• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      一類廣義平均曲率Liénard方程周期解存在性與唯一性

      2016-08-31 02:25:40蘭德新陳文斌
      關(guān)鍵詞:蘭德武夷武夷山

      蘭德新,陳文斌

      (武夷學(xué)院數(shù)學(xué)與計(jì)算機(jī)學(xué)院,中國(guó) 武夷山 354300)

      ?

      一類廣義平均曲率Liénard方程周期解存在性與唯一性

      蘭德新*,陳文斌

      (武夷學(xué)院數(shù)學(xué)與計(jì)算機(jī)學(xué)院,中國(guó) 武夷山354300)

      運(yùn)用Mawhin 重合度拓展定理研究了一類廣義平均曲率Liénard 方程

      周期解存在性與唯一性問(wèn)題,得到了周期解存在性與唯一性的相關(guān)新結(jié)果.

      廣義平均曲率;Liénard 方程;周期解;重合度

      1 Introduction

      We consider the following Prescribed mean curvature Liénard equation:

      (1)

      wheref,e∈C(R,R),β,g,τ∈C1(R,R),e,τ,βare T-periodic,T>0,β(t)>0 andτ(t)≥0. As we all know, the dynamic behaviors of Liénard equation have been wide-ly investigated[1-5]due to the application in many fields such as physics, mechanics and the engineering technique fields. In such applications, it is important to know the existence of periodic solutions of Liénard equation. For example, see papers[1-5]. These papers were devoted mainly to study the following several types:

      x″(t)+f(x(t))x′(t)+g(x(t-σ))=e(t),

      x″(t)+f(x(t))x′(t)+g(x(t-τ(t,x(t))))=e(t),

      (φp(x′(t)))′+f(x(t))x′(t)+β(t)g(x(t-τ(t)))=e(t).

      (2)

      2 Preliminaries

      Throughout this paper, letXandYbe real Banach spaces and letL:D(L) ?X→Ybe a Fredholm operator with index zero; hereD(L) denotes the domain ofL.This means that ImLis closed inYand dim KerL=dim(Y/lmL)<+∞. Consider the supplementary subspacesX1andY1such thatX=KerL⊕X1andY=lmL⊕Y1and letP:X→KerLandQ:Y→Y1be the natural projections, Clearly, KerL∩(D(L)∩X1)=0; thus the restrictionLp: =L|D(L)∩X1is invertible. Denote the in-verse ofLpbyK.

      (1)Lx≠λNx,?(x,λ)∈(D(L)∩?Ω)×(0,1);

      (2)Nx?lmL,?x∈KerL∩?Ω;

      (3) deg(JQN,Ω∩KerL,0)≠0,whereJ:lmQ→KerLis an isomorphism.

      Lemma 2.2[10]Letα∈[0,+∞] be constants,S∈C(R,R) withs(t+T)≡s(t), ands(t)∈[-α,α],?t∈[0,T]. Then ?x∈C1(R,R) withx(t+T)≡x(t),we have

      In order to use Mawhin’s continuation theorem to study the existence of T-periodic solutions for Eq.(1),we should consider the following system:

      (3)

      LetX=Y={x:x=(x1,x2)T∈C(R,R2),x(t)≡x(t+T)},‖x‖=max{|x1|0,|x2|0},

      and letKrepresent the inverse ofLKer P∩D(L). Clearly, KerL=lmQ=R2and

      where

      For the sake of convenience, we list the following assumptions which will be used for us to study the existence and uniqueness of T-periodic solutions to Eqs.(3) in Section 3.

      [H2] There existsl>0 such that |g(x1)-g(x2)|≤l|x1-x2|,?l∈R,x1,x2∈R.

      [H4]g′(x)<0,|τ|0≤εandτ′(t)<1 (εbe sufficiently small constant ).

      3 Main results

      ProofWeconsiderLx=λNx,?λ∈(0,1).

