-renewal and differentiation makes HSCs able to generate all mature lymphoid and myeloid lineages [2], including erythrocytes, granulocytes,platelets, macrophages and B- and T-lymphocytes. In young adults, it was shown that around 1000 active HSCs are responsible for the generation of all blood cell types [3], indicating a powerful self-renewal and differentiation potential. However, functions of HSCs are impaired with age (Figure 1), especially its ability to maintain the balance between self-renewal and differentiation, which is of vital importance to blood system [4, 5]. Compaired with its younger counterparts,aged HSCs show several characteristic phenotypes,including increased number, homing defect, impaired engraftment potential and repopulating capacity, and increased output of myeloid-biased progeny [6-10].

    Figure 1 The characteristics of aged hematopoietic stem cells (HSCs).

    Epigenetic regulations, including DNA methylation,histone modifications and non-coding RNAs interference, encompasses all heritable changes in gene expression that are not due to changes in DNA sequences [11, 12]. Such mechanism controls gene expression mainly via regulating chromatin structure and status, playing an important role in determining cells fate and ontogeny. Various epigenetic alterations has been recognized as another hallmark of mammalian ageing [1]. In the field of HSCs ageing,evidence shows that HSCs are not protected from ageing. Instead, loss of epigenetic regulation at the chromatin level may drive both functional attenuation of cells, as well as other manifestations of ageing,including the increased propensity for neoplastic transformation [5].

    Traditional Chinese medicine (TCM) is a system of theories and therapies that was first documented in ancient Chinese classics dating back 2100 years.Epigenetics, combining genetics and environment,contributes to not only the stability of organisms but also their adaptability to the environment, which is consistent with the theory of human-environmental inter relation of TCM. Recently, epigenetics has been introduced to the area of TCM resulting in the hypothesis of an epigenetic role in the pharmacology of TCM prescriptions. Various traditional Chinese medicine has been shown to be safer and more effective for preventing cancer by targeting epigenetic landscape [13].

    In this review, we aim to conclude that the altered functional potential of HSCs controlled at the epigenome level with age, focusing largely on DNA methylation, histone modifications, the two most characterized epigenetic marks. In addition, we will also talk about the epigenetic role of TCM in the treatment of hematological malignancies.

    Epigenetic regulations and HSCs ageing

    DNA methylation and HSCs ageing

    DNA methylation is a potent epigenetic mark that promotes gene silencing. Methylation occurs at the 5-carbon position of cytosines (resulting in 5-methylcytosine or 5-mC) found in cytosine-phosphate-guanine dinucleotides (CpGs)through the action of the DNA methyltransferase(DNMT) family of proteins, including the de novo methyltransferases Dnmt3A and Dnmt3B and the maintenance methyltransferase Dnmt1.Dnmt1-deficient HSCs show self-renewal defects and decreased ability of multilineage hematopoiesis,indicating functions in both HSC self-renewal and differentiation [14, 15], while loss of Dnmt3A in HSCs impairs their differentiation and increases the number of bone marrow HSCs over serial transplantation [16].Interestingly, loss of Dnmt3B has minimal effects on adult HSCs function. However, a more severe block in differentiation occurred in HSCs when Dnmt3B was ablated combined with Dnmt3A. Furthermore, it was also reported that Dnmt3B has distinct functions, given that Dnmt3B accounts for some HSCs differentiation in the absence of Dnmt3A [17, 18].

    Apart from DNMT family, recently TET2 (the Ten-Eleven-Translocation 2), a member of TET family that encode enzymes modifying DNA by hydroxylating 5-methylcytosine (5mC) [19], has been shown to be essential to HSCs self-renewal and differentiation. Consistent with this, somatic loss-of-function mutations in TET2 are frequently found in patients with myeloid malignancies, for example myelodysplastic syndromes. TET2 loss leads to increased size of HSCs pool and TET2-deficient HSCs were shown to develop enhanced stem cell self-renewal in vivo competitive transplant assays [20,21]. It was found that hypermethylation of Polycomb Repressive Complex 2 (PRC2) targets appears to accompany forced proliferation and ageing, suggesting that DNA methylation plays a critical role in regulating the physiological ageing of HSCs [22, 23].

    Histone modifications and HSCs ageing

    Histone modification is one of the major covalent modifications that occurs at histone tails, including methylation, acetylation, sumoylation, phosphorylation,and ubiquitination, which have a critical role in dynamic modulation of chromatin structure and function, contributing to the regulation of cellular gene expression. These modifications involve in the chromatin remodeling and impact DNA accessibility.By taking advantage of highly purified HSCs,genome-wide comparisons of histone modifications between young and aged mouse HSCs were performed,enabling us to have a comprehensive understanding of the link between histone modification and HSC ageing.Recently, three key regulatory chromatin marks,H3K4me3 (trimethylation of Lys 27 of histone H3),H3K27me3 and H3K36me3, were chosen to assess epigenetic alterations in young and old HSCs [24].Results from ChIP-seq suggest that aged HSCs exhibited broader H3K4me3 (an active mark) peaks,particularly in HSCs identity and self-renewal genes,showing a positive correlation with gene expression alteration. Furthermore, there was a strong positive correlation between changes of H3K4me3 and gene expression with age. Additionally, changes in H3K27me3 (a repressive mark) levels have also been described and similar to H3K4me3, H3K27me3 density around promoters expanded as well.Interestingly, p16INK4a(a tumor suppressor protein encoded by Cdkn2a)is repressed by H3K27me3 both in young and old HSCs, while the increase of Cdkn2a is thought to be a hall mark of ageing for virtually all tissues [1].

