蔣宗勝,阮君山,王少明
(1.福建醫(yī)科大學(xué)藥學(xué)院,2.福建醫(yī)科大學(xué)省立臨床醫(yī)學(xué)院,3.福建省立醫(yī)院中醫(yī)藥分子生物學(xué)實(shí)驗(yàn)室,福建 福州 350001)
?
FOX家族介導(dǎo)的上皮間質(zhì)轉(zhuǎn)化在腫瘤轉(zhuǎn)移中的研究進(jìn)展
蔣宗勝1,3,阮君山2,3,王少明2,3
(1.福建醫(yī)科大學(xué)藥學(xué)院,2.福建醫(yī)科大學(xué)省立臨床醫(yī)學(xué)院,3.福建省立醫(yī)院中醫(yī)藥分子生物學(xué)實(shí)驗(yàn)室,福建 福州350001)
doi:10.3969/j.issn.1001-1978.2016.08.005
在腫瘤的侵襲轉(zhuǎn)移進(jìn)程中,上皮間質(zhì)轉(zhuǎn)化(epithelial mesenchymal transition,EMT)是其中一個(gè)重要的生物學(xué)過程。但由于EMT復(fù)雜的信號(hào)通路和未盡闡明的分子機(jī)制,治療EMT仍然是世界性的難題。但多種研究也證實(shí)了EMT并非是不可逆轉(zhuǎn)的過程。近年來對叉頭框轉(zhuǎn)錄因子(FOX)基因家族在EMT中的研究,顯示了其在腫瘤轉(zhuǎn)移中具有重要的調(diào)控作用。該文綜述了FOX基因家族介導(dǎo)的EMT過程在腫瘤多種生物學(xué)過程的研究,以期對EMT的信號(hào)網(wǎng)絡(luò)有更好的了解,并為有效干預(yù)EMT提供新的依據(jù)。
EMT;FOX;轉(zhuǎn)錄;分子靶標(biāo);腫瘤干細(xì)胞;耐藥性
上皮間質(zhì)轉(zhuǎn)化(epithelial mesenchymal transition,EMT)是癌癥發(fā)生發(fā)展中的重要過程,在腫瘤侵襲轉(zhuǎn)移、腫瘤耐藥性、腫瘤干細(xì)胞特性中發(fā)揮著重要的作用[1-2]。其生物學(xué)過程為細(xì)胞間失去相互黏附力,間質(zhì)化表型顯露,成為惡性的根源。早期對EMT的研究主要是胚胎發(fā)育、損傷修復(fù)、神經(jīng)嵴的形成等,在這些進(jìn)程中,上皮樣細(xì)胞表現(xiàn)為強(qiáng)大的可塑性。近年對EMT的研究富集于腫瘤轉(zhuǎn)移方面,具有復(fù)雜的信號(hào)調(diào)控網(wǎng)絡(luò),包括Wnt/β-catenin、TGF-β和生長因子受體等[3],其機(jī)制在無數(shù)的研究中被探討,但并未詳細(xì)闡明。這些EMT信號(hào)的改變,與惡性腫瘤的進(jìn)展和預(yù)后密切相關(guān),并成為近年來抗腫瘤藥物的重要靶點(diǎn)。
叉頭框轉(zhuǎn)錄因子(forkhead box,FOX)家族最早在果蠅中被發(fā)現(xiàn)[4],目前分屬為19個(gè)亞家族,分別是FOXA到FOXS,他們在結(jié)構(gòu)上的最大特點(diǎn)是具有100多個(gè)保守氨基酸序列組成的FOX的DNA結(jié)合域[5]。FOX基因家族介導(dǎo)了多種生物學(xué)功能,如DNA損傷修復(fù)、胚胎發(fā)育、細(xì)胞周期和一些代謝平衡調(diào)控[6-7],這提示我們FOX基因家族有可能也參與了腫瘤發(fā)生發(fā)展等多個(gè)復(fù)雜進(jìn)程。在各種腫瘤患者的組織樣本中均檢測到了FOX基因家族的表達(dá)變化,尤其是近年來對腫瘤EMT的研究,發(fā)現(xiàn)FOX基因通過EMT介導(dǎo)了腫瘤干細(xì)胞形成和特性的維持、腫瘤的耐藥等過程;有些FOX基因能夠促進(jìn)EMT,而有些卻能夠抑制EMT,并有多種miRNA參與了這一復(fù)雜調(diào)控網(wǎng)絡(luò)。因此,探討FOX基因家族在EMT中的作用及其分子機(jī)制,對干預(yù)腫瘤轉(zhuǎn)移、干細(xì)胞治療以及腫瘤耐藥具有重要的意義。
