• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model Updating for High Speed Aircraft in Thermal Environment Using Adaptive Weighted-Sum Methods

    2016-09-06 01:02:42HeHuanHeChengChenGuoping

    He Huan, He Cheng, Chen Guoping

    1.The State Key Lab of Mechanics and Control for Mechanical Structures,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China;2.Research Institute of Pilotless Aircraft, Nanjing University of Aeronautics and Astronautics,Nanjing 210016, P.R. China

    (Received 31 February 2015; revised 13 April 2015; accepted 18 April 2015)

    Model Updating for High Speed Aircraft in Thermal Environment Using Adaptive Weighted-Sum Methods

    He Huan1, He Cheng2*, Chen Guoping1

    1.The State Key Lab of Mechanics and Control for Mechanical Structures,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China;2.Research Institute of Pilotless Aircraft, Nanjing University of Aeronautics and Astronautics,Nanjing 210016, P.R. China

    (Received 31 February 2015; revised 13 April 2015; accepted 18 April 2015)

    Model updating for aircraft in a high temperature environment (HTE) is proposed based on the hierarchical method. With this method, the problem can be decomposed into temperature field updating and dynamic structural updating. In order to improve the estimation accuracy, the model updating problem is turned into a multi-objective optimization problem by constructing the objective function which combined with residues of modal frequency and effective modal mass. Then the metamodeling, support vector regression (SVR) is introduced to improve the optimization efficiency, and the solution can be determined by adaptive weighted-sum method (AWS). Finally, the proposed method is tested on a finite element (FE) model of a reentry vehicle model. The results show that the multi-objective model updating method in HTE can identify the input parameters of the temperature field and structure with good accuracy.

    hierarchical; high temperature environment (HTE); support vector regression (SVR); multi-objective optimization; model updating

    0 Introduction

    The United States is developing scramjet engine technology that is expected to be needed by the next generation of high speed air breathing vehicles. NASA, through the X-43A program, is developing hydrogen fueled scramjet engines and has demonstrated Mach number of approximately 7 to 10. The structural integrity of proposed high-speed aircraft can be seriously affected by the extremely high surface temperatures and large temperature gradients throughout the vehicle′s structure, which can seriously affect the struc-ture′s elastic characteristics. Fortunately, the finite element (FE) method, as a important and practical numerical analysis tool, can be used to simulate dynamic characteristics of structural. Hence, the accuracy of FE model is crucial for structural dynamic analysis.

    On the one hand, the complexity of dynamic analysis in high temperature environment (HTE), caused by the thermal effects, has made it difficult to directly establish an accurate dynamic model; on the other hand, the FE model of a structure is normally constructed on the basis of highly idealized engineering blueprints and designs that may not truly represent all the aspects of an actual structure. As a result, the analytical predictions from a FE model often differ from the results of a real structure. These discrepancies originate from the uncertainties in simplifying assumptions of structural geometry, materials as well as inaccurate boundary conditions. FE model updating is a viable approach to increase the correlation between the dynamic response of a structure and the predictions from a model. This method based on residuals between a measurement set and the corresponding model predictions to adjust the uncertain parameters of FE models by optimization approach. Typical experimental datas include the modal model (natural frequencies and mode shapes), the frequency response functions and effective modal mass. The choice of objective function, and also the optimization approach, have been the subject of much research and are well covered by the authors′ survey paper[1-2].

    If the structure of interest is represented by, e.g. a large FE model, the large number of computations involved can rule out many approaches due to the expense of carrying out many runs. In addition, the FE analysis programs at present do not have parameterized modeling function since the parameters need to be updated in the estimation process. To overcome those problem, we have focused on using metamodels (or surrogate models) that can mimic the behavior of the simulation model as closely as possible while being computationally very efficient and convenient to evaluate since the objective function have be parameterized. Amongst existing metamodels, such as the conventional response surface method[3], radial basic function[4]neural networks[5]and support vector regression (SVR)[6], the latter are found to be excellent predictors of numerical model behaviour with small samples. In recently, many additional applications (largely a consequence of the increased use of computational analyses) have broadened the range of application of SVR in the statistical and engineering literature.

    Structural model parameter estimation problems based on measured modal data (e.g Ref.[5—7]) are often formulated as weighted least-squares problems in which modal metrics, measuring the residuals between measured and model predicted modal properties, are build up into a single weighted modal residuals metric formed as a weighted average of the individual modal metrics using weighting factors. Standard optimization techniques are then used to find the optimal values of the structural parameters that minimize the single weighted residuals metric representing an overall measure of fit between measured and model predicted modal properties. Due to model error and measurement noise, the results of the optimization are affected by the values assumed for the weighting factors. The choice of the weighting factors depends on the model adequacy and the uncertainty in the available measured data, which are not known a priori. Different values of the weights result in different optimal models and consequently different predictions from the optimal models.