    Polycomb group (PcG) proteins are key epigenetic regulators of HSCs fate by maintain and propagate regulatory histone modifications [25]. Two Polycomb repressive complexes (PRCs), PRC1 and PRC2, have been shown to have distinct functions in the control of HSCs self-renewal, with PRC1 crucial to maintain gene repression while PRC2 crucial to initiate gene repression. PRC1 is the main H2A ubiquitin (H2Aub)ligase [26]. Within PRC1, Cbx family members functions in the modulation of the balance between HSCs self-renewal and differentiation [27]. Via H3K27me3 binding, overexpression of Cbx7 enhances HSCs self-renewal,while overexpression of Cbx2,Cbx4 or Cbx8 contributes to differentiation. In addition, overexpression of another member of PRC1,BMI1, in cord blood leads to long-term maintenance of human hematopoietic stem/progenitor cells [28].

    The PRC2 complex is responsible for H3K27me3 through its enzymatic subunits EZH1 and EZH2 [29,30]. PRC2 complex contains either EZH1 or EZH2,which is chromatin-modifying histone lysine methyltransferases [31]. Enforced expression of EZH2 in HSCs prevents their exhaustion during serial transplantations [32] and its conditional loss results in defect of muscle regenerative potential [33]. Much later it was shown that EZH2 in fact is frequently mutated in patients with myeloproliferative diseases.EZH2 deposits the epigenetic trimethyl mark that is recognized by the Cbx proteins contained in the PRC1 complex [27]. Whereas EZH1 and EZH2 have different chromatin binding properties, EZH1 can also provide enzymatic activity for the PRC2 complex. It was demonstrated that EZH1 is an important histone methyltransferase for HSCs maintenance [34]. EZH1 maintains repopulating HSCs in a slow-cycling,undifferentiated state, protecting them from senescence.Furthermore, Epigenetic and gene expression changes resulted from loss of EZH1 in aged HSCs showed that EZH1-mediated PRC2 activity catalyzes monomethylation and dimethylation of H3K27.

    Members of the sirtuin family, NAD+-dependent protein deacetylases, particularly Sir2, have been investigated as potential anti-ageing factors. With seven homologs in mammals, the Sir2 family of histone deacetylases (HDACs) targets H4K16 and other proteins involved in regulating glucose and fatty acid metabolisms [35, 36]. Pharmacological inhibition of Cdc42 activity functionally rejuvenates aged HSCs,increases the percentage of polarized cells in an aged HSCs population, and restores the level and spatial distribution of histone H4 lysine 16 acetylation to a status similar to that seen in young HSCs [37], which leads to the hypothesis that epigenetic regulation by Sir2 family HDACs governed by the Cdc42 activity plays a role in HSC ageing [38]. Sirt3, a mammalian sirtuin, is highly enriched in HSCs [39]. Additionally,Sirt3 is dispensable for HSC maintenance at a young age but is essential at an old age. Importantly, Sirt3 upregulation in aged HSCs improves their regenerative capacity.

    HSCs ageing and traditional Chinese medicine

    HSCs typically show increased incidence of myeloid malignancies with age [40]. As pointed above,epigenetic alterations are considered as a hallmark of ageing and mutations in epigenetic regulator genes occur frequently in most hematological malignancies[41], with 20–22 % of de novo AML (acute myeloid leukemia) patients were found to have mutations in DNMT3A [42]. Simultaneously, epigenetic modifications are potentially reversible in contrast to genetic defects. In this context, remodeling of HSCs epigenome sheds a light on diseases preventive and therapeutic strategies. Indeed, 5-Azacytidine, a DMNT inhibitor, which epigenetically modulates various tumor suppressor genes, has been used for the myelodysplastic syndromes (MDS) and AML [43].Chemopreventive nutritional polyphenols, such as soy,genistein, resveratrol, catechin, curcumin, are currently evaluated for their ability to reverse adverse epigenetic marks in cancer (stem) cells to attenuate tumorigenesis-progression, prevent metastasis or sensitize for drug sensitivity [44].

    Via a bioinformatic study, it was reported that 29.8%of 3294 TCM medicinals are epigenome- and miRNA-modulating by interacting with Polycomb group and methyl CpG-binding proteins [45].Strikingly, within 200 TCM formulas, 99% of them are epigenome- and miRNA-interacting. Some herbal medicines are reported to target epigenetic modifiers and hence contribute to inhibit the proliferation of cancer cells (Table 1). Feijoa sellowiana extract,particularly flavone, exerts anti-cancer activities on hematological cancer cells [46]. Accompanied by p16 overexpression in human myeloid leukemia cells,Feijoa apoptotic activity correlates with the induction of HDAC inhibition.

    Trichosanthin [47], tanshinone IIA [48], arsenic trioxide (ATO) [49, 50], yugan granule [51] and genistein [52] have been reported to have anti-cancer effects by targeting DNMTs in various cancer cells.Within these medicines, western blot and immunohistochemical analysis confirmed that tumor suppressors including p16 were markedly enhanced after treatment with a low concentration of ATO in human liver cancer cells. Additionally, ATO decreased the mRNA expression of DNMT 1 and also dose-dependently inhibited DNMT activity.Collectively, a low concentration of ATO induces demethylation of tumor suppressor genes by inhibition of DNMT and reactivates the partially/fully silenced genes in liver cancer cells [49]. ATO is also considered to be an efficient drug for the treatment of acute promyelocytic leukemia (APL). Researcher showed that the extent of total genomic DNA methylation of HL-60 cell decreased after ATO treatment, which is accompanied by reduced expression of DNMT3B with DNMT1 no significant change [50].