大量實(shí)驗(yàn)和分析均表明,F(xiàn)OXC1、FOXC2、FOXM1、FOXQ1能夠抑制E-cadherin表達(dá),或與惡性間質(zhì)化表型腫瘤的相關(guān)蛋白協(xié)同表達(dá),促進(jìn)腫瘤發(fā)生EMT,成為腫瘤獲得侵襲轉(zhuǎn)移能力的根源。同時(shí),它們也是在EMT中研究最多、最為深入的FOX家族分子。其可能作用的分子靶標(biāo)總結(jié)于Tab 1。
1.1FOXC亞家族復(fù)發(fā)轉(zhuǎn)移是肝細(xì)胞癌術(shù)后的致死性因素,研究發(fā)現(xiàn)FOXC1在肝細(xì)胞癌中的表達(dá)明顯高于癌旁組織,F(xiàn)OXC1活化了Snail的轉(zhuǎn)錄,這一過程使E-cadherin表達(dá)下調(diào),引起了EMT[8],成為肝細(xì)胞癌轉(zhuǎn)移的重要原因。FOXC1的異位表達(dá)可以誘導(dǎo)Snail、Twist、TGF-β1的表達(dá)增強(qiáng),而它們的表達(dá)在FOXC1沉默之后被下調(diào),這提示我們FOXC1的表達(dá)可以影響EMT分子開關(guān)[9];沉默F(xiàn)OXC1后,細(xì)胞骨架發(fā)生改變,腫瘤的侵襲轉(zhuǎn)移能力被抑制。Huang等[10]研究發(fā)現(xiàn),IL-8能夠誘導(dǎo)Huh-7、SMMC7721等多種肝癌細(xì)胞活化PI3K/Akt和HIF-1α通路,上調(diào)FOXC1的表達(dá),促進(jìn)肝癌細(xì)胞的侵襲能力。
FOXC2受到TGF-β1信號(hào)網(wǎng)絡(luò)的調(diào)節(jié),它的表達(dá)被發(fā)現(xiàn)與EMT有關(guān)[11]。多數(shù)研究認(rèn)為FOXC2的高表達(dá)引起EMT,成為癌癥患者不良預(yù)后的一個(gè)指標(biāo)[12-14]。正常上皮形態(tài)的乳腺癌細(xì)胞,它的FOXC2主要存在于細(xì)胞質(zhì)中;而當(dāng)FOXC2向核內(nèi)聚集發(fā)揮轉(zhuǎn)錄功能時(shí),EMT發(fā)生,這和CK2的β亞基功能缺失有關(guān)[15-16];敲除CK2β亞基,F(xiàn)OXC2定位由細(xì)胞質(zhì)轉(zhuǎn)向核內(nèi),E-cadherin表達(dá)下調(diào),α-SMA、波形蛋白表達(dá)增加。
1.2FOXM1EMT可以由多種轉(zhuǎn)錄因子所調(diào)控,包括Snail、Slug、ZEB1、ZEB2、Twist等,它們對于E-cadherin的表達(dá)具有抑制作用,這些分子開關(guān)都可以被FOXM1所調(diào)控。Kong等[17]的研究表明,F(xiàn)OXM1與有吸煙史的患者有明顯的相關(guān)性;FOXM1誘導(dǎo)產(chǎn)生的EMT是通過活化Akt/p70S6K通路,造成了非小細(xì)胞肺癌患者的不良預(yù)后。類似的研究[18]也發(fā)現(xiàn)FOXM1誘導(dǎo)非小細(xì)胞肺癌發(fā)生EMT,造成患者生存質(zhì)量降低。