    In this work, the structural model updating in HTE using multi-objective optimization method is proposed. As one of metamodels, support vector regression (SVR), will be introduced to improve the efficiency of estimation, and adaptive weighted-sum method (AWS), as a multi-objective optimization method, is employed to update the structural parameters in HTE.

    1 Hierarchical Methodology in Model Updating of High-Temperature System

    1.1Model updating of temperature field

    It is well know the mechanical and thermal aspects are coupled and inseparable: high surface temperatures and large temperature gradients will affect the modal characteristics of the structure. Similarly, the temperature distribution of a structure can also vary with its deformation, but this change are so slightly that Nowinski[8]suggested discounting the coupling in practice and separately evaluating the temperature and deformation fields in this order. Cheng et al. have proposed an model updating method in HTE based on hierarchical ideology. With this method, the temperature field updating of a structure is taken as the first stage, and the temperature distribution achieved from the former is imposed on the structure as a thermal load to complete the model updating in HTE. The thermo-physical properties are the important factors that affect temperature distribution of structure. In the case of thermal loads are determined, the model updating problem of temperature distribution model can be translated into the estimation of thermo-physical parameters problem.

    Inverse parameter estimation methods are based on the minimization of an objective function containing both estimated and measured temperatures. Ordinary least squares estimator is by far the most frequently used method for the estimation of thermo-physical parameters as no prior knowledge is needed, therefore, the optimization problems can be formalized as follows

    (1)

    1.2Model updating of dynamic structure in HTE

    As discussed before, the dynamic responses in HTE, which can be expressed as[9]

    (2)

    For model updating techniques, either identified modal parameters such as eigenvalues and eigenvectors or measured frequency response functions (FRFs) are widely used as reference data[10-11]. In recent years, some new dynamic parameters have also been used in the model updating. Aerospace engineers make wide use of the effective modal mass concept in structural spacecraft design[12].The effective modal mass,as is known, represents the participation of an elastic mode to the reaction at the junction and therefore the knowledge of such a parameter is useful for the analysis of the dynamic behaviour of satellites and aerospace substructures coupled with the launcher. Therefore, the effective modal mass, as a complement could provide more information for model updating to reduce the ill-posed problem which caused by the errors arise form uncertainties.

    The model updating problem has recently been formulated in a multi-objective context[13]that allows the simultaneous minimization of the multimodal indicators, which include eigenvalues, eigenvectors and effective modal mass, etc. Then, the problem of model updating for identifying the model parameter values that given the best fit in all groups of modal properties can be formulated as a multi-objective optimization problem. In this work, the multi-objective model updating method based on residuals of modal frequency (ω) and effective modal mass (M) are introduced, the multi-objective optimization problem can be written as

    (3)

    (4)

    Although the weighted-sum approach is simple to understand and easy to implement, the traditional weighted-sum approach has two main drawbacks which are hard to avoid[14]: First, an even distribution of the weights among objective functions does not always result in an even distribution of solutions on the Pareto front; Second, the weighted-sum approach cannot find solutions on non-convex parts of the Pareto front, although such non-dominated solutions (Pareto optimal solutions) do often exist. For that reasons, Kim[14]propose a new adaptive method, based on the weighted-sum approach, for multi-objective optimization—adaptive weighted-sum method (AWS). In this approach, the weights are not predetermined, but they evolve according to the nature of the Pareto front of the problem. The AWS algorithm produces an even spread of points along the Pareto front, even for problems for which the relative scaling of the objectives are vastly different. Firstly, the uniform step size of the weighting factorΔλ is determined. By using a large step size of the weighting factor,Δλ, a coarse representation of the solution is generated and regions where more refinement is needed are identified. The specific regions are then designated as a feasible region for sub-optimization by imposing inequality constraints in the objective space. In this region, the typical weighted-sum multi-objective optimization is performed. The algorithm will terminates when all the regions of the Pareto front reach a pre-specified resolution. More details about the AWS method in terms of advantages and drawbacks can be found in Ref.[14].

    2 Overview of Support Vector Regression

    (5)

    When the identity function is used, i.e.Φ(x)→x, no transformation is carried out, and linear SVR models are obtained.

    (6)

    (7)

    (8)

    (1) Polynomial:k(x,xi)=((x,xi)+c)p,p∈R,c≥0;

    (2) Gaussian:k(x,xi)=exp[-|x-xi|2/σ2];

    (9)

    (3) Exponential:k(x,xi)=exp(-a|x-xi|),a>0;

    The penalty coefficient c can be determined by cross validation method.

    3 Numerical Examples and Discussion

    The FE model of reentry vehicle structure in an HTE will be used as an example to check the feasibility of the multi-objective identification method for structural model updating methodology proposed in this paper, as shown in Fig.1. A simplified system of the reentry vehicle and its internal structure, by assuming that the aircraft is in the sub orbital flight and will be subjected to extremely high surface temperatures and large temperature gradients. The model comprises two parts: the surface of reentry vehicle is made by ceramic matrix composites (C-SiC) and internal structure made of oxide dispersion strengthened super alloys (PM1000), both of them are exist in inside and outside of the structure in order to withstand the high temperatures generated by aerodynamic heating, interlayer with reinforcing ribs connected. The ambient temperature is 20 ℃, and we ignore the influence of installation location of bolts at the specimen on the temperature distribution.

