• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ConstructionofallsingletravelingwavesolutionstoDullin-Gottwald-Holmequation

    2016-09-02 05:31:48-
    關(guān)鍵詞:財(cái)經(jīng)學(xué)院副教授行波

    -

    (Heilongjiang University of Finance and Economics, Harbin 150025, China)

    ?

    ConstructionofallsingletravelingwavesolutionstoDullin-Gottwald-Holmequation

    HOUMan-dan

    (HeilongjiangUniversityofFinanceandEconomics,Harbin150025,China)

    Bythecompletediscriminationsystemforpolynomialmethod,thispaperconstructedallsingletravelingwavesolutionstotheDullin-Gottwald-Holmequation.

    completediscriminationsystemforpolynomialmethod;Dullin-Gottwald-Holmequation;travelingwavesolution

    Itiswellknownthatthenonlinearpartialdifferentialequations(NLPDEs)arewidelyusedtodescribecomplexphenomenainvariousfieldsofsciences,particularlyinphysics.ExacttravelingwavesolutionofNLPDEsisoneofimportantinvestigationsinmathematicsphysics.Therearesomemethodsforgettingtheexactsolutionsoftheseequations,suchasthetransformedrationalfunctionmethod[1],themultipleexp-functionmethod[2-3],theextendedtanh-functionmethod[4],thesine-cosinemethod[5],thecompletediscriminationsystemforpolynomialmethod[6-9],andsoon.

    TheDullin-Gottwald-Holm(DGH)equationwaspresentedbyDullinetal.[10],whichis

    ut+c0ux+3uux-α2(uxxt+uuxxx+2uxuxx)+γuxxx=0

    (1)

    Recently,manypapersweredevotedtothestudyoftheDGHequation[11-17].GuoandLiuhaveobtainedexpressionsofcuspwavein[11],peakedwavesolutionsin[12],thenewboundedwavesolutions,compacton-likewavesolutionsandkink-likewavesolutionswithα2>0inreference[13].Dullinetal.haveshowedtheexistenceofthreetypesofboundedwavesforthecaseα2>0inreference[14].Inreference[15],someexplicitandimplicitexpressionsoffourtypesofboundedwaveshavebeenobtainedwithα2<0byTangandZhang.Inreference[16],anumberofexactsolutionshavebeengivenbytheExp-functionmethod.Newexactperiodicwavesolutionshavebeenobtainedbysemi-inversemethodandintegralbifurcationmethodinreference[17].Inreference[18],theorbitalstabilityofthetrainofNsolitarywaveshasbeenstudiedwiththedispersiveparameterγ=-c0α2.

    However,weaimtoobtainallsingletravelingwavesolutionstotheDGHequation(1).Insection2,underfunctiontransformandthetravelingwavetransformation,weturnedEq. (1)intoanintegralequation.Insection3,byusingLiu’scompletediscriminationsystemforpolynomialmethod[6-9],weobtainedtheclassificationofallsingletravelingwavesolutionsofEq. (1).AllthesolutionshavebeenverifiedthattheyaresolutionsofEq. (1).

    1 The integral forms of Eq. (1)

    Underthetravelingwavetransformation,(x,t)=u(ζ),ζ=x-λt,wehave

    (c0-λ)u′+3uu′-α2(-λu?+uu?)+λu?=0

    (2)

    whereλ(≠0)isthewavespeedand“′”isthederivativewithrespecttoζ.

    IntegratingEq. (2)once,wehave

    (3)

    whereg0isanintegralconstant.

    MultiplyingEq.(3)on2u′andintegratingitonceleadsto

    (α2u-α2λ-γ)u′2=u3+(c0-λ)u2+g0u+g1

    (4)

    whereg1isanintegralconstant.

    TheelementaryintegralformofEq.(4)is

    ±(ζ-ζ0)=

    (5)

    whereζ0isanintegralconstant.

    2 Construction of the solution u

    Case1.α=0,γ≠0 .AccordingtoEq.(5),wehave

    (6)

    Takingthetransformation

    (7)

    wehave

    f(w)=w3+b1w+b0

    (8)

    Denote

    (9)

    Δandb1makeupthecompletediscriminationsystemoff(w).

    u=

    (10)

    andifa>w>b,then

    u=

    (11)

    andifw>b>a,then

    u=

    (12)

    Case2 Δ=0,b1=0,thenf(w)=w3,wehave

    (13)

    Case3 Δ>0,b1<0,thenf(w)=(w-a)(w-b)(w-c),wherea

    u=

    (14)

    andifw>c,wehave

    (15)

    u=

    (16)

    Case5 α≠0

    f(w)=w3+b1w+b0

    (17)

    Case6 Δ=0,b1=0,thenf(w)=w3.

    Ifθ=1,whenw>max(0,σ)orw

    (18)

    (19)

    Case8 θ=1.Whenw>max(b,σ)orw<σ,thesolutionofEq. (1)is:

    ifamax(b,σ),then

    (20)

    andifmin(b,σ)

    (21)

    Case9 θ=-1.Whenmin(b,σ)

    ifamax(b,σ),then

    (22)

    andifmin(b,σ)

    (23)

    Case10 Δ>0,b1<0,thenf(w)=(w-a)(w-b)(w-c),wherea>b>c.

    (24)

    Case11 Δ<0,thenf(w)=(w-a)(w2+μw+v) ,wherea,μvarerealandμ2-4v<0.

    (25)

    3 Conclusions

    Inthispaper,byusingLiu’scompletediscriminationsystemforpolynomialmethod,weconstructedallsingletravelingwavesolutionstotheDGHequation.