      LetΩ1={x∈X:Lx=λNx,λ∈(0,1)}.Ifx∈Ω1,thenwehave

      (4)

      Bythefirstformulaeof(4),wehave

      Itfollowsthat

      (5)

      (6)

      Thenfromtheassumption[H1],wemusthave

      x1(t1-τ(t1))>-d,

      (7)

      and

      x1(t2-τ(t2))

      (8)

      Now,webegintoprovethatthereisaconstantξ∈R such that |x1(ξ)|≤d.

      Case1Ifx1(t2-τ(t2))∈(-d,d),then|x1(ξ)|≤dwhenξ=t2-τ(t2).

      Case2Ifx1(t2-τ(t2))<-d,thenfrom(3.4)andthecontinuityofx1(t)onR,weseethatthereisaconstantξ∈(t1-τ(t1),t2-τ(t2))[or(t2-τ(t2),t1-τ(t1))]suchthat|x1(ξ)|=-d,i.e.,|x1(ξ)|≤d.

      WeseeineitherCase1orCase2that|x1(ξ)|≤d.Sinceξ∈R is a constant, there must be an integer kand a pointt*∈[0,T] such thatξ=kT+t*.So|x1(ξ)|=|x1(t*)|≤d, which leads to

      (9)

      (10)

      By |f(x)|≥σ, we know

      (11)

      (12)

      By using Lemma 2.2, we see

      (13)

      Substituting (12) and (13) into (11). we get

      (14)

      Combining (9) and (14), we obtain

      (15)

      So by using (9), we get

      Furthermore, from the first equation of (3.1), we have

      Which implies that there is a constantζ∈[0,T] such thatx2(ζ)=0.So

      By the second formulae of (4) and [H3], we have

      Now, if we setΩ={x:x=(x1,x2)T∈X,|x1|00,equationQN(x)=(0,0)T,i.e.,

      has no solution in (Ω∩KerL)/Δε, whereε∈(0,ε0) is an arbitrary constant. So deg {JQN,Ω∩KerL,0}=deg {JQN,Δε,0}. Let

      Ifx∈?Δε. Then

      which implies that ‖JQN(x)-JQN0(x)‖→0 asε→0. So ifε>0 is sufficiently small, then

      deg {JQN,Δε,0}=deg {JQN0,Δε,0}.

      Noting dimQN0=1, it follows that deg{JQN0,Δε,0}=deg{JQN0,Δ0,0}, where Δ0={x:x∈R,|x|0 is constant. By assumption [H1], we see that deg {JQN0,Δ0,0}≠0,i.e., deg {JQN,Ω∩KerL,0}=deg {JQN,Δ0,0}≠0. Then, the condition (3) of Lemma 2.1 is also satisfied. Therefore, by applying Lemma 2.1, we conclude that the equation

      Lx=Nx,

      Furthermore, letu(t)=x3(t)-x4(t) andv(t)=y3(t)-y4(t)v. Sincex′=ψ(y-h(x)), it follows from (1) that

      we will show thatv(t)≤0,?t∈[0,T].

      Suppose there exists at0∈[0,T] such thatv(t0)=maxt∈[0,T]v(t)>0 which together withβ(t)>0 implies that

      (16)

      It follows from [H4] and the first equation of Eq.(16) thatx3(t0-τ(t0))=x4(t0-τ(t0)), then from the second equation of Eq.(7), we get

      -β(t)g′(x3(t0-τ(t0)))[ψ(y3(t0-τ(t0))-h(x3(t0-τ(t0)))-

      ψ(y4(t0-τ(t0))-h(x4(t0-τ(t0)))](1-τ′(t0)).

      In view ofβ(t0)>0,g′(x3(t0-τ(t0)))<0.v(t0)=y3(t0)-y4(t0)>0.τ′(t0)<1 and |τ|0<ε,εbe sufficiently small, then we haveψ(y3(t0-τ(t0)))>ψ(y4(t0-τ(t0))) andv″(t0)>0.

      Which is a contradiction. Hence maxt∈[0,T]v(t)≤0. Similarly, exchanging the role ofx3andx4, we can show that maxt∈[0,T]v(t)≥0. This implies thatv(t)≡0,i.e.,y3(t)≡y4(t).Then fromg′(x)<0, we havex3(t-τ(t))≡x4(t-τ(t)).i.e.,x3(t)≡x4(t) Therefore, the Eq.(1) has at most one solution. The proof of Theorem 3.1 is now complete.