    Fig. 1 Temperature distribution of reentry vehicle and its cutaway view of FE model

    It is possible to imagine many different parameterizations for updating the FE of the reentry vehicle structure. In this paper, the heat transfer derivative of cone and pyramidal structure, χ1and χ2, are chosen as the updating parameters, which have significantly effects on temperature distribution of the reentry vehicle by using sensitivity analysis. Similarly, the elastic modulus of cone E1and thickness of pyramidal structure t2are chosen as updating parameters for structural dynamic model updating. Then, we will employ the SVR-GS to update the FE model of thermal transfer and dynamic structures, respectively, based on hierarchical method in HTE proposed by Ref.[9] once they are confirmed to be updating parameters.

    Table 1 Initial design space of thermal parameters modific

    Table 1 shows the initial design space of thermal parameters by trying. The normalization process is described as transition from the original interval [x1i,x2i] of the design variables xito the new interval [-1, 1] of the design variables yi, where i=1,2,…,k for convenience. Assume that the target values of required thermal correction parameters are α1=0.3 W/mm and α2=0.2 W/mm, which are used to calculate temperature distribution as the real value. Pick up 16 sample points randomly using the Latin hypercube design in the initial design space of thermal parameters, and calculate the temperature value as the theoretical value. Approximately substitute the SVR-GS surrogate models for the relation between objective function and design variables. The temperature residual model is shown in Fig. 2 in the form of SVR-GS. Then we get the optimal solution by the genetic algorithm owing to their excellent performance in the global optimization problem. The updated thermal parameter values are shown in Table 2.

    Fig. 2 SVM-GS surrogate model

    Table 2 Modified thermal parameter values

    Table 3 shows the temperature deviations before and after modification for A, B, C, D, E, F (Fig. 1) six points. We found that the largest temperature deviation based on the SVM-GS model is no more than 0.909 9%, which indicates

    that the temperature distribution of vehicle calculated by the updated parameters agrees well with the true temperature distribution. Then, the process of structural dynamics model updating is conducted based on the updated steady-state temperature distribution. The 16 sample points are selected randomly by the Latin hypercube design in the initial design space of each thermal parameter, and the first fourth-order natural frequency is calculated as the theoretical value. Assume that E1=90 GPa and t2=3 mm are the error resource of structural dynamics parameters needed to be updated, and calculating the first fourth-order natural frequency of vehicle in HTE as experimental values based on the ture values. The residuals of the theoretical value and the experimental value of each order natural frequency and effective modal mass are built by Eq.(3), respectively. Similarly, the SVM-GS predictor of objective function in Eq.(3) could be established to estimate the elastic modulus (E1) and thickness (t2). The identified Pareto curve is composed of 15 Pareto optimal solutions and shown in Fig. 3 by using the AWS described above.

    Tables 3—4 present the updated parameters and the errors of reentry vehicle dynamic characteristic using AWS. It is observed that the maximum error of updated parameters is no more than 2.727%, and the maximum error of updated frequency is no more than 2.9%. There are slight differences between the parameters of the updated model and the test ones, which indicates that the model updating method proposed in this paper is available for practical applications.

    Table 3 Comparison of test frequencies with updated temperature

    Table 4 Initial design space of dynamic structural updating parameters

    Fig. 3 Pareto frontier calculated by AWS

    Table 5 Comparison between updated parameters and real parameters

    Table 6 Comparison between updated results and experiment values of Pareto frontier

    4 Conclusions

    An inverse approach for solving the model updating in HTE is presented. The following conclusions can be drawn:

    (1) By employing the hierarchical method, we decompose the problem into temperature field updating and dynamic structural updating. To improve the efficiency and robustness of estimation, the proposed method is constructed from SVR and AWS by turning the estimation of physical properties into a multi-objective optimization problem, with an approach of constructing the objective function, which combines the residues of modal frequency and effective modal mass. The method is verified by an FE model of the reentry vehicle with respect to the effect of temperature change.

    (2) The developed method based on multi-objective optimization can improve the stability which influenced by the error of SVR.

    (3) The estimation algorithm is proposed based on the thermal analysis module of MSC.Nastran code thus can be applied to estimate the physical properties of complex structures for model updating.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (No. 11472132), the Fundamental Research Funds for Central University (No.NJ20160050), and the Fundamental Research Funds for Central University (No.NJ2016098).

    [1]STEENACKERS G, GUILLAUME P. Finite element model updating taking into account the uncertainty on the modal parameters estimates[J]. Journal of Sound and Vibration, 2006, 296(4):919-934.

    [2]THONON C, GOLINVAL J C. Results obtained by minimizing natural frequency and MAC-value errors of a beam model[J]. Mechanical Systems and Signal Processing, 2003, 17(1):65-72.