    [1]MAWX,LEEJH.Atransformedrationalfunctionmethodandexactsolutionstothe3+1dimensionalJimbo-Miwaequation[J].Chaos,Solitons&Fractals, 2009, 42: 1356-1363.

    [2]MAWX,HUANGTW,ZHANGY.Amultipleexp-functionmethodfornonlineardifferentialequationsanditsapplication[J].PhysicaScripta, 2010, 82: 065003.

    [3]MAWX,ZHUZN.Solvingthe(3+1)-dimensionalgeneralizedKPandBKPequationsbythemultipleexp-functionalgorithm[J].AppliedMathematicsandComputation, 2012, 218: 11871-11879.

    [4]WAZWAZAM.Thetanh-methodfortravelingwavesolutionsofnonlinearwaveequations[J].AppliedMathematicsandComputation, 2007, 187: 1131-1142.

    [5]MOGHADDAMMY,ASGARIA,YAZDANIH.ExacttravelingwavesolutionsforthegeneralizednonlinearSchrdinger(GNLS)equationwithasourcebyextendedtanhcoth,sinecosineandExp-functionmethods[J].AppliedMathematicsandComputation, 2009, 210: 422-435.

    [6]LIUCS.Exacttravelingwavesolutionsfor(1+1)-dimensionaldispersivelongwaveequation[J].Chin.Phy., 2005, 14(9): 1710-1715.

    [7]LIUCS.Allsingletravelingwavesolutionsto(3+1)-dimensionalNizhnok-Novikov-Veselovequation[J].Commun.Theor.Phys., 2006, 45(6): 991-992.

    [8]LIUCS.Theclassificationoftravelingwavesolutionsandsuperpositionofmulti-solutiontoCamassa-Holmequationwithdispersion[J].Chin.Phys., 2007, 16: 1832-1837.

    [9]LIUCS.CassificationofallsingletravelingwavesolutionstoCalogero-Degasperis-Focasequation[J].Commun.Theor.Phys., 2007, 48(4): 601-604.

    [10]DULLINHR,GOTTWALDGA,HOLMDD.Anintegrableshallowwaterequationwithlinearandnonlineardispersion[J].Phys.Rev.Lett., 2001, 87: 1945-1948.

    [11]GUOBL,LIUZR.CuspwavesolutionsinCH-equation[J].Sci.China(SerA), 2003, 33: 325-337.

    [12]GUOBL,LIUZR.PeakedwavesolutionsofCH-equation[J].Sci.China(SerA), 2003, 46: 696-709.

    [13]GUOBL,LIUZR.TwonewtypesofboundedwavesofCH-equation[J].Sci.China(SerA), 2005, 48: 1618-1630.

    [14]DULLINHR,GOTTWALDGA,HOLMDD.Camassa-Holm,Korteweg-deVries-5andotherasymptoticallyequivalentequationsforshallowwaterwaves[J].FluidDyn.Res., 2003, 33: 73-95.

    [15]TANGMY,ZHANGWL.FourtypesofboundedwavesolutionsofCH-equation[J].Sci.China(SerA), 2007, 50: 132-152.

    [16]XIAOGC,ZIANDQ,LIUXQ.ApplicationofExp-functionmethodtoDullin-Gottwald-Holmequation[J].AppliedMathematicsandComputation, 2009, 210(20: 536-541.

    [17]MENGQ,HEB,LONGY, et al.NewexactperiodicwavesolutionsfortheDullin-Gottwald-Holmequation[J].AppliedmathematicsandComputation, 2011, 218(8): 4533-4537.

    [18]LIUX,YINZ.OrbitalstabilityofthesumofNpeakonsfortheDullin-Gottwald-Holmequation[J].NonlinearAnalysis:RealWorldApplications, 2012,13: 2414-2422.

    2015-09-13.

    黑龍江省高等教育教學(xué)改革項(xiàng)目(JG2014010930)

    侯嫚丹(1978-),女,碩士,副教授,研究方向:數(shù)學(xué)模型的應(yīng)用.

    O241

    A

    1672-0946(2016)04-0485-04

    構(gòu)建Dullin-Gottwald-Holm方程全部單一行波解

    侯 嫚 丹

    (黑龍江財(cái)經(jīng)學(xué)院,哈爾濱 150025)

    通過(guò)多項(xiàng)式完全判別系統(tǒng)的方法,為Dullin-Gottwald-Holm方程構(gòu)建了所有單一行波解.

    多項(xiàng)式完全判別系統(tǒng)方法;Dullin-Gottwald-Holm方程; 行波解

    猜你喜歡
    財(cái)經(jīng)學(xué)院副教授行波
    程建新副教授
    牛紅巖副教授簡(jiǎn)介
    高鵬副教授
    一類(lèi)非局部擴(kuò)散的SIR模型的行波解
    張燕副教授
    天一漫畫(huà)
    寧波通訊(2022年3期)2022-03-30 03:49:12
    天一漫畫(huà)
    The Innovation and Sustainability of “Five-waterCo-Governance” in Ningbo
    Quotation Strategy in Business Negotiations
    Joseph-Egri方程行波解的分岔
    南和县| 平江县| 双辽市| 辉县市| 泾阳县| 岑巩县| 宁夏| 连云港市| 曲沃县| 交城县| 渝北区| 天峨县| 全州县| 丹东市| 宣化县| 大厂| 织金县| 乐亭县| 沭阳县| 定结县| 吉首市| 安吉县| 巴里| 徐闻县| 安徽省| 区。| 十堰市| 新巴尔虎右旗| 中西区| 烟台市| 肃北| 临湘市| 石家庄市| 从江县| 新乡县| 津市市| 凤凰县| 怀集县| 白银市| 南丰县| 永寿县|