• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一步法合成螺雙芴及螺氧雜蒽衍生物及其在有機(jī)發(fā)光二極管中的應(yīng)用:性能增強(qiáng)及相關(guān)的光學(xué)現(xiàn)象

    2016-09-09 03:32:02關(guān)玉巧宋娟孫威章琴湯超李雪馮曉苗錢妍陶友田陳淑芬汪聯(lián)輝黃維
    物理化學(xué)學(xué)報(bào) 2016年6期
    關(guān)鍵詞:郵電大學(xué)綠光工程學(xué)院

    關(guān)玉巧 宋娟 孫威 章琴 湯超 李雪 馮曉苗 錢妍 陶友田 陳淑芬,* 汪聯(lián)輝 黃維,*

    (1南京郵電大學(xué)信息材料與納米技術(shù)研究院,先進(jìn)生物與化學(xué)制造協(xié)同創(chuàng)新中心,有機(jī)電子與信息顯示國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,南京210023;2南京工業(yè)大學(xué),先進(jìn)生物與化學(xué)制造協(xié)同創(chuàng)新中心,柔性電子重點(diǎn)實(shí)驗(yàn)室,南京211816;3南京工程學(xué)院機(jī)械工程學(xué)院,南京211167)

    一步法合成螺雙芴及螺氧雜蒽衍生物及其在有機(jī)發(fā)光二極管中的應(yīng)用:性能增強(qiáng)及相關(guān)的光學(xué)現(xiàn)象

    關(guān)玉巧1,#宋娟1,#孫威1章琴1湯超2李雪3馮曉苗1錢妍1陶友田2陳淑芬1,*汪聯(lián)輝1黃維2,*

    (1南京郵電大學(xué)信息材料與納米技術(shù)研究院,先進(jìn)生物與化學(xué)制造協(xié)同創(chuàng)新中心,有機(jī)電子與信息顯示國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,南京210023;2南京工業(yè)大學(xué),先進(jìn)生物與化學(xué)制造協(xié)同創(chuàng)新中心,柔性電子重點(diǎn)實(shí)驗(yàn)室,南京211816;3南京工程學(xué)院機(jī)械工程學(xué)院,南京211167)

    以芴為原料,以鈀為催化劑一步合成了2-(9-苯基芴基)-9,9′螺二芴(PF-SBF)。以PF-SBF作為有機(jī)發(fā)光二極管的發(fā)光及主體材料(FIrpic為磷光客體)時(shí),觀察到了不同于PF-SBF及FIrpic發(fā)光的紅光帶。這分別源于PF-SBF分子間的聚集和發(fā)光層/傳輸層誘導(dǎo)的激基復(fù)合物。通過(guò)選擇合適的空穴和電子傳輸層,有效抑制了激基復(fù)合物的發(fā)光。同時(shí),PF-SBF和TAPC雙主體的結(jié)構(gòu)不僅實(shí)現(xiàn)了純FIrpic和Ir(ppy)3藍(lán)光和綠光,還大幅提升了器件性能。藍(lán)光、綠光器件的最大電流效率和最大亮度分達(dá)到16.7、50.5 cd?A-1和7857 cd?m-2(11 V)、23390 cd?m-2(8 V)。另外,除了PF-SBF,利用相似的合成方法,我們也合成了2-(9-苯基芴基)-9,9′螺芴氧雜蒽(PF-SFX),其較大的三線態(tài)能級(jí)(2.8 eV)較PF-SBF更適合做藍(lán)光主體。以TAPC和PFSFX為雙主體的器件最大電流效率提升到了22.6 cd?A-1。所有實(shí)驗(yàn)結(jié)果均表明,PF-SBF和PF-SFX是構(gòu)建高效綠光/藍(lán)光磷光主體材料的有效結(jié)構(gòu)單元。

    鈀催化;一步法;激基復(fù)合物;雙主體;藍(lán)光有機(jī)發(fā)光二極管

    The project was supported by the National Key Basic Research Program of China(973)(2015CB932202,2012CB933301),National Natural

    Science Foundation of China(61274065,51173081,61136003,BZ2010043,51372119,51172110,21304047,21373114,21003076),Innovation

    Team of the Ministry of Education of China(IRT1148),Ministry of Education Humanities and Social Science Research Projects,China

    (13YJCZH091),Natural Science Foundation of Jiangsu Province,China(BK20141424),PriorityAcademic Program Development of Jiangsu

    Provincial Higher Education Institutions,China(YX030001),Ordinary University Graduate Student Practical Innovation Projects of Jiangsu

    Province,China(SJLX15_0390),Pandeng Project of Nanjing University of Posts and Telecommunications,China(NY214085),and Open

    Foundation from Jilin University,China(IOSKL2015KF32).

    (1Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials,and Jiangsu National Synergetic Innovation Center for Advanced Materials,Nanjing University of Posts and Telecommunications,Nanjing 210023,P.R.China;2Key Laboratory of Flexible Electronics and Institute of Advanced Materials,National Synergistic Innovation Center for Advanced Materials,Nanjing Tech University,Nanjing 211816,P.R.China;3Mechanical Engineering Institute,Nanjing Institute of Technology,Nanjing 211167,P.R.China)

    1 lntroduction

    Organic light-emitting devices(OLEDs)have attracted great attention because of their potential applications in full-color displays,backlight sources,and solid state lighting1-4.After three decades?research and development,red and green OLEDs have been rapidly developed with satisfactory efficiency and saturated chromaticity,however,blue OLEDs with high efficiencies are still rather rare due to intrinsically wide band gaps of blue emitting materials and their hosts5-9.Fluorene-based compounds have been one of the most wellknown blue emission materials in the past several years due to their high photoluminescence(PL)quantum efficiencies and good thermal stability10-12.As one type of fluorenes,spirofluorene compounds own advantages of high glass transition temperature,good solubility,and amorphous nature due to a high steric and rigid structure brought by perpendicular arrangement of two π-electron systems.Furthermore,this perpendicular arrangement of the two π-electron systems in spirofluorenes is able to effectively suppress excimer formation which is frequently observed in many solid state fluorescent dyes13,14.Organic spirofluorene materials,e.g.,spirobifluorenes with asymmetric substitution,spiro-substituted spiro fluorene,spirofluorenelinked phenylanthracene,and spirofluorene-linked anthracene,usually emit blue light15-20.Since Tour et al.10successfully introduced spirobifluorene unit into organic electronics in 1996,spirobifluorene and its derivatives are frequently used as blue emitters or hosts of blue light materials to achieve high performances blue OLEDs11.In 2002,Wu and his colleagues12used 2,7-bis[2-(4-tert-butylphenyl)pyrimidine-5-yl-9,9?-spirobifluorene as a host of perylene in a blue OLED and obtained a maximum brightness of 80000 cd?m-2.Lee et al.21fabricated a simple blue device using 2,7-bis(diphenylphosphoryl)-9,9?-spirobi[fluorene]as a host material and realized a quantum efficiency of as high as 20.3%without any LiF electron injection layer.Recently,Wang?s team22synthesized 3,6-di(9H-carbazol-9-yl)-9,9?-spirobi[fluorene],with which as a host they exhibited a OLED with a very low turnon voltage of 2.8 V and a high current efficiency of 34.2 cd?A-1.