在胰腺癌中,F(xiàn)OXM1能調(diào)節(jié)ZEB1、ZEB2、Snail2、E-cadherin和 vimentin,促進(jìn)EMT過程[19]。胰腺癌細(xì)胞系高表達(dá)FOXM1的c亞型,因而具有較強(qiáng)的細(xì)胞侵襲、轉(zhuǎn)移能力,并證實(shí)這一過程是FOXM1結(jié)合于尿激酶纖溶酶原受體uPAR的啟動(dòng)子,增加它的表達(dá)造成的[20]。在對FOXM1的b亞型研究中,發(fā)現(xiàn)它介導(dǎo)了肝細(xì)胞癌的EMT過程[21]。在其他對肝細(xì)胞癌研究中,鑒定出FOXM1能夠激活微囊蛋白cav1的表達(dá)促進(jìn)EMT,通過RNA干擾技術(shù)則出現(xiàn)抑制侵襲轉(zhuǎn)移的效果[22],提供了干預(yù)FOXM1/cav1通路的治療手段。
1.3FOXQ1FOXQ1在直結(jié)腸癌的表達(dá)高于其他類型的腫瘤,由上游Wnt通路活化介導(dǎo)EMT過程[23]。在直結(jié)腸癌中,對其下游分子的研究中發(fā)現(xiàn),F(xiàn)OXQ1能夠激活Twist的表達(dá),增強(qiáng)腫瘤侵襲轉(zhuǎn)移能力,促進(jìn)EMT[24]。其激活Twist的表達(dá)在肝細(xì)胞癌中也被檢測到[25]。FOXQ1的作用靶點(diǎn)除Twist外還有ZEB2。同時(shí),F(xiàn)OXQ1還能誘導(dǎo)多能蛋白聚糖的表達(dá),促進(jìn)肝癌細(xì)胞分泌趨化因子配體CCL2,增加了腫瘤相關(guān)巨噬細(xì)胞的遷移和浸潤,加速腫瘤進(jìn)程[26]。在非小細(xì)胞肺癌[27-28]、乳腺癌[29-30]、卵巢癌[31-32]中也發(fā)現(xiàn)FOXQ1參與EMT。在對膀胱癌的研究中發(fā)現(xiàn),用RNA干擾技術(shù)抑制FOXQ1表達(dá),能夠逆轉(zhuǎn)EMT[33]。因此,F(xiàn)OXQ1是腫瘤患者不良預(yù)后的危險(xiǎn)標(biāo)志。
Tab 1 Promote EMT:molecular target of FOX
2.1FOXO亞家族FOXO亞家族包括FOXO1、FOXO2、FOXO3和FOXO4[37]。FOXO亞家族能夠結(jié)合于其下游靶分子DNA或與蛋白質(zhì)結(jié)合,調(diào)控它們的轉(zhuǎn)錄或蛋白活性,包括Snail、β-catenin等,是EMT的重要分子開關(guān)。多數(shù)研究結(jié)果發(fā)現(xiàn)FOXO3a和FOXO1具有明顯抑制EMT的作用。
失去E-cadherin是EMT的第一步,F(xiàn)OXO1具有與E-cadherin競爭結(jié)合miR-9的作用,解除miR-9對E-cadherin的抑制[38]。Ni等[39]的生物信息學(xué)分析結(jié)果顯示,F(xiàn)OXO3a是與腎透明細(xì)胞癌轉(zhuǎn)移的相關(guān)分子,下調(diào)FOXO3a的表達(dá),下游Snail表達(dá)增加,腎透明癌細(xì)胞發(fā)生EMT。FOXO3a能夠直接結(jié)合于β-catenin,阻斷其對下游靶分子的作用,干預(yù)腫瘤惡性進(jìn)程[40]。FOXO3a對EMT的抑制作用,為防治腫瘤轉(zhuǎn)移提供了新的靶點(diǎn)。
2.2FOXA亞家族FOXA1和FOXA2隸屬于FOXA亞家族,其亞家族還包括FOXA3,它們在早期的胚胎發(fā)育、損傷修復(fù)及癌癥的進(jìn)程中發(fā)揮著重要作用,被譽(yù)為“先鋒因子”[41]。但介導(dǎo)腫瘤EMT研究多為FOXA1和FOXA2。