    [3]MYERS R H, MONTGOMERY D C. Response surface methodology; process and product optimisation using designed experiments[M]. New York, USA: John Wiley and Sons, 2002.

    [4]HE Cheng, HE Huan, CHEN Guoping. Multiobjective optimization of thin-walled structures for crashworthiness based on the global approximate function[J]. Journal of Nanjing University of Aeronautics and Astronautics,2012,44(4):472-477.(in Chinese)

    [5]HAYKIN S. Neural networks: A comprehensive foundation[M]. First Ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1994.

    [6]HE W, WANG Z, JIANG H. Model optimizing and feature selecting for support vector regression in time series forecasting[J]. Neuro Computing, 2008, 72:600-611.

    [7]TEUGHELS A, DE ROECK G. Damage detection and parameter identification by finite element model updating[J]. Archives of Computational Methods in Engineering, 2005, 12(2):123-164.

    [8]NOWINSKI J L. Theory of thermoelasticity with applications[M]. The Netherlands: Sijthoff and Noordhoff, 1978.

    [9]HE Cheng, CHEN Guoping, HE Huan, et al. Model updating of a dynamic system in a high-temperature environment based on a hierarchical method[J]. Finite Elements in Analysis and Design, 2013, 77:59-68.

    [10]KHODAPARAST H H, MOTTERSHEAD J E, BADCOCK K J. Interval model updating with irreducible uncertainty using the Kriging predictor[J]. Mechanical Systems and Signal Processing, 2011, 25:1204-1226.

    [11]HAAG T, HERRMANN J, HANSS M. Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic[J]. Mechanical Systems and Signal Processing, 2010, 24(7): 2021-2034.

    [12]BERTHELON T, CAPITAINE A. Improvements for interpretation of structural dynamics calculation using effective parameters for substructures[C]// Proc Int Conf Spacecrafi Structures and Mechanical Testing. Noordwijk, The Netherlands, ESA SP-321, 1991: 63-68.

    [13]HARALAMPIDIS Y, PAPADIMITRIOU C, PAVLIDOU M. Multi-objective framework for structural model identification[J]. Earthquake Engrg. Struct. Yn, 2005, 34 (6):665-685.

    [14]KIM I Y,WECK DE O L. Adaptive weighted-sum method for bi-objective optimization: Pareto front generation[J]. Struct Multidisc Optim, 2005, 29: 149-158.

    [15]VAPNIK V. Statistical learning theory[M]. New York: John Wiley and Sons, 1998.

    [16]VAPNIK V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.

    Dr. He Huan is an associate professor in Nanjing University of Aeronautics and Astronautics (NUAA). He received his first degree and Ph.D. degree in NUAA. His research interests focus on computational structural dynamics.

    Dr. He Cheng is a research assistant in NUAA. He received his Ph.D. degree in NUAA. His research interests focus on computational structural dynamics, emission and recovery for UAV.

    Dr. Chen Guoping is a professor and doctoral supervisor in NUAA. He received his Ph.D. degree from NUAA. His research interests focus on structural dynamics.

    (Executive Editor: Zhang Tong)

    , E-mail address: hechengary@163.com.

    How to cite this article: He Huan, He Cheng, Chen Guoping, et al. Model updating for high speed aircraft in thermal environment using adaptive weighted-sum methods[J]. Trans. Nanjing Univ. Aero. Astro., 2016,33(3):362-369.