    In this paper,we synthesized a new spirobi[fluorene]derivative named 2?-(9-phenyl-fluoren-9-yl)-9,9?-spirobi[fluorene](PF-SBF),which contains fluorene-substituted spirobifluorene units,and applied it as a blue emitter or a host of a blue phosphor bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyri-dyl)iridium(III)(FIrpic)in OLEDs.We found an emission in red light band in addition to the PF-SBF and FIrpic?s intrinsic blue light and removed this red light band through analyzing the origin of this phenomenon and designing the device structure.We finally fabricated a high-performance blue-emission OLED structure with a cohost and a proper electron/hole transport layer.In addition,we replaced the fluorene with a xanthene in spirobifluorene structure of PF-SBF and obtained a new host material 2-(9-phenyl-fluoren-9-yl)spiro[fluorene-9,9?-xanthene](PF-SFX),which owns a wide band gap and is more suitable for a blue light host.Using PF-SFX as a host of FIrpic,we acquired a high luminous efficiency of 22.6 cd?A-1and a pure chromaticity of(0.15,0.32).

    2 Experimental

    All the materials used in OLEDs except PF-SBF,PF-SFX,andpoly(3,4-ethyienedioxythiophene):poly(styrenesulfonate)(PEDOT: PSS)were purchased from Hanfeng Chemical with purity of 99% and were directly used without further purification.Noting that PEDOT:PSS was obtained from Heraeus Precious Metals GmbH &Co.KG(Germany).All reagents used in synthesis were purchased from J&K Chemical with purity of>97%.The new materials PF-SBF and PF-SFX we synthesized were purified by column chromatography first,then further purified by recrystallization.The purity of the materials meets the requirement of the device.The ultraviolet-visible(UV-Vis)spectra,room-temperature and low temperature PL spectra of PF-SBF and PF-SFX were respectively measured with an ultraviolet-visible spectrophotometer(Japan,Shimadzu,UV-3600),a spectrofluorophotometer (Japan,Shimadzu,RF-5301PC),and a Hitachi F-4500(Japan)fluorescence spectrophotometer.The cyclic voltammetry(CV)measurementswereperformedwithaCHI660Csystem (Shanghai)in a typical there-electrode cell.The highest occupied molecular orbital(HOMO)energy level was estimated with regard to the reference oxidation energy level of ferrocene(-4.8 eV)and the lowest unoccupied molecular orbital(LUMO)energy level was estimated through the HOMO energy level and the band gap. The thermogravimetry analysis(TGA)of PF-SBF and PF-SFX was performed in a DTG-60 system(Japan,Shimadzu)at a ramping rate of 10°C?min-1under an argon flow rate of 20 mL?min-1from room temperature to 600°C.The differential scanning calorimetry(DSC)of these two complexes were performed in a DSC-60Asystem(Japan,Shimadzu)at a ramping rate of 10°C?min-1under an argon flow rate of 20 mL?min-1from room temperature to 240°C.The electroluminescence(EL)characteristics including luminance,Commission Internationale de L'Eclairage (CIE)coordinates,and EL spectra were measured with a PR655 spectrometer(America).The luminance-voltage curves were simultaneously measured with a Keithley 2400 voltage-current sourcemeter(America),while the efficiencies were directly calculated from the above measured parameters.

    PF-SBF was synthesized via a one-step method23.PtBuPh2(12.1 mg,0.05 mmol,0.1 equiv)and KOtBu(67 mg,0.6 mmol,1.2 equiv)were added into a dried Schlenk tube in an argon-filled glove box,where the Schlenk tube contained a mixture solution of 2-bromo-9,9?-spirobi[fluorene](197 mg,0.5 mmol,1 equiv),9-phenylfluorene(145 mg,0.6 mmol,1.2 equiv),Pd(dba)2(14.3 mg,0.025 mmol,0.05 equiv),and 2 mL toluene.The mixtures were stirred at 100°C for 10 h and then quenched with water.The final reaction mixture was extracted with ethyl ether for 3 times (3×10 mL).The organic layers were combined,dried(Na2SO4),and filtered,with the solvent removed under a reduced pressure. Column chromatography on silica gel(hexane:CH2Cl2,10:1 (volume ratio))afforded the desired product of white solid(279 mg)with a yield of 86%.1H NMR(400 MHz,CDCl3)δ 7.87-7.72 (m,5H),7.64(d,J=8.0 Hz,1H),7.36(m,6H),7.22-7.13(m,6H),7.11-6.95(m,7H),6.92(s,1H),6.80(d,J=7.5 Hz,2H),6.72(d,J=7.6 Hz,1H).13C NMR(100 MHz,CDCl3)δ 151.3,149.2,148.9,148.8,146.0,145.3,141.7,141.3,140.7,140.1,128.0,127.8,127.7,127.7,127.6,127.4,127.1,126.5,126.0, 125.0,123.9,120.1,120.1,119.9,119.5,66.1,65.6.HRMS (MALDI/DHB)(Waters Micromass GCT,Waters Q-Tof Premier,America):calcd for C44H28[M]+556.2189;found 556.2185.

    PF-SFX was also synthesized with a similar method with PFSBF.PtBuPh2(12.1 mg,0.05 mmol,0.1 equiv)and tBuOK(67 mg,0.6 mmol,1.2 equiv)added into a dried Schlenk tube in an argon-filled glove box,where the Schlenk tube contained a mixture solution of 2-bromo-9,9?-spiro[fluorene-9,9?-xanthene](205 mg,0.5 mmol,1 equiv),9-phenylfluorene(145 mg,0.6 mmol,1.2 equiv),Pd(dba)2(14.3 mg,0.025 mmol,0.05 equiv),and 2 mL toluene.The reaction conditions,extraction approach and post-treatment process of the product were same with those of PF-SBF.Column chromatography on silica gel(hexane:CH2Cl2,10:1 for volume ratio)afforded the desired product(269 mg)with a yield of 94%.1H NMR(400 MHz,CDCl3)δ 7.79(d,J=7.6 Hz,2H),7.70(d,J=7.5 Hz,1H),7.60(d,J=8.0 Hz,1H),7.44 (d,J=1.4 Hz,1H),7.41-7.34(m,2H),7.33-7.14(m,12H),7.08 (ddd,J=15.7,7.6,2.4 Hz,6H),6.89-6.81(m,2H),6.52(d,J= 7.7 Hz,2H).13C NMR(100 MHz,CDCl3)δ 155.42,153.58,151.67,151.18,146.18,146.01,140.13,139.67,138.06,128.17,128.12,128.07,127.83,127.76,127.66,127.48,127.45,127.20,127.03,126.59,126.08,125.51,125.22,123.16,120.20,119.94,119.49,116.78,65.69,54.54.HRMS(MALDI/DHB)(Waters Micromass GCT,Waters Q-Tof Premier,America):calcd for C44H28O[M]+572.2140;found 572.2140.

    3 Results and discussion

    PF-SBF was synthesized through palladium-catalyzed crosscoupling of triarylmethyl C―H bonds with aryl halides via one step reaction,with the synthetic route shown in Scheme 1(a).The approach was detailedly described in Experimental details23.It should be noted that the PF-SBF?s yield is as high as 86%,which is quite high compared to those similar structure materials synthesized by Friedel-Crafts or Suzuki reaction.The UV absorption and PLspectra of PF-SBF show a main absorption peak of 295 nm with a 307 nm shoulder and PL peaks of 334 and 384.5 nm in anhydrous ethanol solution,as shown in Fig.1.The LUMO and HOMO energy levels of PF-SBF were measured by a CV method and its detailed information was described in Supporting Information.The CV curve of PF-SBF is shown in Fig.S1(a)(Supporting Information)and the LUMO and HOMO energy levels are calculated to be-1.9 and-5.6 eV,respectively.As the TGAcurve shown in Fig.2,the decomposition temperature(Td)value is 348°C which corresponds to a 5%weight loss.As indicated in the DSC curve shown in Fig.S2(Supporting Information),no significant signal of glass transition temperature(Tg)is observed. From the above characteristics,we inferred that as-synthesized PFSBF can be used as a deep-blue emitting material or a host for other emitting materials.