FOXA1是FOXA亞家族的典型代表,它在結(jié)構(gòu)上包含了氨基端的轉(zhuǎn)錄活化域,中部的FOX保守序列,以及羧基端的組蛋白結(jié)合域[42]。FOXA1的調(diào)控網(wǎng)絡(luò)包括FOXA2、FGA、FGB、FGG和FGL1,而它本身作為轉(zhuǎn)錄因子介導(dǎo)EMT的負(fù)性調(diào)節(jié),在肺癌初期轉(zhuǎn)移中發(fā)揮重要的作用[43]。在乳腺癌細(xì)胞株SkBr3中沉默F(xiàn)OXA1,觸發(fā)EMT過程,而過表達(dá)FOXA1能阻止這一過程的發(fā)生[44]。Slug是EMT的重要分子開關(guān),在對前列腺癌的研究中發(fā)現(xiàn),Klf4和FOXA1的表達(dá)能夠起到抑制Slug的作用,由此Klf4/FOXA1/Slug信號(hào)軸可以為干預(yù)EMT提供治療靶點(diǎn)[45]。Jin等[46]的研究顯示,F(xiàn)OXA1對前列腺癌的增殖和轉(zhuǎn)移存在一定的矛盾,其在增殖時(shí)表現(xiàn)為對雄激素通路的激活,而在抑制EMT時(shí)表現(xiàn)為對雄激素通路的抑制。FOXA1的下游分子還包括CCNE1、E2F等[47],這些都可能成為防治EMT、腫瘤侵襲轉(zhuǎn)移的治療靶點(diǎn)。
FOXA2在作為轉(zhuǎn)錄調(diào)控時(shí)常表現(xiàn)為促進(jìn)轉(zhuǎn)錄的作用,然而在介導(dǎo)EMT時(shí),除正性調(diào)控E-cadherin的表達(dá)外[48],對間質(zhì)化表型的相關(guān)分子表現(xiàn)出負(fù)性調(diào)控的作用。例如,在對乳腺癌EMT的研究中發(fā)現(xiàn),F(xiàn)OXA2不但能刺激E-cadherin的表達(dá),還能夠招募TLE3,共同結(jié)合于ZEB2,起到阻遏作用[49]。FOXA2在肝細(xì)胞癌中的表達(dá)降低,并和EMT有關(guān),它能夠降低金屬基質(zhì)蛋白酶MMP-9的表達(dá),起到對肝癌細(xì)胞抗侵襲轉(zhuǎn)移的作用[50]。FOXA2干預(yù)肺癌的EMT是通過結(jié)合于間質(zhì)化表型開關(guān)Slug的啟動(dòng)子,抑制了它的轉(zhuǎn)錄[51]。
2.3其他FOX對EMT的抑制作用FOXF2表達(dá)低下與乳腺癌的不良預(yù)后有關(guān),在基底樣乳腺癌中,這種缺失往往介導(dǎo)了EMT過程;FOXF2對EMT的抑制作用是通過下調(diào)它的靶點(diǎn)Twist的表達(dá)而產(chǎn)生的[52]。Cai等[53]的研究發(fā)現(xiàn),F(xiàn)OXF2能干預(yù)EMT,抑制基底樣乳腺癌的轉(zhuǎn)移。而FOXF2啟動(dòng)子附近CpG島的DNA甲基化可以造成其表達(dá)缺失[54]。在其他的研究中,F(xiàn)OX分子家族對EMT有抑制作用,例如FOXD3[55-56]、FOXK1[57]、FOXL1[58],均有相應(yīng)的報(bào)道。
Tab 2對FOX干預(yù)EMT的靶點(diǎn)進(jìn)行了總結(jié)。