    http://dx.doi.org/10.16356/j.1005-1120.2016.03.362

    TP391Document code:AArticle ID:1005-1120(2016)03-0362-08

    日韩伦理黄色片| 熟女电影av网| xxx大片免费视频| 五月开心婷婷网| 狂野欧美白嫩少妇大欣赏| eeuss影院久久| 午夜福利视频1000在线观看| 欧美日韩精品成人综合77777| 亚洲欧美日韩东京热| 亚洲国产精品成人久久小说| 日韩欧美 国产精品| 国产亚洲一区二区精品| av又黄又爽大尺度在线免费看| 午夜福利在线观看免费完整高清在| 综合色av麻豆| 女人久久www免费人成看片| 水蜜桃什么品种好| 两个人的视频大全免费| 在线免费观看不下载黄p国产| 免费不卡的大黄色大毛片视频在线观看| 久久久久国产网址| 国产一级毛片在线| 日韩大片免费观看网站| 夫妻性生交免费视频一级片| 亚洲国产精品成人久久小说| 青青草视频在线视频观看| 久久精品国产鲁丝片午夜精品| 有码 亚洲区| 在线观看av片永久免费下载| av在线亚洲专区| 国产成人免费无遮挡视频| 人妻制服诱惑在线中文字幕| 男人和女人高潮做爰伦理| 欧美亚洲 丝袜 人妻 在线| 国产成人a区在线观看| 噜噜噜噜噜久久久久久91| 久久久久久久久久人人人人人人| 国产精品久久久久久久久免| 性插视频无遮挡在线免费观看| av国产免费在线观看| 日日摸夜夜添夜夜添av毛片| 中文乱码字字幕精品一区二区三区| 视频区图区小说| 真实男女啪啪啪动态图| 深爱激情五月婷婷| 看黄色毛片网站| 午夜激情福利司机影院| 国产成人福利小说| 国产女主播在线喷水免费视频网站| 高清毛片免费看| 午夜亚洲福利在线播放| 国产黄频视频在线观看| 秋霞伦理黄片| 国产精品99久久99久久久不卡 | 国产男女超爽视频在线观看| 青春草国产在线视频| 国产黄片视频在线免费观看| 一本色道久久久久久精品综合| 人人妻人人爽人人添夜夜欢视频 | 在线a可以看的网站| 99热6这里只有精品| 亚洲欧美成人综合另类久久久| 女人久久www免费人成看片| 婷婷色av中文字幕| 欧美zozozo另类| 亚洲欧美日韩东京热| 乱码一卡2卡4卡精品| 欧美一区二区亚洲| 嫩草影院入口| eeuss影院久久| av福利片在线观看| 亚洲国产成人一精品久久久| 天美传媒精品一区二区| 免费观看a级毛片全部| 成人高潮视频无遮挡免费网站| 国产 精品1| 久久久精品欧美日韩精品| 亚洲精品亚洲一区二区| 人体艺术视频欧美日本| 蜜桃亚洲精品一区二区三区| 国产亚洲91精品色在线| 99精国产麻豆久久婷婷| 免费人成在线观看视频色| 亚洲国产成人一精品久久久| 免费少妇av软件| 国产老妇女一区| 国产免费又黄又爽又色| 好男人视频免费观看在线| 有码 亚洲区| 亚洲天堂av无毛| 寂寞人妻少妇视频99o| 天天一区二区日本电影三级| 特级一级黄色大片| 精品国产三级普通话版| 国产男女超爽视频在线观看| 真实男女啪啪啪动态图| 国产美女午夜福利| 欧美一区二区亚洲| 视频区图区小说| 日韩成人伦理影院| 亚洲国产欧美人成| 日韩av在线免费看完整版不卡| 国产在线男女| 天堂俺去俺来也www色官网| av在线播放精品| 高清日韩中文字幕在线| 边亲边吃奶的免费视频| 97超碰精品成人国产| 国产精品久久久久久久久免| 久久精品夜色国产| 91aial.com中文字幕在线观看| 99热这里只有是精品在线观看| 亚洲四区av| 欧美激情在线99| 少妇裸体淫交视频免费看高清| av网站免费在线观看视频| 国产乱来视频区| 国产亚洲精品久久久com| 黄片wwwwww| 女人久久www免费人成看片| 如何舔出高潮| 简卡轻食公司| 激情 狠狠 欧美| 亚洲内射少妇av| 国产精品福利在线免费观看| 久久精品国产亚洲av涩爱| 九九爱精品视频在线观看| 久久99热这里只频精品6学生| 日韩伦理黄色片| 亚洲欧美一区二区三区黑人 | 免费高清在线观看视频在线观看| 免费看光身美女| 国产乱来视频区| 18禁在线无遮挡免费观看视频| 国产一区亚洲一区在线观看| 亚洲成人精品中文字幕电影| 久久久久久久久久久免费av| 99热这里只有是精品在线观看| 18禁在线无遮挡免费观看视频| 九色成人免费人妻av| 日日啪夜夜撸| 成人亚洲欧美一区二区av| 欧美一级a爱片免费观看看| 亚洲精品第二区| 老师上课跳d突然被开到最大视频| 