    Curcumin, which is found in turmeric, functions as a strong anticancer agent in human prostate cancer cells through the modulation of HDACs [53-55]. Although the total HDAC activity was decreased upon CUR treatment, such treatment showed different effects on the protein expression of HDACs, increasing the expression of HDAC1, 4, 5, and 8 but decreasing HDAC3. Further analysis showed that CUR decreased the enrichment of H3K27me3 at the Neurog1 (a cancer methylation marker) promoter region as well as at the global level. Triptolide, which is the principal active ingredient of Chinese herb Tripterygium wilfordii Hook.F, has various functions such as antitumor properties. In the field of hematology, triptolide was shown to be able to inhibit the proliferation of multiple myeloma cells in a time- and dose-dependent manner,with induced G0/G1 cell cycle arrest and apoptosis[56]. In addition, the possible anti-myeloma mechanism of triptolide was to decrease histone H3K9 and H3K27 methylation via the downregulation of histone methyltransferase SUV39H1 and EZH2,respectively. Interestingly, by modulating histone H3-Lysine 9 (H3-K9) methylation and deacetylation,genistein is able to activate expression of several aberrantly silenced tumor suppressor genes as well,indicating a broad effect of Chinese herb on epigenetic landscape [58].

    Taken together, these results suggest another mechanism to develop effective therapeutics based on epigenetics, and offer a strong support for the proposition that we can treat hematological malignancies resulting from HSCs ageing by taking advantage of the epigenetic role of TCM pharmacology.

    Table 1 The epigenetic regulations of TCM on tumors

    Conclusion and perspectives

    The role of epigenetic regulation in HSCs ageing is gradually becoming clearer. However, much work remains to be done to decipher the complete picture of epigenetic machineries that regulate HSCs ageing. In addition, HSC ageing is related to hematopoietic system malignancies. Therefore, targeting epigenetic genes may be a promising strategy to treat hematopoietic system malignancies. TCM is attractive to explore drugs targeting epigenetic modifiers.Whereas an increasing amount of TCM have been indentified to be effective in the treatment of various cancers in a epigenetic manner, more studies need to be carried out to assess the role of TCM in treating hematopoietic malignancies and other HSC-ageing-related diseases.

    Competing interests

    The authors declare that they have no competing interests.

    1. Lopez-Otin C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell 2013, 153(6): 1194-1217.

    2. Bryder D, Rossi DJ, Weissman IL. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 2006, 169(2): 338-346.

    3. Catlin SN, Busque L, Gale RE, et al. The replication rate of human hematopoietic stem cells in vivo. Blood 2011, 117(17): 4460-4466.

    4. Morrison SJ, Wandycz AM, Akashi K, et al. The aging of hematopoietic stem cells. Nature Medicine 1996, 2(9): 1011-1016.

    5. Chambers SM, Shaw CA, Gatza C, et al. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation PLoS Biol 2007,5(8): e201.

    6. Florian MC, Dorr K, Niebel A, et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 2012, 10(5):520-530.

    7. Dykstra B, Olthof S, Schreuder J, et al. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 2011, 208(13): 2691-2703.

    8. Xing Z, Ryan MA, Daria D, et al. Increased hematopoietic stem cell mobilization in aged mice.Blood 2006, 108(7): 2190-2197.

    9. Geiger H, de Haan G, Florian MC. The ageing haematopoietic stem cell compartment. Nat Rev Immunol. 2013, 13(5): 376-389.

    10. Cho RH, Sieburg HB, Muller-Sieburg CE. A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 2008, 111(12): 5553-5561.

    11. Bannister AJ, Kouzarides T. Reversing histone methylation. Nature 2005, 436(7054): 1103-1106.

    12. Hake SB, Allis CD. Histone H3 variants and their potential role in indexing mammalian genomes:The “H3 barcode hypothesis”. Proc Natl Acad Sci 2006, 103(17): 6428-6435.

    13. Hun Lee J, Shu L, Fuentes F, et al. Cancer chemoprevention by traditional chinese herbal medicine and dietary phytochemicals: targeting Nrf2-mediated oxidative stress/anti-inflammatory responses, epigenetics, and cancer stem cells. J Tradit Complement Med 2013, 3(1): 69-79.

    14. Broske AM, Vockentanz L, Kharazi S, et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 2009, 41(11): 1207-1215.

    15. Trowbridge JJ, Snow JW, Kim J, et al. DNA Methyltransferase 1 is Essential for and Uniquely Regulates Hematopoietic Stem and Progenitor Cells. Cell Stem Cell 2009, 5(4): 442-449.

    16. Challen GA, Sun D, Jeong M, et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2011, 44(1): 23-31.

    17. Mayle A, Sun D, Jeong M, et al. Dnmt3b Has Few Specific Functions In Adult Hematopoietic Stem Cells But Shows Abnormal Activity In The Absence Of Dnmt3a. Blood 2013,122(4): 734.

    18. Challen G, Sun D, Mayle A, et al. Dnmt3a and Dnmt3b Have Overlapping and Distinct Functions in Hematopoietic Stem Cells. Cell Stem Cell 2014,15(3): 350-364.