腫瘤干細(xì)胞有著極強(qiáng)的自我更新能力和高致瘤效應(yīng),它能夠通過促進(jìn)血管生成、免疫抑制等方式促進(jìn)腫瘤發(fā)生發(fā)展,是腫瘤產(chǎn)生和復(fù)發(fā)轉(zhuǎn)移的根源[59]。但對于腫瘤干細(xì)胞的理解和認(rèn)知仍然存在爭議,它究竟是起源于腫瘤細(xì)胞的可塑性引起的轉(zhuǎn)移病灶,還是起源于正常組織細(xì)胞的病變轉(zhuǎn)化,至今是個(gè)謎團(tuán)。近年來的研究表明,EMT在促進(jìn)腫瘤細(xì)胞的侵襲轉(zhuǎn)移過程中,能夠賦予其強(qiáng)大的自我更新能力,使其具有干細(xì)胞特性[60]。EMT過程中的某些相關(guān)分子,如ZEB、TGF-β都能夠?qū)Ω杉?xì)胞特性有所調(diào)控[61]。因此,我們不能忽視EMT在腫瘤干細(xì)胞特性的獲得和維持中的作用。
Tab 2 Inhibit EMT:molecular target of FOX
FOX家族介導(dǎo)的EMT,在腫瘤干細(xì)胞特性的獲得和維持中發(fā)揮著重要的作用。在乳腺癌細(xì)胞中,F(xiàn)OXC2能誘導(dǎo)多種EMT信號(hào)網(wǎng)絡(luò)的改變[34],干細(xì)胞樣細(xì)胞也由這種異常活化的通路所產(chǎn)生,減弱FOXC2的表達(dá),能夠明顯改善間質(zhì)化表型和干細(xì)胞的特性[62]。FOXQ1同樣被發(fā)現(xiàn)能夠使乳腺癌細(xì)胞形態(tài)學(xué)發(fā)生改變,并獲得干細(xì)胞樣的特性[63]。FOXM1不但是肺癌不良預(yù)后的標(biāo)志,同時(shí)也介導(dǎo)了干細(xì)胞特性獲得的過程,這一過程被發(fā)現(xiàn)可能與EMT有關(guān),成為耐藥性和復(fù)發(fā)轉(zhuǎn)移的根源[64]。在胰腺癌中,高表達(dá)的FOXM1能夠引起下游ZEB1、ZEB2、Snail2和波形蛋白的表達(dá)激活,間質(zhì)化表型和干細(xì)胞特性因此產(chǎn)生[19]。這些FOX家族分子的作用,充分說明了FOX、EMT與干細(xì)胞特性三者是相互關(guān)聯(lián)的。隨著研究的深入,更多的證據(jù)將被展現(xiàn)出來。
腫瘤能夠表現(xiàn)出對治療藥物發(fā)生抵抗的作用,這種作用的產(chǎn)生與EMT有關(guān),是化療失敗的重要原因,成為當(dāng)前臨床治療的一大障礙。EMT作為惡性腫瘤侵襲轉(zhuǎn)移的始動(dòng)環(huán)節(jié),針對EMT中的細(xì)胞黏附分子、金屬基質(zhì)蛋白酶等的靶向藥物可以成為防治腫瘤轉(zhuǎn)移的里程碑[65]。
在對鼻咽癌的研究中,F(xiàn)OXC2的高表達(dá)增加了鼻咽癌對紫杉醇的耐藥,耐藥的鼻咽癌有EMT特征出現(xiàn);沉默F(xiàn)OXC2,能夠逆轉(zhuǎn)耐藥細(xì)胞的EMT過程,異種移植的小鼠模型中,下調(diào)FOXC2的表達(dá)能夠增加其對紫杉醇的敏感性[66]。FOXC家族的另一成員FOXC1介導(dǎo)了基底樣乳腺癌的耐藥性[67]。Chiu等[64]對106例卵巢癌進(jìn)行分析,其高表達(dá)的FOXM1與癌癥的進(jìn)程密切相關(guān),這種高表達(dá)FOXM1的現(xiàn)象介導(dǎo)了EMT和干細(xì)胞特性的獲得,從而導(dǎo)致了對鉑類藥物的耐藥性。非小細(xì)胞肺癌產(chǎn)生EMT是導(dǎo)致化療失敗的重要原因,F(xiàn)OXQ1的表達(dá)介導(dǎo)了其對傳統(tǒng)化療藥物的抵抗,敲除FOXQ1的非小細(xì)胞肺癌細(xì)胞表現(xiàn)出轉(zhuǎn)移能力的降低以及對藥物敏感性的增加[27]。對FOXQ1在乳腺癌細(xì)胞的研究中,也發(fā)現(xiàn)了耐藥性的產(chǎn)生[29]。這些證據(jù)都說明FOX家族在EMT與腫瘤耐藥性中扮演了重要角色。