      References:

      [1]NGUYENPC.Periodicsolutionsofasecondordernonlinearsystem[J].JMathAnalAppl, 1997,214(1):219-232.

      [2]LUSP,GEWG.PeriodicsolutionsforakindofLiénardequationwithadeviatingargument[J].JMathAnnaAppl, 2004,289(2):231-243.

      [3]CHENGWS,RENJL.OntheexistenceofperiodicsolutionforP-LaplaciangeneralizedLiénardequation[J].NonlinearAnal, 2005,60(1):65-75.

      [4]GAOFB,LUSP.NewresultsontheexistenceanduniquenessofpreiodicsolutionsforLiénardequationtypeP-Laplacianequation[J].JFranklinInstitute, 2008,345(2):374-381.

      [5]GAOH,LIUBW.ExistenceanduniquenessofperiodicsolutionsforforcedRayleigh-typeequations[J].ApplMathComput, 2009,211(1):148-154.

      [6]BONHEURED,HABETSP,OBERSNELF, et al.Classicalandnon-classicalsolutionsofaprescribedcurvatureequations[J].JDiffEqu, 2007,243(1):208-237.

      [7]LOPEZR.Acomparisonresultforradialsolutionsofthemeancurvatureequation[J].ApplMathLett, 2009,22(4):860-864.

      [8]PANH.One-dimensionalprescribedmeancurvatureequationwithexponentialnonlinearity[J].NonlinearAnnl, 2009,70(5):999-1010.

      [9]GAINESRE,MAWHINJ.Coincidencedegreeandnonlineardifferentialequaations[M].Berlin:Springer, 1977.

      [10]LUSP,GEWG.Sufficientconditionsfortheexistenceofperiodicsolutionstosomesecondorderdifferentialequationswithadeviatingargument[J].JMathAnalAppl, 2005,308(2):393-419.

      (編輯CXM)

      Existence and Uniqueness of Periodic Solutions for Prescribed Mean Curvature Liénard Equation with a Deviating Argument

      LAN De-xin*, CHEN Wen-bin

      (College of Mathematics and Computer Science, Wuyi University, Wuyi Shan 354300, China)

      By using the coincidence degree theory, some new results were established, on the existence and uniqueness of T-periodic solutions for a kind of prescribed mean curvature Liénard equation of the form

      prescribed mean curvature; Liénard equation; periodic solution; coincidence degree

      10.7612/j.issn.1000-2537.2016.03.016

      2015-10-15

      武夷學(xué)院科學(xué)研究基金資助項(xiàng)目(XQ201305)

      ,E-mail:1220340699@qq.com

      O175.6

      A

      1000-2537(2016)03-0089-06

      猜你喜歡
      蘭德武夷武夷山
      《武夷天下秀》
      它們的家園——武夷山
      大美武夷山
      武夷學(xué)院
      基于PTR-TOF-MS與GC-MS技術(shù)的武夷水仙和武夷肉桂香氣特征分析
      風(fēng)雨廊橋——武夷山馀慶橋
      紅土地(2018年12期)2018-04-29 09:16:50
      武夷山
      中國(guó)智庫(kù):何時(shí)能圓“蘭德夢(mèng)”
      四天三夜 LAND CRUISER 200蘭德酷路澤探塞北
      越玩越野(2015年2期)2015-08-29 01:05:04
      武夷聽濤
      百花洲(2014年5期)2014-04-16 05:53:24
      抚松县| 当涂县| 蓬溪县| 仁布县| 杨浦区| 南平市| 沂水县| 友谊县| 磐安县| 永安市| 兰考县| 阳新县| 平江县| 广安市| 贡觉县| 海原县| 东兰县| 江北区| 中方县| 河南省| 日照市| 德惠市| 科尔| 三原县| 利川市| 瑞金市| 白城市| 千阳县| 抚顺市| 水富县| 金溪县| 宣化县| 泌阳县| 瑞安市| 改则县| 巩留县| 绩溪县| 资中县| 门头沟区| 石门县| 体育|