    We first employed PF-SBF as a blue emission material with a common OLED structure of ITO/MoO3(2 nm)/4,4?,4?-tris[3-methylphenylphenylamino]-triphenylamine(m-MTDATA):MoO3(mass ratio of 3:1,15 nm)/m-MTDATA(25 nm)/tris-(phenyl-pyrazole)-iridium((Ir(ppz)3,10 nm)/PF-SBF(30 nm)/4,7-diphenyl-1,10-phenanthroline(Bphen,30 nm)/LiF(1 nm)/Al(100 nm).This structure was denoted as Structure A.Fig.S3(Supporting Information)shows luminance-voltage-current efficiency(L-V-CE)characteristics and normalized EL spectra of Structure A.Detailed data were summarized in Table S1(Supporting Information). Analysis on these data indicates that both the luminance and the current efficiency in StructureAare quite low when using only PFSBF as an emitting layer(EML).In addition,the normalized EL spectrum has a strong emission in red light band in addition to the PF-SBF?s intrinsic blue light,which is possibly caused by intermolecular aggregation24.The above information indicates that PFSBF may be more suitable for a host than a blue emitter.

    Scheme 1Synthetic routes of PF-SBF(a)and PF-SFX(b)

    Fig.1 Room-temperature absorption(a)and PL(b)spectra of PF-SBF and PF-SFX in anhydrous ethanol solution

    Fig.2TGAcurve s of PF-SBF and PF-SFX

    In the following part,PF-SBF was used as the host of the blue phosphor FIrpic with a device structure similar with Structure A except replacing PF-SBF with FIrpic-doped PF-SBF(10%(w)),which was denoted as Structure B.Doping FIrpic not only reduces intermolecular aggregation of PF-SBF,accompanied with the restrainment of the red emitting band,but also realizes energy transfer from PF-SBF to the blue light guest FIrpic with a further improved device efficiency.As shown in Fig.S4(Supporting Information)and Table S1,the performances including turn-on voltage(Von),L and CE have great improvements compared with those of Structure A.It should be noted that when PF-SBF was used as the FIrpic host,the EL spectrum shows a typical emission of FIrpic,indicating an efficient energy transfer from PF-SBF toFIrpic.This point was further approved by the energy level in Fig.3 (a),in which the LUMO and HOMO energy levels of FIrpic(2.8 and 5.5 eV)are located within those(1.9 and 5.6 eV)of the PFSBF host.

    Electron withdrawing/donating-inefficient group on PF-SBF implied its poor charge transport ability,which can be calculated with Mott-Gurney equation25

    where,ε0is the vacuum permittivity,ε is the relative dielectric constant of PF-SBF,μ is the carrier mobility,V is the voltage drop,and d is the thickness of PF-SBF.

    The hole and electron mobilities of PF-SBF are 6.1×10-6and 8.0×10-5cm2?V-1?s-1,estimated from the injection current density-voltage characteristics in Fig.S5(Supporting Information). The low mobility values of both holes and electrons lead to poor performances in above devices.

    In order to improve device performances as well as suppressing red light band,we fabricated cohost devices named Structure C,in which di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexane(TAPC)owning a fine hole transport ability and PF-SBF were employed as cohost.Structure C still utilized a similar configuration with Structure B,except replacing PF-SBF with PF-SBF:TAPC.The mass ratios of TAPC:PF-SBF were 2:1,1:1,0:1,and 1:0,respectively.Fig.4(a)shows L-V-CE characteristics of Structure C,while the parameters including Von,L,and CE are summarized in Table S2(Supporting Information).From Fig.4(a),we observed that the device employing TAPC and PF-SBF as a cohost exhibits obvious enhancements on brightness and efficiency compared with a TAPC or PF-SBF single host.The best performances occurs at the mass ratio of around 1:1 for the TAPC:PF-SBF cohost,realizing L and CE of 2907 cd?m-2and 5.4 cd?A-1.When employing TAPC:PF-SBF as a cohost,it occurs another shoulder on the EL spectra at around 580 nm in addition to the blue emission of FIrpic(Fig.4(b)),while this shoulder is totally suppressed with only PF-SBF,indicating it is different from the aggregation of PFSBF molecules.So in the following part,we investigated the phosphorescence spectra of PF-SBF,the energy levels of hosts and adjacent hole/electron transport layers to explore the origin of the 580 nm shoulder peak.

    Fig.3Device structures and energy levels of Structures B,C(a)and D(b)ITO:indium tin oxide

    Fig.4L-V-CE characteristics(a)and normalized ELspectra(b)of Structure CHollow symbols represent luminance and solid symbols represent current efficiency.

    In common,fluorene usually generates a green emission band totally different from its intrinsic emission,which is normally attributed to fluorenone defects generated at C9 position with a substituent of alkyl group26.For the case of PF-SBF,there are noalkyl groups at any position,which is hard to be oxidized,so that the fluorenone defect will not occur.We also suspected that the 580 nm shoulder peak is from the phosphorescent emission of PFSBF,so we tested PF-SBF?s phosphorescence spectra at 77 K,as shown in Fig.5,from which we found the phosphorescent emission peak is at 496 and 530 nm.In the vicinity of 580 nm,the phosphorescent emission of PF-SBF has already significantly decayed,indicating that the 580 nm shoulder in the EL spectra is not induced by the PF-SBF?s phosphorescence.

    Fig.5Phosphorescence spectra of PF-SBF and PF-SFX in toluene solvent at 77 K

    Fig.6Normalized absorption(a)and PL(b)intensities of EMLand its adjacent layers in Structure C

    In addition to the molecular aggregation and the intrinsic phosphorescent emission of the host material,the energy mismatch between the hosts and the adjacent electron/hole transport layer may also induce a long-waveband emission,normally called “exciplex”.So we gave energy levels of EML and its adjacent electron and hole transport layers.As shown in Fig.3(b),the LUMO and HOMO energy levels of PF-SBF and TAPC are 1.9/ 5.6 eV and 2.4/5.8 eV,respectively.Alarge LUMO energy barrier of≥0.6 eV between TAPC(or PF-SBF)and Bphen(3.0/6.4 eV)together with a poor electron transport property of TAPC made electrons injection into EML very difficult.Furthermore,a large HOMO energy barrier of more than 0.6 eV as well as poor hole conduction capability of Bphen led to holes accumulation at the Bphen/EML interface,making it easily produce exciplex at this interface27.To further verify the presence of exciplex,we measured the absorption and PL spectra of the TAPC:PF-SBF host and its adjacent layers,respectively,as shown in Fig.6(a).The absorption spectrum of TAPC:PF-SBF/Bphen layer shows no obvious change but its PL spectrum(Fig.6(b))generates a new shoulder at 571.5 nm compared with those of the TAPC,PF-SBF,and Bphen film. And this orange peak in the PL spectrum is consistent with that in the EL spectrum,proving its origin from an exciplex.In addition,the PL spectrum of Ir(ppz)3/TAPC:PF-SBF also produces a redshifted emission compared with the Ir(ppz)3,TAPC or PF-SBF layer,indicating that there also exists an exciplex emission at the interface of Ir(ppz)3and TAPC:PF-SBF.