90%以上的腫瘤患者死亡是由于腫瘤轉(zhuǎn)移引起的。而FOX基因介導(dǎo)了EMT過程,他們可以成為防治腫瘤轉(zhuǎn)移的靶點(diǎn)。現(xiàn)有的一些實(shí)驗(yàn)已經(jīng)證實(shí)了藥物對EMT的干預(yù)是通過調(diào)節(jié)FOX來實(shí)現(xiàn)的。
白藜蘆醇能逆轉(zhuǎn)非小細(xì)胞肺癌細(xì)胞的EMT過程,從而抑制它的侵襲和轉(zhuǎn)移,體內(nèi)外實(shí)驗(yàn)均證明這種抑制作用通過抑制FOXC2的表達(dá)而產(chǎn)生[68]。編碼神經(jīng)節(jié)苷酯合酶GD3S的基因是FOXC2的靶點(diǎn),F(xiàn)OXC2通過誘導(dǎo)它的表達(dá)介導(dǎo)EMT。雷公藤甲素能夠抑制GD3S的表達(dá),間接抑制了FOXC2軸對EMT的調(diào)控[35]。硫鏈絲菌素是FOXM1的抑制劑,它能夠抑制鼻咽癌細(xì)胞的EMT[69]。高表達(dá)FOXM1的卵巢癌能對鉑類藥物耐受,而順鉑聯(lián)合硫鏈絲菌素能夠逆轉(zhuǎn)這一作用[64]。FOXM1在惡性前列腺癌中的表達(dá)明顯高于其在良性瘤中的表達(dá),二甲雙胍能夠有效抑制FOXM1來抑制這一惡性進(jìn)程[70]。異硫氰芐酸酯BITC能夠有效抑制乳腺癌細(xì)胞中FOXQ1的表達(dá),上調(diào)E-cadherin,下調(diào)uPA、uPAR,表現(xiàn)出對EMT的抑制作用[36]。FDA核準(zhǔn)的PDGFR抑制劑舒尼替尼能夠間接抑制FOXC2,減少腫瘤轉(zhuǎn)移的發(fā)生[62]。
近年來的研究很多集中于非編碼RNA的層面,很多疾病及生物學(xué)過程都圍繞著miRNA展開,其中就包含了EMT。并且miRNA也參與了FOX基因家族對EMT的調(diào)控。
miR-9能夠結(jié)合于E-cadherin的mRNA 3′UTR區(qū)而抑制其表達(dá),具有促進(jìn)EMT的作用;而FOXO1能起到類似于CeRNA的作用,與miR-9相互結(jié)合,干預(yù)miR-9對E-cadherin的抑制,逆轉(zhuǎn)EMT[38]。FOXA1是miR-584和miR-1290的靶點(diǎn),過表達(dá)miR-584和miR-1290之后,F(xiàn)OXA1抑制EMT的作用被下調(diào),腫瘤侵襲轉(zhuǎn)移能力增強(qiáng);其中miR-584是通過ERK1/2發(fā)揮作用,miR-1290活化了NF-κB通路[71]。以上研究證明miR-9、miR-584、miR-1290等對EMT具有促進(jìn)作用,介導(dǎo)了腫瘤的惡性化進(jìn)程。
FOXM1、FOXC1、FOXC2等是EMT的活化分子,一些miRNA能對它們的表達(dá)起到抑制作用。研究發(fā)現(xiàn),miR-200[19]、miR-194[72]、miR-134[73]對FOXM1的表達(dá)具有抑制作用,連同下調(diào)下游ZEB1、ZEB2、Twist等分子開關(guān),干預(yù)甚至逆轉(zhuǎn)EMT,有望成為干預(yù)腫瘤轉(zhuǎn)移的靶點(diǎn)。白藜蘆醇能抑制FOXC2的表達(dá),使惡性的肺癌細(xì)胞產(chǎn)生間質(zhì)細(xì)胞上皮化過程,這是對miR-520h的調(diào)控來實(shí)現(xiàn)的[68]。