    19. Myunggon K, Yun H, Jankowska AM, et al.Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010,468(7325): 839-843.

    20. Moran-Crusio K, Reavie L, Shih A, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011, 20(1): 11-24.

    21. Myunggon K, Bandukwala HS, Jungeun A, et al.Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci 2011, 108(35): 14566-14571.

    22. Koide S, Wendt GR, Iwama A. Epigenetic regulation of hematopoietic stem cells. Inflamm Regen 2013, 33(4): 197-202.

    23. Beerman I, Bock C, Garrison BS, et al.Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 2013, 12(4):413-425.

    24. Sun D, Luo M, Jeong M, et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 2014, 14(5): 673-688.

    25. Schuettengruber B, Chourrout D, Vervoort M, et al.Genome Regulation by Polycomb and Trithorax Proteins. Cell 2007, 128(4): 735-745.

    26. Wang H, Wang L, Erdjument-Bromage H, et al.Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004, 431(7010): 873-878.

    27. Klauke K, Radulovi? V, Broekhuis M, et al.Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat Cell Biol 2013, 15(4): 353-362.

    28. Rizo A, Dontje B, Vellenga E, et al. Long-term maintenance of human hematopoietic stem/progenitor cells by expression of BMI1.Blood 2008, 111(5): 2621-2630.

    29. Schuettengruber B, Cavalli G. Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice.Development 2009, 136(21): 3531-3542.

    30. Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 2009, 10(10):697-708.

    31. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature 2011,469(7330): 343-349.

    32. Kamminga LM, Bystrykh LV, Aletta DB, et al.The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 2006,107(5): 2170-2179.

    33. Samuel W, Dhamayanthi P, Patrick B, et al. Ezh2 maintains a key phase of muscle satellite cell expansion but does not regulate terminal differentiation. J Cell Sci 2013, 126(2): 565-579.

    34. Isabel H, Antonio HM, Jose Manuel L, et al. Ezh1 Is Required for Hematopoietic Stem Cell Maintenance and Prevents Senescence-like Cell Cycle Arrest. Cell Stem Cell 2012, 11(5): 649-662.

    35. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 2012, 13(4): 225-238.

    36. Hall JA, Dominy JE, Lee Y, et al. The sirtuin family's role in aging and age-associated pathologies. J Clin Invest 2013, 123(3): 973-979.

    37. Florian MC1, D?rr K, Niebel A et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 2012, 10(5):520-530.

    38. Oshima M, Iwama A. Epigenetics of hematopoietic stem cell aging and disease. Int J Hematol 2014, 100(4): 326-334.

    39. Brown K, Xie S, Qiu X, et al. Sirt3 reverses aging-associated degeneration. Cell Rep 2013,3(2): 319-327.

    40. Pang WW, Price EA, Debashis S, et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci USA 2011, 108(50):20012-20017.

    41. Chung YR, Schatoff E, Abdel-Wahab O.Epigenetic alterations in hematopoietic malignancies. Int J Hematol 2012, 96(4): 413-427.

    42. Yan XJ, Xu J, Gu ZH. et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 2011, 43(4):309-315.

    43. Müller AM, Florek M. 5-Azacytine/5-Azaci-tidine. Recent Results Cancer Res 2014, 201(2):299-324.

    44. Vanden Berghe W. Epigenetic impact of dietary polyphenols in cancer chemoprevention: Lifelong remodeling of our epigenomes. Pharmacol Res 2012, 65(6): 565-576.

    45. Hsieh HY, Chiu PH, Wang SC. Epigenetics in traditional chinese pharmacy: a bioinformatic study at pharmacopoeia scale. Evid Based Complementary Alternat Med 2011; 2011:816714.

    46. Bontempo P, Mita L, Miceli M, Doto A, et al.Feijoa sellowiana derived natural flavone exerts anti-cancer action displaying hdac inhibitory activities. Int J Biochem Cell Biol, 2007, 39(10):1902-1914.

    47. Hua F, Shan BE, Zhao LM, et al. Trichosanthin inhibited the proliferation of MDA-MB-231 cell and reversed the methylation of sykgene . Cancer 2009, 29(10): 944-949.

    48. Tian XF, Tao YM, Fang Y, et al. Study of salviae Miltiorrhize extract on DNA demethylation in HepG2 cells. J Hunan Univ Tradit Chin Med 2009,29(1): 13-15.

    49. Cui X, Wakai T, Shirai Y, et al. Arsenic trioxide inhibits dna methyltransferase and restores methylation-silenced genes in human liver cancer cells. Hum Pathol 2006, 37(3): 298–311.

    50. Peng CY. The epigenetic mechanisms of arsenic trioxide anti leukemia. Shantou University 2009.

    51. Lv F, Shao ZY, Xie ZL, et al. Suppressive effect and the mechanism of epigenetics of Yugan granule on liver cancer in rats. Asia-Pac Tradit Med 2008, 4(10): 26-28.

    52. Fang MZ, Chen D, Sun Yet al. Reversal of hypermethylation and reactivation of p16INK4a,RARβ, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 2005,11(19): 7033-7041.

    53. Shu L, Khor TO, Lee JH, et al. Epigenetic cpg demethylation of the promoter and reactivation of the expression of neurog1 by curcumin in prostate lncap cells. AAPS J 2011, 13(4): 606-614.

    54. Wang Y, Hu JB, Chen Y, et al. Curcum in causes histone acetylation enhancement in Raji, HL- 60 and K562 cell lines. Chin Pharm Bull 2006, 22(2):164-167.