    In order to eliminate the exciplex emission,we replaced the present hole and electron transport layers with TAPC and 1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene(TmPyPb).Amuch lower LUMO energy level of TmPyPb(2.7 eV)reduced the electron injection barrier,while a larger HOMO energy level efficiently confined the holes into the TmPyPb(Fig.3(b)).The new device structure was ITO/PEDOT:PSS/TAPC(10 nm)/TAPC:PF-SBF:FIrpic(mass ratio of 1:1:0.2,30 nm)/TmPyPb/LiF(1 nm)/Al,denoted as Structure D.With optimal PEDOT:PSS and TmPyPb thicknesses of~40-50 nm and 40 nm,the maximum current efficiency and brightness rise up to 16.7 cd?A-1(6 V)and 7857 cd?m-2(11 V),as shown in Fig.7(a)and Table 1.The Vonis as low as 3.4 V along with the employment of new electron transport layer and the elimination of Ir(ppz)3.As can be seen from Fig.7(b),a more important point is that the optimized device exhibits a typical FIrpic emission property and effectively gets rid of the exciplex-induced red light band,indicating a proper device structure and an efficient energy transfer from mixed host TAPC:PF-SBF to the EML.

    Referring to the low-temperature phosphorescence spectra in Fig.5,we calculated the triplet energy level of PF-SBF to be 2.5 eV,and this value suggests that PF-SBF may be more suitable for a green light host.So we fabricated a green OLED named Structure E in order to make sure of this idea.Structure E still utilized a similar device configuration with Structure D with only TAPC:PF-SBF:FIrpic(10%(w),30 nm)being replaced by TAPC: PF-SBF:tris(2-phenylpyridine)iridium(III)(Ir(ppy)3,8%(w),30 nm).Fig.8 shows L-V-CE characteristics and normalized EL spectra of Structure E,with all parameters including Von,L,and CE being summarized in Table 1.The maximum current efficiency and brightness are as high as 50.5 cd?A-1(6 V)and 23390 cd?m-2(8 V),while Vonis as low as 3.0 V.As can be seen in Fig.8(b),thedevice exhibits a typical Ir(ppy)3emission property without any other additional emission band.

    Fig.7L-V-CE characteristics(a)and normalized ELspectrum(b)of Structure D

    Table 1Summarized OLED performances for Structures D,E,and F

    Fig.8L-V-CE characteristics(a)and normalized ELspectrum(b)of Structure E

    Fig.9L-V-CE characteristics(a)and normalized ELspectrum(b)of Structure F

    Above data demonstrated that the narrow band gap PF-SBF is suitable for a green phosphorescent host instead of a blue one,which may be due to the π-π interaction between fluorene substituent and fluorene unit in spirobifluorene structure.We wondered if we replace one fluorene unit in spirobifluorene structure with xanthene,this π-π interaction will be restrained and the corresponding energy band will be broadened.To prove the hypothesis,we newly synthesized PF-SFX,where xanthene replaced fluorene in spirobifluorene structure of PF-SBF,with the synthetic route shown in Scheme 1(b).Comparing with PF-SBF in Fig.1,we observed an obvious blue shift in both absorption and PL spectra of PF-SFX,with a main absorption peak of 295 nm with a 307 nm shoulder and a main PL peak of 384.5 nm with a shoulder of 392.5 nm.From the CV curve of PF-SFX in Fig.S1(b),we calculated the LUMO and HOMO energy levels to be-1.9 and -5.7 eV.In addition,we also calculated its triplet energy level from Fig.5 to be 2.8 eV,demonstrating that PF-SFX is more suitable for a blue host than PF-SBF.Others parameters like Td(337°C),Tg,and the hole/electron mobility(7.3×10-6and 9.2× 10-5cm2?V-1?s-1)were also measured(Fig.2 and Fig.S2(Supporting Information))and results indicate that PF-SFX owns a similar property with PF-SBF.Thus we fabricated a device (Structure F)by replacing PF-SBF in Structure D with PF-SFX,with L-V-CE characteristics and normalized EL spectra shown in Fig.9 and Table 1.Structure F exhibits improved current efficiency and brightness of 22.6 cd?A-1(6 V)and 6421 cd?m-2(8 V),as well as a slight decline in Vonto 3.3 V.Much better performances in the PF-SFX-based blue OLED powerfully confirm that reducing π-π interaction is helpful to broaden the band gap and enhance the EL performances.

    4 Conclusions

    In summary,we synthesized a new spirobifluorene derivative PF-SBF and a xanthene derivative PF-SFX with high yields via one-step synthesis.Utilizing PF-SBF as an emitter and a host of blue phosphor FIrpic,we observed a red light band different from the intrinsic blue emission of PF-SBF and FIrpic,which is respectively attributed to intermolecular aggregation of PF-SBF and exciplexes generated at the interfaces of EML and electron transport/blocking layer.The exciplex emission was restrained with a proper hole and electron transport layer.Employing a PFSBF:TAPC cohost,the high-performance blue and green emissions were achieved with maximum current efficiencies of 16.7 and 50.5 cd?A-1and maximum brightnesses of 7857 and 23390 cd?m-2for FIrpic and Ir(ppy)3,respectively.Actually,PF-SBF is not suitable for a blue phosphorescent host due to its narrow triplet energy level of only 2.5 eV.Therefore,a new xanthene derivative PF-SFX with a large triplet energy level of 2.8 eV was synthesized via reducing π-π interaction between the fluorene substituent and the fluorene unit in spirobifluorene structure by replacing one fluorene unit in spirobifluorene structure with xanthene.Using PFSFX as the FIrpic host,the luminous efficiency and brightness were significantly improved,reaching 22.6 cd?A-1and 6421 cd?m-2.Carrier-transport unit-free in PF-SBF and PF-SFX limits their carrier mobilities and device performances.Our future work will focus on new materials?design based on PF-SBF and PF-SFX with high carrier transport abilities,and we believe that the device performances will be further improved in the near future.

    Supporting lnformation:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1)Xiao,L.X.;Hu,S.Y.;Kong,S.;Chen,Z.J.;Qu,B.;Gong,Q. H.Acta Phys.-Chim.Sin.2011,27,977.[肖立新,胡雙元,孔勝,陳志堅(jiān),曲波,龔旗煌.物理化學(xué)學(xué)報(bào),2011,27,977.]doi:10.3866/PKU.WHXB20110325

    (2)Kido,J.;Kimura,M.;Nagai,K.Science 1995,267,1332. doi:10.1126/science.267.5202.1332

    (3)Tang,P.;Xiao,J.J.;Zheng,C.;Wang,S.;Chen,R.F.Acta Phys.-Chim.Sin.2013,29,667.[湯鵬,肖堅(jiān)堅(jiān),鄭超,王石,陳潤(rùn)鋒.物理化學(xué)學(xué)報(bào),2013,29,667.]doi:10.3866/ PKU.WHXB201302062

    (4)Chen,S.F.;Deng,L.L.;Xie,J.;Peng,L.;Xie,L.H.;Fan,Q. L.;Huang,W.Adv.Mater.2010,22,5227.doi:10.1002/ adma.201001167

    (5)Adachi,C.;Baldo,M.A.;Thompson,M.E.;Forrest,S.R. J.Appl.Phys.2001,90,5048.doi:10.1063/1.1409582