男女下面进入的视频免费午夜| 国产欧美日韩精品一区二区| 毛片女人毛片| 欧美日韩视频高清一区二区三区二| 日韩av免费高清视频| 亚洲成人中文字幕在线播放| 精品久久久噜噜| 亚洲婷婷狠狠爱综合网| 欧美少妇被猛烈插入视频| 大码成人一级视频| 日韩精品有码人妻一区| 国产成人a区在线观看| 精品人妻熟女av久视频| 少妇猛男粗大的猛烈进出视频 | 内射极品少妇av片p| 乱系列少妇在线播放| 久久久精品欧美日韩精品| 亚洲国产精品专区欧美| 三级国产精品欧美在线观看| 国产成人午夜福利电影在线观看| 精品亚洲乱码少妇综合久久| 狂野欧美激情性bbbbbb| 美女内射精品一级片tv| 亚洲国产欧美人成| 九九久久精品国产亚洲av麻豆| 久久久久久久久久人人人人人人| 男人狂女人下面高潮的视频| 男人爽女人下面视频在线观看| 亚洲av电影在线观看一区二区三区 | 国产亚洲av嫩草精品影院| 中国国产av一级| 亚洲av免费在线观看| 欧美日韩视频精品一区| 免费观看在线日韩| 亚洲精品aⅴ在线观看| 国产精品不卡视频一区二区| 亚洲精品国产av蜜桃| 久久人人爽人人片av| 国产视频首页在线观看| 亚洲欧洲国产日韩| 如何舔出高潮| 免费观看的影片在线观看| 在线 av 中文字幕| 亚洲,一卡二卡三卡| 麻豆国产97在线/欧美| 亚洲av.av天堂| a级一级毛片免费在线观看| 国产精品久久久久久精品古装| 丝袜美腿在线中文| 精品一区在线观看国产| 久久久久久久久大av| 精品国产三级普通话版| 亚洲av国产av综合av卡| 久久久久久久久久久免费av| 国产伦精品一区二区三区四那| 国产日韩欧美在线精品| 欧美成人午夜免费资源| 免费看日本二区| 亚洲成人久久爱视频| 国产成人a∨麻豆精品| 青春草亚洲视频在线观看| 在线观看三级黄色| 亚洲综合色惰| 夜夜看夜夜爽夜夜摸| 久久久精品免费免费高清| 免费人成在线观看视频色| 国产探花在线观看一区二区| av在线老鸭窝| 精品视频人人做人人爽| 国产精品嫩草影院av在线观看| 综合色丁香网| 听说在线观看完整版免费高清| 欧美变态另类bdsm刘玥| 久久久欧美国产精品| 大香蕉久久网| 在线天堂最新版资源| 三级男女做爰猛烈吃奶摸视频| 别揉我奶头 嗯啊视频| 久久人人爽人人片av| 一级毛片我不卡| 欧美激情在线99| 国产高清有码在线观看视频| 免费大片18禁| 女人十人毛片免费观看3o分钟| 老司机影院成人| 中文字幕免费在线视频6| 成人欧美大片| 国产精品人妻久久久久久| 一级毛片我不卡| 欧美日韩视频高清一区二区三区二| 综合色av麻豆| 亚洲自偷自拍三级| 国产精品嫩草影院av在线观看| 日本-黄色视频高清免费观看| 五月开心婷婷网| 国产老妇女一区| 只有这里有精品99| 亚洲欧洲日产国产| 国产精品精品国产色婷婷| 黄色视频在线播放观看不卡| 欧美日韩国产mv在线观看视频 | 国产成人精品婷婷| 深夜a级毛片| 国产精品无大码| 精品少妇黑人巨大在线播放| 国产午夜精品一二区理论片| 看黄色毛片网站| 亚洲电影在线观看av| 日韩欧美精品v在线| 天美传媒精品一区二区| 欧美激情久久久久久爽电影| 人妻系列 视频| 免费观看无遮挡的男女| 精华霜和精华液先用哪个| 亚洲av欧美aⅴ国产| 国产成人精品久久久久久| h日本视频在线播放| 国产探花极品一区二区| 岛国毛片在线播放| 色5月婷婷丁香| 尾随美女入室| 80岁老熟妇乱子伦牲交| 亚洲人成网站在线观看播放| 亚洲三级黄色毛片| 久久精品熟女亚洲av麻豆精品| 国产探花极品一区二区| 欧美日韩综合久久久久久| 欧美变态另类bdsm刘玥| 伊人久久精品亚洲午夜| 欧美日韩一区二区视频在线观看视频在线 | 中文乱码字字幕精品一区二区三区| 老司机影院毛片| 另类亚洲欧美激情| 午夜免费男女啪啪视频观看| 永久网站在线| 高清日韩中文字幕在线| 制服丝袜香蕉在线| 亚洲精品视频女| 亚洲天堂av无毛| 听说在线观看完整版免费高清| 国产亚洲精品久久久com| 国产乱人偷精品视频| 精品酒店卫生间| 久久99精品国语久久久| 麻豆成人av视频| 国产成人一区二区在线| 国产成人午夜福利电影在线观看| 亚洲国产高清在线一区二区三| 亚洲成人中文字幕在线播放| 亚洲国产欧美人成| 一区二区三区免费毛片| 亚洲成人久久爱视频| 久久久久久久久久久丰满| 91狼人影院| 麻豆成人av视频| 欧美日本视频| 91狼人影院| 国产 一区精品| 国产成人免费无遮挡视频| 