    55. Lv BH, Zhang L, Zhu CC, et al. Inhibition of curcumin on histone deacetylase and expression promotion of P21WAF1 /CIP1 in HepG2 cells.China J Chin Mater Med 2007, 32(19): 2051-2055.

    56. Zhao F, Chen Y, Li R, et al. Triptolide alters histone H3K9 and H3K27 methylation state and induces G0/G1 arrest and caspase-dependent apoptosis in multiple myeloma in vitro.Toxicology 2010, 267(1): 70-79.

    57. Lee YH, Kwak J, Choi HK, et al. EGCG suppresses prostate cancer cell growth modulating acetylation of androgen receptor by anti-histone acetyltransferase activity. Int J Mol Med 2012,30(1): 69-74.

    58. Kikuno N1, Shiina H, Urakami S, et al. Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer 2008, 123(3): 552-560.

    久久草成人影院| 国产精品亚洲美女久久久| 天堂影院成人在线观看| 人妻丰满熟妇av一区二区三区| 淫妇啪啪啪对白视频| 欧美日韩国产亚洲二区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲最大成人中文| 一个人看的www免费观看视频| 亚洲中文字幕日韩| 欧美+亚洲+日韩+国产| 亚洲国产精品sss在线观看| 女人被狂操c到高潮| 午夜福利成人在线免费观看| 欧美另类亚洲清纯唯美| 国产午夜精品论理片| ponron亚洲| 天堂动漫精品| 国产欧美日韩一区二区精品| 成人精品一区二区免费| 波多野结衣高清无吗| 变态另类丝袜制服| 后天国语完整版免费观看| 丰满人妻熟妇乱又伦精品不卡| 又黄又爽又免费观看的视频| 国内揄拍国产精品人妻在线| 精品久久久久久久末码| 亚洲国产精品久久男人天堂| 欧美日韩瑟瑟在线播放| 日韩欧美一区二区三区在线观看| 日韩高清综合在线| 日韩欧美在线二视频| 国内精品一区二区在线观看| 国产又色又爽无遮挡免费看| 欧美成人一区二区免费高清观看 | 欧美在线黄色| 久久亚洲真实| 精品久久久久久成人av| 在线a可以看的网站| 午夜影院日韩av| 国产精品自产拍在线观看55亚洲| 久久久久性生活片| 亚洲专区字幕在线| 国产野战对白在线观看| 香蕉丝袜av| 成年免费大片在线观看| 757午夜福利合集在线观看| 丁香欧美五月| 夜夜爽天天搞| 黑人欧美特级aaaaaa片| 不卡一级毛片| 亚洲av电影在线进入| 国产成人aa在线观看| 亚洲人成网站高清观看| 日韩人妻高清精品专区| 精品国产乱码久久久久久男人| 97超级碰碰碰精品色视频在线观看| 在线国产一区二区在线| av中文乱码字幕在线| 精品久久久久久久毛片微露脸| 国产成人aa在线观看| 看片在线看免费视频| 日韩欧美 国产精品| 哪里可以看免费的av片| 日本撒尿小便嘘嘘汇集6| 国产熟女xx| 亚洲乱码一区二区免费版| 黄色视频,在线免费观看| 免费在线观看亚洲国产| 欧美日韩瑟瑟在线播放| 日韩欧美一区二区三区在线观看| 精品一区二区三区视频在线 | 欧美日韩黄片免| 亚洲精品美女久久久久99蜜臀| 亚洲色图 男人天堂 中文字幕| 亚洲在线自拍视频| 午夜视频精品福利| 偷拍熟女少妇极品色| 久久草成人影院| 曰老女人黄片| 深夜精品福利| 免费在线观看亚洲国产| 欧美日韩精品网址| 亚洲熟妇中文字幕五十中出| 久久久久性生活片| 天天一区二区日本电影三级| 国产精品,欧美在线| 成人特级av手机在线观看| 一边摸一边抽搐一进一小说| www.