    (6)Fan,C.H.;Sun,P.;Su,T.H.;Cheng,C.H.Adv.Mater.2011,23,2981.doi:10.1002/adma.v23.26

    (7)Ho,C.L.;Li,H.;Wong,W.Y.J.Organomet.Chem.2014,751,261.doi:10.1016/j.jorganchem.2013.09.035

    (8)Lu,P.;Hong,H.;Cai,G.;Djurovich,P.;Weber,W.P.;Thompson,M.E.J.Am.Chem.Soc.2000,122,7480. doi:10.1021/ja000354q

    (9)Su,S.J.;Cai,C.;Kido,J.Chem.Mater.2011,23,274. doi:10.1021/cm102975d

    (10)Wu,R.L.;Schumm,J.S.;Pearson,D.L.;Tour,J.M.J.Org. Chem.1996,61,6906.doi:10.1021/jo960897b

    (11)Xiao,H.;Shen,H.;Lin,Y.;Su,J.;Tian,H.Dyes Pigm.2007,73,224.doi:10.1016/j.dyepig.2005.11.010

    (12)Wu,C.C.;Lin,Y.T.;Chiang,H.H.;Cho,T.Y.;Chen,C.W.;Wong,K.T.;Liao,Y.L;Lee,G.H.;Peng,S.M.Appl.Phys. Lett.2002,81,577.doi:10.1063/1.1493669

    (13)Kim,K.S.;Jeon,Y.M.;Kim,J.W.;Lee,C.W.;Gong,M.S. Org.Electron.2008,9,797.doi:10.1016/j.orgel.2008.05.013

    (14)Tsuzuki,T.;Tokio,S.Appl.Phys.Lett.2009,94,033302. doi:10.1063/1.3073709

    (15)Lin,Y.;Chen,Z.K.;Ye,T.L.;Dai,Y.F.;Ma,D.G.;Ma,Z.;Liu,Q.D.;Chen,Y.J.Polym.Sci.,Part A:Polym.Chem.2010,48,292.doi:10.1002/pola.23783

    (16)Prelog,V.;Bedekovi?,D.Helv.Chim.Acta 1979,62,2285. doi:10.1002/hlca.19790620725

    (17)Harada,N.;Ono,H.;Nishiwaki,T.;Uda,H.J.Chem.Soc.,Chem.Commun.1991,No.24,1753.doi:10.1039/ C39910001753

    (18)Spehr,T.;Siebert,A.;Lieker,T.F.;Salbeck,S.;Rabe,T.;Riedl,T.;Johannes,H.H.;Kowalsky,W.;Wang,J.;Weimann,T.;Hinze,P.Appl.Phys.Lett.2005,87,161103.doi:10.1063/ 1.2105996

    (19)Shen,W.J.;Dodda,R.;Wu,C.C.;Wu,F(xiàn).I.;Liu,T.H.;Chen,H.H.;Chen,C.H.;Shu,C.F.Chem.Mater.2004,16,930.doi: 10.1021/cm0345117

    (20)Gebeyehu,D.;Walzer,K.;He,G.;Pfeiffer,M.;Leo,K.;Brandt,J.;Gerhard,A.;Stoessel,P.;Vestweber,H.Synth.Met.2005,148,205.doi:10.1016/j.synthmet.2004.09.024

    (21)Jeon,S.O.;Lee,H.S.;Jeon,Y.M.;Kim,J.W.;Lee,C.W.;Gong,M.S.Bull.Korean Chem.Soc.2009,30,863. doi:10.5012/bkcs.2009.30.4.863

    (22)Wang,L.;Pan,B.;Zhu,L.P.;Wang,B.;Wang,Y.X.;Liu,Y.K.;Jin,J.J.;Chen,J.S.;Ma,D.G.Dyes Pigm.2015,114,222.doi: 10.1016/j.dyepig.2014.11.011

    (23)Cao,X.;Yang,W.;Liu,C.;Wei,F(xiàn).;Wu,K.;Sun,W.;Song,J.;Xie,L.H.;Huang,W.Org.Lett.2013,15,3102.doi:10.1021/ ol4013052

    (24)Huang,J.;Sun,N.;Chen,P.;Tang,R.;Li,Q.;Ma,D.;Li,Z. Chem.Commun.2014,50,2136.doi:10.1039/c3cc49313j

    (25)Brutting,W.;Berleb,S.;Mueckl,A.G.Org.Electron.2001,2 (1),1.doi:10.1016/S1566-1199(01)00009-X

    (26)Jang,S.E.;Joo,C.W.;Jeon,S.O.;Yook,K.S.;Lee,J.Y.Org. Electron.2010,11,1059.doi:10.1016/j.orgel.2010.03.005

    (27)Shin,H.;Lee,S.;Kim,K.H.;Moon,C.K.;Yoo,S.J.;Lee,J. H.;Kim,J.J.Adv.Mater.2014,26,4730.doi:10.1002/adma. v26.27

    One-Step Synthesis of Spirobi[fluorene]and Spiro[fluorene-9,9′-xanthene]Derivatives and Their Applications in Organic Light-Emitting Devices:Performance Enhancement and Related Optical Phenomena

    GUAN Yu-Qiao1,#SONG Juan1,#SUN Wei1ZHANG Qin1TANG Chao2
    LI Xue3FENG Xiao-Miao1QIAN Yan1TAO You-Tian2CHEN Shu-Fen1,*WANG Lian-Hui1HUANG Wei2,*

    January 5,2016;Revised:March 22,2016;Published on Web:March 23,2016.

    Employing fluorene as substrate,we synthesized a new spirobifluorene derivative,2′-(9-phenylfluoren-9-yl)-9,9′-spirobi[fluorene](PF-SBF),through a one-step palladium-catalyzed cross-coupling reaction. Utilizing PF-SBF as an emitter and as a host of the blue phosphor bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyri-dyl))iridium(III)(FIrpic)in organic light-emitting devices(OLEDs),we observed a red light band different from the intrinsic blue emission of PF-SBF and FIrpic.This was attributed to the intermolecular aggregation of PF-SBF and to exciplexes generated at the interfaces of the emitting layer and the electron transport layer.The exciplex emission was then restrained through a suitable selection of hole and electron transport layer.Employing PF-SBF with di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexane(TAPC)as a cohost,we obtained high-performance blue and green emissions from FIrpic and tris(2-phenylpyridine)iridium(III)(Ir(ppy)3). The maximum current efficiencies and luminances of the blue and green OLEDs were as high as 16.7 and 50.5 cd?A-1and 7857(at 11 V)and 23390 cd?m-2(at 8 V),respectively.As an alternative to PF-SBF,we also synthesized a new xanthene derivative,2-(9-phenyl-fluoren-9-yl)spiro[fluorene-9,9′-xanthene](PF-SFX),with a large triplet energy level of 2.8 eV.Using PF-SFX similarly as a host of FIrpic,the current efficiency and luminance were significantly improved to 22.6 cd?A-1and 6421 cd?m-2(at 10 V).These results demonstrate the potential of PF-SBF and PF-SFX as new building blocks for high-efficiency green/blue phosphorescent host materials.