亚洲av二区三区四区| 男女边摸边吃奶| 亚州av有码| 国产精品爽爽va在线观看网站| 91狼人影院| 婷婷色综合大香蕉| 青青草视频在线视频观看| 国产成人aa在线观看| 赤兔流量卡办理| 纵有疾风起免费观看全集完整版| 国产成人精品婷婷| 午夜精品国产一区二区电影 | 国产成人一区二区在线| 极品少妇高潮喷水抽搐| 久热这里只有精品99| 免费av观看视频| 国产精品99久久久久久久久| 精品人妻熟女av久视频| 能在线免费看毛片的网站| 美女xxoo啪啪120秒动态图| 日日啪夜夜撸| 成人国产麻豆网| 婷婷色综合大香蕉| 观看美女的网站| 天美传媒精品一区二区| 熟女人妻精品中文字幕| 欧美一级a爱片免费观看看| 一区二区三区精品91| 午夜老司机福利剧场| 久久这里有精品视频免费| 国产精品99久久久久久久久| 22中文网久久字幕| 神马国产精品三级电影在线观看| 不卡视频在线观看欧美| 又粗又硬又长又爽又黄的视频| 日韩 亚洲 欧美在线| 精品99又大又爽又粗少妇毛片| 18禁裸乳无遮挡免费网站照片| 国产亚洲av嫩草精品影院| 午夜免费观看性视频| 亚洲欧美日韩无卡精品| 亚洲国产欧美人成| 久久久久性生活片| 一区二区三区乱码不卡18| 欧美日韩综合久久久久久| 精品午夜福利在线看| 国产精品一二三区在线看| 国产精品一区二区在线观看99| 成人免费观看视频高清| xxx大片免费视频| 亚洲成人一二三区av| 成年版毛片免费区| 2022亚洲国产成人精品| 超碰av人人做人人爽久久| 国产精品熟女久久久久浪| 亚洲av一区综合| 岛国毛片在线播放| 国产精品久久久久久久电影| 日韩av不卡免费在线播放| 亚洲精品成人久久久久久| 亚洲怡红院男人天堂| 高清av免费在线| 亚洲av一区综合| 性色avwww在线观看| 免费观看无遮挡的男女| 日韩亚洲欧美综合| 久久国内精品自在自线图片| 婷婷色av中文字幕| 亚洲天堂国产精品一区在线| 97在线人人人人妻| 免费av观看视频| 成人综合一区亚洲| 99热这里只有精品一区| 国产黄色视频一区二区在线观看| 国产精品久久久久久精品古装| 韩国av在线不卡| 欧美zozozo另类| 成年人午夜在线观看视频| 男人狂女人下面高潮的视频| 又爽又黄a免费视频| 熟女av电影| 大香蕉97超碰在线| 黄色怎么调成土黄色| 嫩草影院新地址| 日韩大片免费观看网站| 亚州av有码| 亚洲电影在线观看av| 精品久久久久久电影网| 欧美老熟妇乱子伦牲交| 亚洲人与动物交配视频| 99热6这里只有精品| 亚洲天堂国产精品一区在线| 一个人看视频在线观看www免费| 大陆偷拍与自拍| 成年人午夜在线观看视频| av在线蜜桃| 伊人久久国产一区二区| 中文字幕制服av| 一本一本综合久久| 黄色视频在线播放观看不卡| 麻豆成人午夜福利视频| 国产成人91sexporn| 在线精品无人区一区二区三 | 亚洲在久久综合| 国产91av在线免费观看| 中文资源天堂在线| 亚洲精品乱码久久久久久按摩| 国产成人精品婷婷| 亚洲av免费高清在线观看| 国产精品人妻久久久久久| 一级毛片黄色毛片免费观看视频| 神马国产精品三级电影在线观看| 国产成人91sexporn| 综合色丁香网| 久久久久精品性色| 中文在线观看免费www的网站| 午夜视频国产福利| 欧美日韩在线观看h| 国产欧美另类精品又又久久亚洲欧美| 欧美激情在线99| av线在线观看网站| 国产探花极品一区二区| 午夜福利网站1000一区二区三区| 精品国产三级普通话版| 久久6这里有精品| 麻豆精品久久久久久蜜桃| 老师上课跳d突然被开到最大视频| 亚洲成色77777| 欧美bdsm另类| 国产av国产精品国产| 97在线人人人人妻| 成人免费观看视频高清| 国产一区二区三区av在线| 卡戴珊不雅视频在线播放| 一级av片app| 国产淫语在线视频| 边亲边吃奶的免费视频| 男女边吃奶边做爰视频| 51国产日韩欧美| 精品一区二区三卡| 交换朋友夫妻互换小说| 91久久精品国产一区二区三区| 热99国产精品久久久久久7| 国产69精品久久久久777片| 成人欧美大片| 黄色一级大片看看| 22中文网久久字幕| 欧美日韩视频高清一区二区三区二| 青春草国产在线视频| 搞女人的毛片| 久久久久久久久大av| 成年人午夜在线观看视频| 成年女人在线观看亚洲视频 | 九九在线视频观看精品| 亚洲欧美成人综合另类久久久| 99久国产av精品国产电影| 午夜精品一区二区三区免费看| 