精华液| 看片在线看免费视频| 午夜福利在线在线| 国产精品久久久久久人妻精品电影| 久久精品91蜜桃| 久久99热这里只有精品18| 又大又爽又粗| 国产精品野战在线观看| 国产三级中文精品| 欧美激情在线99| 国产精品 欧美亚洲| av天堂中文字幕网| 亚洲av成人av| 亚洲成a人片在线一区二区| 国产亚洲精品av在线| 在线观看66精品国产| 好男人电影高清在线观看| 国产精品免费一区二区三区在线| 91在线精品国自产拍蜜月 | bbb黄色大片| 成熟少妇高潮喷水视频| 亚洲在线观看片| 亚洲va日本ⅴa欧美va伊人久久| 国产午夜福利久久久久久| 最好的美女福利视频网| 欧美另类亚洲清纯唯美| 久久久精品大字幕| 国产精品一区二区三区四区免费观看 | 三级男女做爰猛烈吃奶摸视频| 大型黄色视频在线免费观看| 国产精品av视频在线免费观看| 亚洲av日韩精品久久久久久密| 久久久久国内视频| 日本黄色片子视频| 夜夜躁狠狠躁天天躁| 白带黄色成豆腐渣| 欧美+亚洲+日韩+国产| 欧美黑人欧美精品刺激| 免费人成视频x8x8入口观看| aaaaa片日本免费| 好看av亚洲va欧美ⅴa在| 99re在线观看精品视频| 久久久国产成人免费| 中文字幕高清在线视频| 久久亚洲精品不卡| 美女cb高潮喷水在线观看 | 香蕉丝袜av| 国产激情久久老熟女| 欧美日韩综合久久久久久 | 久久人妻av系列| 12—13女人毛片做爰片一| 90打野战视频偷拍视频| 法律面前人人平等表现在哪些方面| 亚洲 欧美 日韩 在线 免费| 亚洲性夜色夜夜综合| 欧美成人免费av一区二区三区| 亚洲专区国产一区二区| 国产亚洲欧美在线一区二区| www国产在线视频色| 国产精品一区二区三区四区免费观看 | 哪里可以看免费的av片| 亚洲av电影不卡..在线观看| 每晚都被弄得嗷嗷叫到高潮| 香蕉丝袜av| 日本在线视频免费播放| 欧美又色又爽又黄视频| 成人无遮挡网站| 免费在线观看日本一区| 久久精品夜夜夜夜夜久久蜜豆| 18禁裸乳无遮挡免费网站照片| 国产欧美日韩精品一区二区| 久久婷婷人人爽人人干人人爱| 久久九九热精品免费| 少妇的逼水好多| 亚洲国产精品sss在线观看| 在线观看午夜福利视频| 国产成+人综合+亚洲专区| 国产伦精品一区二区三区视频9 | 亚洲国产中文字幕在线视频| 国内少妇人妻偷人精品xxx网站 | 国产爱豆传媒在线观看| 国产精品久久视频播放| 国产亚洲精品一区二区www| 日本 av在线| 久久精品91无色码中文字幕| 婷婷丁香在线五月| 国产1区2区3区精品| 国产一区二区三区视频了| 午夜影院日韩av| 90打野战视频偷拍视频| 久久久国产成人免费| 国产在线精品亚洲第一网站| 国产黄片美女视频| 一级a爱片免费观看的视频| 国产三级黄色录像| 色播亚洲综合网| 欧美中文日本在线观看视频| 亚洲av中文字字幕乱码综合| 成年女人看的毛片在线观看| 久久这里只有精品中国| 18美女黄网站色大片免费观看| 人妻久久中文字幕网| 午夜日韩欧美国产| 亚洲 国产 在线| 亚洲精品国产精品久久久不卡| 国产亚洲精品久久久com| 在线播放国产精品三级| 婷婷亚洲欧美| av中文乱码字幕在线| 国产亚洲欧美在线一区二区| 1024手机看黄色片| 一卡2卡三卡四卡精品乱码亚洲| 又黄又粗又硬又大视频| av中文乱码字幕在线| 嫩草影院精品99| 日韩有码中文字幕| 美女被艹到高潮喷水动态| 久久精品91蜜桃| 亚洲av成人av| 国产真实乱freesex| www日本在线高清视频| 国产av不卡久久| 99久国产av精品| 夜夜看夜夜爽夜夜摸| 日韩欧美免费精品| 国产av麻豆久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 日韩有码中文字幕| 一二三四在线观看免费中文在| a级毛片a级免费在线| www.精华液| 国产三级中文精品| 99在线视频只有这里精品首页| 久久久久国产精品人妻aⅴ院| 亚洲熟妇中文字幕五十中出| 国产久久久一区二区三区| 老熟妇仑乱视频hdxx| 欧美zozozo另类| 天堂av国产一区二区熟女人妻| 国产精品香港三级国产av潘金莲| 国产日本99.免费观看| 国产精品久久久久久久电影 | 首页视频小说图片口味搜索| 国产精品综合久久久久久久免费| 十八禁人妻一区二区| 国产亚洲精品av在线| 97超视频在线观看视频| 国产精品永久免费网站| 国产久久久一区二区三区| 97碰自拍视频| 99精品久久久久人妻精品| 欧美日韩瑟瑟在线播放| 久久久久久大精品| 怎么达到女性高潮| 欧美午夜高清在线| 欧美中文综合在线视频| 日韩欧美国产一区二区入口| 亚洲欧美日韩高清专用| 久久香蕉精品热| 搡老妇女老女人老熟妇| 人人妻人人看人人澡| 国产私拍福利视频在线观看| 熟女少妇亚洲综合色aaa.