    Palladium catalysis;One-step method;Exciplex;Cohost;Blue organic light-emitting diode

    O649

    [Article]10.3866/PKU.WHXB201603232www.whxb.pku.edu.cn

    國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2015CB932202,2012CB933301),國(guó)家自然科學(xué)基金(61274065,51173081,61136003,BZ2010043,

    51372119,51172110,21304047,21373114,21003076),教育部創(chuàng)新團(tuán)隊(duì)(IRT1148),教育部人文社會(huì)科學(xué)基金(13YJCZH091),江蘇省自然科學(xué)基金(BK20141424),江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目(YX030001),江蘇省普通高校研究生實(shí)踐創(chuàng)新項(xiàng)目(SJLX15_0390),南京郵電大學(xué)攀登項(xiàng)目(NY214085)及吉林大學(xué)開(kāi)放課題(IOSKL2015KF32)資助

    ?Editorial office ofActa Physico-Chimica Sinica

    *Corresponding authors.CHEN Shu-Fen,Email:iamsfchen@njupt.edu.cn.HUANG Wei,Email:wei-huang@njtech.edu.cn;Tel:+86-25-85866332.#These authors contributed equally to this work.

    猜你喜歡
    郵電大學(xué)綠光工程學(xué)院
    福建工程學(xué)院
    《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
    西安郵電大學(xué)設(shè)計(jì)作品
    包裝工程(2022年10期)2022-05-27 05:17:12
    福建工程學(xué)院
    《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
    福建工程學(xué)院
    福建工程學(xué)院
    重慶郵電大學(xué)學(xué)報(bào)( 自然科學(xué)版》2016年第28卷第1-6期總第114-125期
    機(jī)器 人
    渴望
    免费大片18禁| 日日干狠狠操夜夜爽| 亚洲熟妇中文字幕五十中出| 免费电影在线观看免费观看| 久久精品久久久久久噜噜老黄 | 日本av手机在线免费观看| 高清日韩中文字幕在线| 欧美日韩在线观看h| 日本-黄色视频高清免费观看| 国产精品一区二区三区四区免费观看| 免费一级毛片在线播放高清视频| 18禁动态无遮挡网站| 啦啦啦啦在线视频资源| 女人十人毛片免费观看3o分钟| 最新中文字幕久久久久| 三级国产精品欧美在线观看| 久久久久免费精品人妻一区二区| 特大巨黑吊av在线直播| 国内精品宾馆在线| 乱人视频在线观看| 国产伦精品一区二区三区视频9| 纵有疾风起免费观看全集完整版 | 在现免费观看毛片| 国产视频首页在线观看| 日韩精品有码人妻一区| 一区二区三区高清视频在线| 久久鲁丝午夜福利片| 亚洲av成人精品一区久久| 99热这里只有是精品在线观看| 18禁在线无遮挡免费观看视频| 国产精品三级大全| 午夜a级毛片| 男的添女的下面高潮视频| 国产探花极品一区二区| 久久久精品大字幕| 晚上一个人看的免费电影| 国产精品熟女久久久久浪| 久久综合国产亚洲精品| 久久久久久久久大av| 日日啪夜夜撸| 欧美日韩综合久久久久久| 97超碰精品成人国产| 乱码一卡2卡4卡精品| 麻豆精品久久久久久蜜桃| 能在线免费看毛片的网站| 狂野欧美激情性xxxx在线观看| 日本wwww免费看| 国产精品国产三级专区第一集| 欧美变态另类bdsm刘玥| 蜜桃久久精品国产亚洲av| 水蜜桃什么品种好| 成人无遮挡网站| or卡值多少钱| 日韩大片免费观看网站 | 国产成人福利小说| 久久精品久久久久久噜噜老黄 | 男人和女人高潮做爰伦理| 精品免费久久久久久久清纯| 中文精品一卡2卡3卡4更新| av国产免费在线观看| 人妻夜夜爽99麻豆av| 少妇高潮的动态图| 亚洲av中文字字幕乱码综合| 日韩欧美国产在线观看| 国产精品一二三区在线看| 久久国内精品自在自线图片| 我要搜黄色片| 变态另类丝袜制服| 九九久久精品国产亚洲av麻豆| 亚洲真实伦在线观看| 午夜福利网站1000一区二区三区| 色综合色国产| 婷婷色麻豆天堂久久 | 亚洲国产欧洲综合997久久,| 亚洲成人中文字幕在线播放| 欧美一区二区精品小视频在线| 久久久久久久久久久免费av| 国产伦理片在线播放av一区| 国产成人精品一,二区| 蜜桃久久精品国产亚洲av| 国产精品一二三区在线看| 1024手机看黄色片| 亚洲精品影视一区二区三区av| 亚洲av电影在线观看一区二区三区 | 精品久久久久久久久亚洲| 日韩av在线免费看完整版不卡| 亚洲电影在线观看av| 欧美激情久久久久久爽电影| 久久亚洲国产成人精品v| 啦啦啦观看免费观看视频高清| 尤物成人国产欧美一区二区三区| 极品教师在线视频| 少妇熟女欧美另类| 国产精品一区www在线观看| 午夜福利视频1000在线观看| 99久久无色码亚洲精品果冻| 观看美女的网站| 九九热线精品视视频播放| 国产男人的电影天堂91| 99久久精品热视频| 少妇人妻一区二区三区视频| 久久欧美精品欧美久久欧美| 国产一级毛片七仙女欲春2| 一级黄色大片毛片| 色综合色国产| 伊人久久精品亚洲午夜| 国产又色又爽无遮挡免| 啦啦啦韩国在线观看视频| 老女人水多毛片| 国产久久久一区二区三区| 久久久国产成人精品二区| 非洲黑人性xxxx精品又粗又长| 久久久国产成人免费| 99久国产av精品国产电影| 国模一区二区三区四区视频| 女人十人毛片免费观看3o分钟| 国产黄色小视频在线观看| or卡值多少钱| 91久久精品国产一区二区三区| АⅤ资源中文在线天堂| 色吧在线观看| 久久久久久久久大av| 亚洲美女视频黄频| av国产免费在线观看| 亚洲国产精品sss在线观看| 日产精品乱码卡一卡2卡三| 国产三级中文精品| 久久热精品热| 天天躁夜夜躁狠狠久久av| 一区二区三区高清视频在线| 成人毛片60女人毛片免费| 日本黄色视频三级网站网址| 国产熟女欧美一区二区| 全区人妻精品视频| 国产av码专区亚洲av| 精品国产露脸久久av麻豆 | 欧美极品一区二区三区四区| 如何舔出高潮| 