日本黄大片高清| 欧美日韩精品成人综合77777| 97热精品久久久久久| 建设人人有责人人尽责人人享有的 | 一级a做视频免费观看| 天堂俺去俺来也www色官网| 成人亚洲精品一区在线观看 | 亚洲高清免费不卡视频| 久久99热6这里只有精品| 亚洲av二区三区四区| 国产精品国产三级国产av玫瑰| 亚洲高清免费不卡视频| 亚洲天堂国产精品一区在线| 纵有疾风起免费观看全集完整版| 国精品久久久久久国模美| 成年av动漫网址| 肉色欧美久久久久久久蜜桃 | 一级二级三级毛片免费看| 午夜激情福利司机影院| 伦精品一区二区三区| 欧美bdsm另类| 狂野欧美激情性xxxx在线观看| 人妻系列 视频| 别揉我奶头 嗯啊视频| 亚洲成色77777| 青春草亚洲视频在线观看| 建设人人有责人人尽责人人享有的 | 80岁老熟妇乱子伦牲交| av在线蜜桃| av一本久久久久| 久久久久久久久久久丰满| 大话2 男鬼变身卡| 久久精品久久精品一区二区三区| 久久久久久久大尺度免费视频| 国产毛片a区久久久久| 五月伊人婷婷丁香| 大香蕉97超碰在线| 国产欧美日韩精品一区二区| 午夜福利在线观看免费完整高清在| 亚洲一级一片aⅴ在线观看| 在线免费十八禁| 亚洲av二区三区四区| 日韩不卡一区二区三区视频在线| 一本久久精品| 精品国产一区二区三区久久久樱花 | 在线观看美女被高潮喷水网站| 日韩在线高清观看一区二区三区| 日韩强制内射视频| 亚洲国产精品国产精品| 只有这里有精品99| 久久久色成人| 久久久久国产网址| 亚洲美女视频黄频| 国语对白做爰xxxⅹ性视频网站| 亚洲性久久影院| 在线观看三级黄色| 免费看av在线观看网站| 99精国产麻豆久久婷婷| 日韩av免费高清视频| 欧美高清性xxxxhd video| 五月开心婷婷网| 国产精品一及| 一级av片app| 白带黄色成豆腐渣| 色视频在线一区二区三区| 国产免费又黄又爽又色| 91久久精品电影网| 一区二区av电影网| 国产精品久久久久久精品电影小说 | 亚洲欧美日韩无卡精品| 久久午夜福利片| 亚洲性久久影院| 丰满人妻一区二区三区视频av| 春色校园在线视频观看| 久久精品熟女亚洲av麻豆精品| 蜜臀久久99精品久久宅男| 国产精品嫩草影院av在线观看| 国产成人freesex在线| 国产一区二区亚洲精品在线观看| 国产v大片淫在线免费观看| 永久网站在线| 天天躁日日操中文字幕| 人妻 亚洲 视频| 国产精品av视频在线免费观看| 亚洲最大成人手机在线| 看黄色毛片网站| 亚洲国产欧美在线一区| 久久精品久久久久久久性| 国产成人精品久久久久久| 激情五月婷婷亚洲| 晚上一个人看的免费电影| 国产黄色免费在线视频| 在线观看免费高清a一片| 国产伦精品一区二区三区四那| 亚洲成人精品中文字幕电影| 美女cb高潮喷水在线观看| 岛国毛片在线播放| 有码 亚洲区| 香蕉精品网在线| 最近中文字幕2019免费版| 国产精品国产三级国产av玫瑰| 99热这里只有精品一区| 纵有疾风起免费观看全集完整版| av卡一久久| 免费人成在线观看视频色| 亚洲欧美日韩无卡精品| 久久久久性生活片| 波野结衣二区三区在线| 一二三四中文在线观看免费高清| 伊人久久国产一区二区| 亚洲精品日韩在线中文字幕| 免费观看的影片在线观看| 色5月婷婷丁香| 日韩不卡一区二区三区视频在线| 韩国高清视频一区二区三区| 亚洲欧美一区二区三区黑人 | 亚洲精华国产精华液的使用体验| 国内揄拍国产精品人妻在线| 国产一级毛片在线| 国产高潮美女av| 在现免费观看毛片| 黄色配什么色好看| 日本av手机在线免费观看| 亚洲成人一二三区av| 欧美亚洲 丝袜 人妻 在线| 六月丁香七月| 亚洲最大成人中文| 18禁裸乳无遮挡动漫免费视频 | 成人综合一区亚洲| 久久久久久久久大av| 国产 精品1| 日韩欧美 国产精品| 国产淫片久久久久久久久| 人人妻人人澡人人爽人人夜夜| 日日摸夜夜添夜夜爱| 久久久久久久久久成人| 国产av国产精品国产| 成年女人在线观看亚洲视频 | 亚洲无线观看免费| 99热网站在线观看| 免费黄频网站在线观看国产| 国产成人福利小说| 免费人成在线观看视频色| 男女国产视频网站| 亚洲图色成人| 美女国产视频在线观看| 国产v大片淫在线免费观看| 亚洲欧美成人综合另类久久久| 少妇熟女欧美另类| 成人毛片a级毛片在线播放| 欧美日韩国产mv在线观看视频 | 国产亚洲91精品色在线| 精品一区二区三卡| 欧美精品一区二区大全|