| 999久久久国产精品视频| 亚洲精华国产精华精| 好看av亚洲va欧美ⅴa在| www.999成人在线观看| 成熟少妇高潮喷水视频| 久久国产乱子伦精品免费另类| av女优亚洲男人天堂 | 久9热在线精品视频| 国语自产精品视频在线第100页| 琪琪午夜伦伦电影理论片6080| 午夜久久久久精精品| 丁香欧美五月| 女警被强在线播放| 999精品在线视频| cao死你这个sao货| 亚洲中文日韩欧美视频| 成年女人永久免费观看视频| 脱女人内裤的视频| 波多野结衣高清作品| 国产久久久一区二区三区| 色在线成人网| 国产视频内射| 一进一出抽搐gif免费好疼| 久久精品91无色码中文字幕| 亚洲午夜精品一区,二区,三区| 中文字幕熟女人妻在线| 脱女人内裤的视频| 欧美午夜高清在线| 99久久成人亚洲精品观看| 久久国产乱子伦精品免费另类| 可以在线观看的亚洲视频| 全区人妻精品视频| 又大又爽又粗| 三级男女做爰猛烈吃奶摸视频| 一个人免费在线观看电影 | av视频在线观看入口| 一区二区三区国产精品乱码| 亚洲av美国av| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美日韩无卡精品| 国产视频内射| 欧美日本亚洲视频在线播放| 99热6这里只有精品| 色哟哟哟哟哟哟| 嫩草影院入口| 少妇熟女aⅴ在线视频| 九九热线精品视视频播放| 人妻丰满熟妇av一区二区三区| 亚洲美女视频黄频| 欧美极品一区二区三区四区| 天天躁狠狠躁夜夜躁狠狠躁| 桃色一区二区三区在线观看| 欧美日本亚洲视频在线播放| 亚洲成a人片在线一区二区| 午夜福利高清视频| 国产欧美日韩一区二区精品| 999精品在线视频| 又大又爽又粗| 亚洲熟女毛片儿| 99久久无色码亚洲精品果冻| 欧美日韩精品网址| 天天躁日日操中文字幕| 日韩精品中文字幕看吧| а√天堂www在线а√下载| 中文资源天堂在线| 中文字幕熟女人妻在线| 亚洲成av人片在线播放无| 亚洲国产欧美人成| 一级毛片高清免费大全| 90打野战视频偷拍视频| 亚洲av成人一区二区三| 欧美性猛交╳xxx乱大交人| 国产av麻豆久久久久久久| 中文字幕人妻丝袜一区二区| 两个人看的免费小视频| 亚洲,欧美精品.| 国内久久婷婷六月综合欲色啪| 18禁黄网站禁片免费观看直播| 国产97色在线日韩免费| 最好的美女福利视频网| 首页视频小说图片口味搜索| 美女大奶头视频| 最新在线观看一区二区三区| 最好的美女福利视频网| 国产成人欧美在线观看| 巨乳人妻的诱惑在线观看| 老司机午夜十八禁免费视频| 国产精品影院久久| 别揉我奶头~嗯~啊~动态视频| 韩国av一区二区三区四区| 99精品欧美一区二区三区四区| 99久国产av精品| 精品国产超薄肉色丝袜足j| 亚洲av第一区精品v没综合| 香蕉久久夜色| 18禁美女被吸乳视频| 91九色精品人成在线观看| 久久久久久久午夜电影| 亚洲成av人片在线播放无| 久久久久久大精品| 国产熟女xx| 极品教师在线免费播放| 无限看片的www在线观看| 亚洲狠狠婷婷综合久久图片| 欧美日本视频| 一夜夜www| 超碰成人久久| 亚洲欧美一区二区三区黑人| 白带黄色成豆腐渣| 成人无遮挡网站| 黑人巨大精品欧美一区二区mp4| 午夜福利在线观看吧| 欧美不卡视频在线免费观看| 夜夜爽天天搞| 午夜两性在线视频| 麻豆国产av国片精品| 国产99白浆流出| tocl精华| 91字幕亚洲| 久久这里只有精品19| 好男人电影高清在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲 国产 在线| 午夜激情福利司机影院| 午夜福利18| 夜夜夜夜夜久久久久| 午夜免费成人在线视频| 狂野欧美激情性xxxx| 无遮挡黄片免费观看| 女人被狂操c到高潮| 美女大奶头视频| 色综合欧美亚洲国产小说| 午夜福利欧美成人| 国产精品永久免费网站| 国产成年人精品一区二区| 欧美一级a爱片免费观看看| 亚洲精品美女久久久久99蜜臀| 中文字幕久久专区| 亚洲av电影在线进入| 久久久久免费精品人妻一区二区| 日本a在线网址| 又黄又爽又免费观看的视频| 中国美女看黄片| 亚洲成人免费电影在线观看| av女优亚洲男人天堂 | 欧美另类亚洲清纯唯美| 91麻豆精品激情在线观看国产| xxx96com| 女生性感内裤真人,穿戴方法视频| 日日夜夜操网爽| 国产一区二区激情短视频| 人人妻人人看人人澡| 黄色视频,在线免费观看| 国产免费男女视频| 日韩av在线大香蕉| 国产亚洲av高清不卡| 男人的好看免费观看在线视频| 亚洲国产高清在线一区二区三| 亚洲色图 男人天堂 中文字幕| 久久久久久九九精品二区国产| 久久这里只有精品19| 午夜福利18| 精品日产1卡2卡| 久久婷婷人人爽人人干人人爱| 制服人妻中文乱码| 国产精品九九99| 色综合婷婷激情| 国产精品女同一区二区软件 | 毛片女人毛片| 欧美+亚洲+日韩+国产| 色视频www国产| 日韩 欧美 亚洲 中文字幕| 蜜桃久久精品国产亚洲av| 久久天堂一区二区三区四区| 久久精品综合一区二区三区| 欧美乱色亚洲激情| 国产精品久久久久久人妻精品电影| 麻豆成人av在线观看| 午夜精品在线福利| 亚洲av成人不卡在线观看播放网| 欧美一级毛片孕妇| 国产蜜桃级精品一区二区三区| 两个人看的免费小视频| 九九热线精品视视频播放| 国产精品亚洲美女久久久| 日韩av在线大香蕉| 精品国产超薄肉色丝袜足j| 操出白浆在线播放| 亚洲国产精品999在线| 欧洲精品卡2卡3卡4卡5卡区| 在线免费观看的www视频| 国产激情欧美一区二区| 偷拍熟女少妇极品色| 婷婷亚洲欧美| 