久热久热在线精品观看| 一级av片app| 久久草成人影院| 久热久热在线精品观看| 免费看av在线观看网站| 久久精品久久久久久久性| 国产单亲对白刺激| 国产精品蜜桃在线观看| 欧美极品一区二区三区四区| 成人亚洲精品av一区二区| 亚洲国产成人一精品久久久| 精品99又大又爽又粗少妇毛片| 国产精品久久电影中文字幕| 内地一区二区视频在线| 免费黄网站久久成人精品| 日本三级黄在线观看| 亚洲精品乱码久久久v下载方式| 欧美高清性xxxxhd video| 久热久热在线精品观看| 18禁动态无遮挡网站| 国产91av在线免费观看| 欧美高清性xxxxhd video| av线在线观看网站| av黄色大香蕉| 级片在线观看| 国产 一区 欧美 日韩| 国产成人精品一,二区| 国产探花在线观看一区二区| 中文字幕久久专区| 成人亚洲精品av一区二区| 高清毛片免费看| 99久久人妻综合| 精品人妻一区二区三区麻豆| 久久久a久久爽久久v久久| 一级爰片在线观看| 99热精品在线国产| 国产精品野战在线观看| 看黄色毛片网站| 麻豆成人av视频| 成年版毛片免费区| av天堂中文字幕网| av在线蜜桃| 国产极品天堂在线| 久久国产乱子免费精品| 国内揄拍国产精品人妻在线| 国产伦精品一区二区三区视频9| 在线免费观看的www视频| 亚洲国产欧洲综合997久久,| 男女国产视频网站| 免费大片18禁| 99久久无色码亚洲精品果冻| 男人的好看免费观看在线视频| 国内精品宾馆在线| 最近的中文字幕免费完整| 国产乱来视频区| 极品教师在线视频| 又爽又黄a免费视频| 国产探花在线观看一区二区| 亚洲成av人片在线播放无| 国产伦在线观看视频一区| 99久久九九国产精品国产免费| 99视频精品全部免费 在线| 三级国产精品欧美在线观看| 男女啪啪激烈高潮av片| 久久国产乱子免费精品| 亚洲伊人久久精品综合 | 欧美成人一区二区免费高清观看| 国产亚洲av嫩草精品影院| 最近的中文字幕免费完整| 国产一级毛片在线| 精品久久久久久久久久久久久| 国产探花在线观看一区二区| 尾随美女入室| 女人久久www免费人成看片 | 国产成人a∨麻豆精品| 午夜福利视频1000在线观看| 国产麻豆成人av免费视频| 国产一级毛片在线| 亚洲天堂国产精品一区在线| 天堂av国产一区二区熟女人妻| 内射极品少妇av片p| 黄色日韩在线| 纵有疾风起免费观看全集完整版 | 欧美高清成人免费视频www| www.av在线官网国产| 国产午夜福利久久久久久| 久久精品人妻少妇| 黄片wwwwww| 亚洲国产欧美在线一区| 欧美性感艳星| 美女内射精品一级片tv| 亚洲欧美中文字幕日韩二区| 国产v大片淫在线免费观看| 十八禁国产超污无遮挡网站| 亚洲欧美成人精品一区二区| 亚洲色图av天堂| 亚洲第一区二区三区不卡| 亚洲成人精品中文字幕电影| 日韩欧美三级三区| 99九九线精品视频在线观看视频| 欧美xxxx黑人xx丫x性爽| 午夜激情欧美在线| 别揉我奶头 嗯啊视频| 天堂av国产一区二区熟女人妻| 国产毛片a区久久久久| 亚洲真实伦在线观看| 少妇的逼好多水| 国产中年淑女户外野战色| 18+在线观看网站| 国产精品福利在线免费观看| 少妇裸体淫交视频免费看高清| 亚洲精品国产av成人精品| 欧美另类亚洲清纯唯美| 亚洲性久久影院| 日本wwww免费看| 亚洲精品国产av成人精品| 欧美97在线视频| 黄片无遮挡物在线观看| 丝袜美腿在线中文| 高清毛片免费看| 精品一区二区三区人妻视频| 丰满乱子伦码专区| 男人狂女人下面高潮的视频| 黄色日韩在线| 麻豆国产97在线/欧美| 女人被狂操c到高潮| 大香蕉久久网| 久久亚洲精品不卡| av女优亚洲男人天堂| 久久这里有精品视频免费| 只有这里有精品99| 欧美成人a在线观看| 欧美97在线视频| 日本午夜av视频| 日韩亚洲欧美综合| 欧美日本视频| av国产免费在线观看| 成人午夜高清在线视频| 中文在线观看免费www的网站| 国产高潮美女av| 美女xxoo啪啪120秒动态图| 日本黄色片子视频| 久久鲁丝午夜福利片| 美女国产视频在线观看| 午夜爱爱视频在线播放| av.在线天堂| 国产成人福利小说| 51国产日韩欧美| 久久鲁丝午夜福利片| 国产av在哪里看| 一二三四中文在线观看免费高清| 久久久久久久亚洲中文字幕| 日韩人妻高清精品专区| 日本av手机在线免费观看| 亚洲精品一区蜜桃| 三级国产精品欧美在线观看| 久久久精品94久久精品| 久久精品夜色国产| 黄色欧美视频在线观看| 中文天堂在线官网| 深爱激情五月婷婷| 女的被弄到高潮叫床怎么办| 国产白丝娇喘喷水9色精品| 亚洲av.av天堂| 好男人视频免费观看在线| 欧美高清性xxxxhd video| 国产高潮美女av| 亚洲av一区综合| 国产精品永久免费网站| 国产黄片美女视频| 亚洲av免费在线观看| 99久国产av精品国产电影| av在线亚洲专区| 九九久久精品国产亚洲av麻豆| 亚洲av免费高清在线观看| 欧美日本视频| 久久这里只有精品中国| 午夜免费激情av| 精品国内亚洲2022精品成人| 男人舔奶头视频| 亚洲精品国产成人久久av| 国产精品伦人一区二区| 一级黄色大片毛片| 国产高清国产精品国产三级 | 欧美一区二区亚洲| 精品99又大又爽又粗少妇毛片| 人妻夜夜爽99麻豆av| 听说在线观看完整版免费高清| 成人无遮挡网站| 小蜜桃在线观看免费完整版高清| 男人舔女人下体高潮全视频| 成人无遮挡网站| 色尼玛亚洲综合影院| 精品熟女少妇av免费看| 亚洲av电影在线观看一区二区三区 | 欧美高清成人免费视频www| 成人毛片a级毛片在线播放| 色综合站精品国产| 欧美3d第一页| 插逼视频在线观看| 美女黄网站色视频| 中文乱码字字幕精品一区二区三区 | 久久精品综合一区二区三区| 国产精品嫩草影院av在线观看| 尤物成人国产欧美一区二区三区| 国产毛片a区久久久久| 深夜a级毛片| 日本av手机在线免费观看| 韩国av在线不卡| 久久久久久久亚洲中文字幕| 国产免费福利视频在线观看| 国产成人91sexporn| 成人午夜高清在线视频| 国产69精品久久久久777片| 国产亚洲精品av在线| 国产成人精品久久久久久| 亚洲欧美日韩无卡精品| 久久久久久国产a免费观看| 日韩亚洲欧美综合| 黄色欧美视频在线观看| 亚洲电影在线观看av| 草草在线视频免费看| 国产成人a∨麻豆精品| 啦啦啦观看免费观看视频高清| 亚洲精品aⅴ在线观看| 国产精品爽爽va在线观看网站| 亚洲人与动物交配视频| 啦啦啦韩国在线观看视频| 日韩av在线免费看完整版不卡| 色综合站精品国产| 18禁动态无遮挡网站| 男女啪啪激烈高潮av片| 天天躁日日操中文字幕| 久久人妻av系列| 美女大奶头视频| 亚洲人与动物交配视频| 一级黄色大片毛片| 青青草视频在线视频观看| 亚洲图色成人| 亚洲精品日韩在线中文字幕| 一边摸一边抽搐一进一小说| 麻豆成人av视频| 中文精品一卡2卡3卡4更新| 韩国av在线不卡| 高清午夜精品一区二区三区| a级毛片免费高清观看在线播放| 亚洲天堂国产精品一区在线| 深夜a级毛片| 亚洲国产色片| 人人妻人人澡人人爽人人夜夜 | 久久99热这里只有精品18| 国产亚洲一区二区精品| 91久久精品电影网| 一本久久精品| 亚洲色图av天堂| 少妇裸体淫交视频免费看高清| 久久这里有精品视频免费| 最近最新中文字幕免费大全7| 中文字幕制服av| 自拍偷自拍亚洲精品老妇| 亚洲国产精品成人久久小说| 九九在线视频观看精品| 一区二区三区四区激情视频| 国产精品不卡视频一区二区| 久久人人爽人人爽人人片va| 欧美成人精品欧美一级黄| 日本黄色视频三级网站网址| 国产黄色小视频在线观看| 大又大粗又爽又黄少妇毛片口| 日本五十路高清| 亚洲高清免费不卡视频| 国产午夜精品一二区理论片| 国内揄拍国产精品人妻在线| 国产成人aa在线观看| 赤兔流量卡办理| av免费观看日本| 大香蕉97超碰在线| 亚洲无线观看免费| www日本黄色视频网| 亚洲av免费高清在线观看| 欧美高清成人免费视频www| 免费观看a级毛片全部| 亚洲av免费高清在线观看| 日韩成人伦理影院| 久久婷婷人人爽人人干人人爱| 亚洲欧美中文字幕日韩二区| 黄色一级大片看看| 99在线人妻在线中文字幕| 一级av片app| 91午夜精品亚洲一区二区三区| 日韩高清综合在线| 中国美白少妇内射xxxbb| 亚洲国产精品专区欧美| 国产黄色视频一区二区在线观看 | 丰满乱子伦码专区| 别揉我奶头 嗯啊视频| 亚洲激情五月婷婷啪啪| 少妇猛男粗大的猛烈进出视频 | 菩萨蛮人人尽说江南好唐韦庄 | 国产乱人偷精品视频| 免费观看在线日韩| 激情 狠狠 欧美| 国产精品伦人一区二区| 寂寞人妻少妇视频99o| 超碰av人人做人人爽久久| 精品久久久噜噜| 美女大奶头视频| 欧美xxxx性猛交bbbb| 亚洲国产高清在线一区二区三| 一个人观看的视频www高清免费观看| 国产欧美日韩精品一区二区| 国产欧美另类精品又又久久亚洲欧美| 免费搜索国产男女视频| 日韩一区二区视频免费看| 久久国产乱子免费精品| 亚洲精品国产成人久久av| 午夜精品一区二区三区免费看| 美女国产视频在线观看| 中文字幕制服av| 2021天堂中文幕一二区在线观| 久久久久网色| 夫妻性生交免费视频一级片| 我要看日韩黄色一级片| 亚洲人成网站高清观看| 国产精品无大码| 大香蕉97超碰在线| 18+在线观看网站| 国产成人91sexporn| 青春草国产在线视频| 欧美日韩一区二区视频在线观看视频在线 | 国产精品电影一区二区三区| 国产真实伦视频高清在线观看| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久中文| 村上凉子中文字幕在线| 国产在视频线精品| 看黄色毛片网站| 99久久中文字幕三级久久日本| 青春草国产在线视频| 在线天堂最新版资源| 欧美性猛交╳xxx乱大交人| 老女人水多毛片| 男人舔女人下体高潮全视频| 国内精品宾馆在线| 成人午夜精彩视频在线观看| 国产精品无大码| videossex国产| 99热精品在线国产| 少妇被粗大猛烈的视频| 好男人在线观看高清免费视频| 少妇的逼水好多| 国产成人91sexporn| 麻豆av噜噜一区二区三区| 国产午夜福利久久久久久| 一二三四中文在线观看免费高清| 一级毛片aaaaaa免费看小| 99热网站在线观看| 亚洲久久久久久中文字幕| 久久国产乱子免费精品| 免费在线观看成人毛片| 亚洲激情五月婷婷啪啪| 熟女人妻精品中文字幕| 夜夜看夜夜爽夜夜摸| 亚洲婷婷狠狠爱综合网| 国内精品一区二区在线观看| 亚洲aⅴ乱码一区二区在线播放| 看免费成人av毛片| 久久6这里有精品| www.av在线官网国产| 亚洲国产精品成人综合色| 黄色日韩在线| 18禁裸乳无遮挡免费网站照片| 伦理电影大哥的女人| 最近中文字幕高清免费大全6| a级一级毛片免费在线观看| 97超视频在线观看视频| 中文字幕制服av| 久久99蜜桃精品久久| 免费在线观看成人毛片| 又粗又爽又猛毛片免费看| 亚洲国产色片| 国产女主播在线喷水免费视频网站 | 两个人的视频大全免费| 99久久精品国产国产毛片| 国产白丝娇喘喷水9色精品| 久久99热这里只频精品6学生 | 免费观看在线日韩| 色播亚洲综合网| 国内精品一区二区在线观看| 日日摸夜夜添夜夜爱| 岛国毛片在线播放| 一个人免费在线观看电影| 中文字幕av在线有码专区| 国产亚洲91精品色在线| 国产精品麻豆人妻色哟哟久久 | 男女下面进入的视频免费午夜| 亚洲欧美一区二区三区国产| 小说图片视频综合网站| 免费观看人在逋| 国产成人午夜福利电影在线观看| 婷婷六月久久综合丁香| 国产乱来视频区| 国产午夜福利久久久久久| 日本爱情动作片www.在线观看| 亚洲av中文字字幕乱码综合| 国产国拍精品亚洲av在线观看| 一级爰片在线观看| 精品久久久久久电影网 | 日韩精品青青久久久久久| 青春草国产在线视频| 哪个播放器可以免费观看大片| 亚洲久久久久久中文字幕| 我的女老师完整版在线观看| 国产成人精品一,二区| 亚洲国产欧美人成| 亚洲,欧美,日韩| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区在线观看99 | 免费搜索国产男女视频| 夜夜看夜夜爽夜夜摸| 国产成人aa在线观看| 国产真实伦视频高清在线观看| 亚洲不卡免费看| 亚洲精品乱久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美国产在线观看| 有码 亚洲区| 国产精品99久久久久久久久| 嫩草影院入口| 麻豆久久精品国产亚洲av| 简卡轻食公司| 亚洲精品aⅴ在线观看| 国产精品一区www在线观看| 日韩一本色道免费dvd| 国产黄色视频一区二区在线观看 | 能在线免费看毛片的网站| 人体艺术视频欧美日本| 亚洲综合精品二区| 全区人妻精品视频| 在现免费观看毛片| 两个人的视频大全免费| 水蜜桃什么品种好| 波多野结衣高清无吗| 亚洲人与动物交配视频| 又粗又爽又猛毛片免费看| 成人性生交大片免费视频hd| 国产在线男女| av免费在线看不卡| 青春草视频在线免费观看| 亚洲精品国产成人久久av| 亚洲av中文字字幕乱码综合| 淫秽高清视频在线观看| 大又大粗又爽又黄少妇毛片口| 国产亚洲午夜精品一区二区久久 | 亚洲av免费在线观看| 国产日韩欧美在线精品| 我要看日韩黄色一级片| 国产在线男女| 免费看美女性在线毛片视频| 一个人看的www免费观看视频| 99久国产av精品国产电影| 欧美精品一区二区大全| 人妻系列 视频| 少妇丰满av| 国产一区有黄有色的免费视频 | 亚洲真实伦在线观看| 女的被弄到高潮叫床怎么办| 国产精品,欧美在线| 少妇的逼水好多| 69av精品久久久久久| 三级国产精品欧美在线观看| 日本黄色片子视频| 久久久久久伊人网av| 成人一区二区视频在线观看| 听说在线观看完整版免费高清| 精品酒店卫生间| 在现免费观看毛片|