欧美成狂野欧美在线观看| 91字幕亚洲| 国产单亲对白刺激| 男女做爰动态图高潮gif福利片| 男女那种视频在线观看| 国产精品爽爽va在线观看网站| 搞女人的毛片| 麻豆av在线久日| 国产极品精品免费视频能看的| 99久久国产精品久久久| 91av网一区二区| 99久久成人亚洲精品观看| АⅤ资源中文在线天堂| 特级一级黄色大片| 麻豆av在线久日| 免费在线观看影片大全网站| 国产视频内射| 日韩欧美一区二区三区在线观看| 国产精品电影一区二区三区| 男女之事视频高清在线观看| 九九在线视频观看精品| 国产美女午夜福利| 美女免费视频网站| 国产高清三级在线| 欧美性猛交╳xxx乱大交人| 最近最新中文字幕大全免费视频| 国内精品一区二区在线观看| 午夜福利视频1000在线观看| 亚洲专区中文字幕在线| 成熟少妇高潮喷水视频| 五月玫瑰六月丁香| 亚洲专区字幕在线| 桃红色精品国产亚洲av| av天堂在线播放| 人妻久久中文字幕网| 久久久久久久久久黄片| 欧美乱码精品一区二区三区| 成人无遮挡网站| 日韩免费av在线播放| 免费看日本二区| 他把我摸到了高潮在线观看| 国产1区2区3区精品| 国产高清有码在线观看视频| 国内精品美女久久久久久| 亚洲人成伊人成综合网2020| 国产精品av视频在线免费观看| 法律面前人人平等表现在哪些方面| 国产主播在线观看一区二区| 欧美丝袜亚洲另类 | 日韩欧美一区二区三区在线观看| 老司机午夜福利在线观看视频| 免费看a级黄色片| 国产成人av教育| 日韩人妻高清精品专区| 青草久久国产| 欧美日韩综合久久久久久 | 久久天躁狠狠躁夜夜2o2o| 一个人看的www免费观看视频| 母亲3免费完整高清在线观看| 婷婷亚洲欧美| 一个人观看的视频www高清免费观看 | 亚洲av五月六月丁香网| 欧美在线一区亚洲| 手机成人av网站| 母亲3免费完整高清在线观看| 国产精品一区二区精品视频观看| 老鸭窝网址在线观看| av天堂中文字幕网| 麻豆av在线久日| 午夜两性在线视频| 亚洲色图 男人天堂 中文字幕| 亚洲成人久久性| 在线观看日韩欧美| 日韩人妻高清精品专区| 亚洲人成伊人成综合网2020| 午夜福利18| 日韩欧美在线二视频| 欧美黑人欧美精品刺激| 成人精品一区二区免费| 在线观看美女被高潮喷水网站 | 午夜激情欧美在线| 一区福利在线观看| 亚洲第一电影网av| 深夜精品福利| 中文字幕高清在线视频| 国模一区二区三区四区视频 | 午夜精品在线福利| 18禁观看日本| 成人18禁在线播放| 亚洲狠狠婷婷综合久久图片| 99视频精品全部免费 在线 | 国产蜜桃级精品一区二区三区| 成人精品一区二区免费| 麻豆av在线久日| 亚洲精品在线观看二区| 国产aⅴ精品一区二区三区波| 久久中文字幕人妻熟女| 一区二区三区激情视频| 久久草成人影院| 十八禁网站免费在线| 亚洲自偷自拍图片 自拍| tocl精华| 色噜噜av男人的天堂激情| 美女被艹到高潮喷水动态| 99国产精品一区二区蜜桃av| 大型黄色视频在线免费观看| 黄色丝袜av网址大全| 黄色视频,在线免费观看| 亚洲国产高清在线一区二区三| 女人被狂操c到高潮| 波多野结衣高清作品| 岛国在线观看网站| 国产成人aa在线观看| 日韩欧美一区二区三区在线观看| 欧美日本视频| 亚洲成av人片免费观看| 五月伊人婷婷丁香| 国产1区2区3区精品| 久久精品91无色码中文字幕| 人人妻人人澡欧美一区二区| 观看免费一级毛片| 性色av乱码一区二区三区2| 国产极品精品免费视频能看的| 亚洲欧美精品综合久久99| 国产三级黄色录像| 在线观看免费视频日本深夜| 久久久国产成人精品二区| 亚洲熟妇中文字幕五十中出| 老熟妇乱子伦视频在线观看| 很黄的视频免费| 99热只有精品国产| 国产精品国产高清国产av| 热99re8久久精品国产| 国产精品久久久久久精品电影| 国产伦在线观看视频一区| 1024手机看黄色片| 久久精品国产亚洲av香蕉五月| 91九色精品人成在线观看| 久久久色成人| 国产精品久久久av美女十八| 级片在线观看| 国产精品九九99| 无限看片的www在线观看| 一个人免费在线观看电影 | 俺也久久电影网| 男人舔奶头视频| 午夜福利成人在线免费观看| 国内揄拍国产精品人妻在线| 欧美另类亚洲清纯唯美| 男女做爰动态图高潮gif福利片| 制服人妻中文乱码| 国产一区二区在线av高清观看| 香蕉久久夜色| 久久精品91无色码中文字幕| 亚洲成人久久性| 欧美丝袜亚洲另类 | 69av精品久久久久久| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩一区二区精品| 免费看a级黄色片| 日本三级黄在线观看| 老汉色av国产亚洲站长工具| 国产精品亚洲美女久久久| 久久天躁狠狠躁夜夜2o2o| 国产爱豆传媒在线观看| 老司机午夜福利在线观看视频| 国产精品一及| 看片在线看免费视频| 国产成人精品久久二区二区91|