TGF-β誘導(dǎo)的舌鱗癌細(xì)胞在發(fā)生EMT時(shí),miR-639表達(dá)下調(diào),通過Luciferase實(shí)驗(yàn)發(fā)現(xiàn)miR-639能結(jié)合于FOXC1的啟動(dòng)子,通過抑制其表達(dá)進(jìn)而干預(yù)EMT[74]。適當(dāng)miR-122的表達(dá)是調(diào)控EMT和MET的平衡點(diǎn),過表達(dá)miR-122,其下游有323種基因表達(dá)下調(diào),59種基因表達(dá)上調(diào),其中FOXA1的上調(diào)作用十分明顯[75]。FOXA1的表達(dá)使E-cadherin表達(dá)增加,進(jìn)一步維持了腫瘤細(xì)胞的上皮形態(tài)。在前列腺癌的研究中,F(xiàn)OXO3a作為EMT的抑制分子,除直接綁定于β-catenin外,還能夠反式激活miR-34b/c;miR-34b/c結(jié)合于β-catenin mRNA的3′UTR區(qū),抑制其表達(dá),導(dǎo)致其下游靶基因無法活化轉(zhuǎn)錄[40]。
EMT是腫瘤惡性的重要來源,其復(fù)雜的信號(hào)調(diào)控網(wǎng)絡(luò)使其介導(dǎo)了腫瘤的多種生物學(xué)過程,尤其是在侵襲轉(zhuǎn)移、干細(xì)胞特性和耐藥性的獲得。然而,正是由于EMT信號(hào)網(wǎng)絡(luò)的復(fù)雜性,使用單一的分子靶向藥物治療,可能會(huì)有旁通路的信號(hào)重新引發(fā)EMT過程,使得傳統(tǒng)的一些分子靶向藥均不能起到有效的治療和干預(yù)。本文介紹了FOX基因家族介導(dǎo)的EMT,在腫瘤的發(fā)生發(fā)展中發(fā)揮著重要的作用。例如,F(xiàn)OXQ1參與了多種腫瘤的EMT過程,能夠影響Twist、ZEB等分子開關(guān),下調(diào)FOXQ1能夠逆轉(zhuǎn)EMT過程。在非小細(xì)胞肺癌的研究中,F(xiàn)OXA2能夠結(jié)合于Slug的啟動(dòng)子,引起下游信號(hào)改變,干預(yù)了腫瘤的侵襲和轉(zhuǎn)移。多種miRNA,如miR-9、miR-200、miR-122等參與了FOX基因調(diào)控網(wǎng)絡(luò)。在這些例子中,F(xiàn)OX基因家族作為上游重要的轉(zhuǎn)錄因子,能夠影響介導(dǎo)EMT的多個(gè)重要分子開關(guān)的表達(dá),進(jìn)而影響E-cadherin、N-cadherin等細(xì)胞表型的蛋白分子。并且針對某些FOX基因家族時(shí),不但能夠干預(yù)腫瘤的侵襲轉(zhuǎn)移,還能夠?qū)Ω杉?xì)胞特性和耐藥性起到良好的作用。因此,對FOX基因家族進(jìn)行干預(yù),可能解決單一分子靶向治療無效的問題,為干預(yù)和治療EMT帶來的腫瘤侵襲轉(zhuǎn)移、干細(xì)胞特性和耐藥性帶來新的思路。
[1]Kong D, Sethi S, Li Y, et al. Androgen receptor splice variants contribute to prostate cancer aggressiveness through induction of EMT and expression of stem cell marker genes[J].Prostate, 2015, 75(2): 161-74.
[2]Ansieau S. EMT in breast cancer stem cell generation[J].CancerLett, 2013, 338(1): 63-8.
[3]朱智杰, 阮君山, 李堯,等. Wnt信號(hào)通路誘導(dǎo)腫瘤細(xì)胞上皮間質(zhì)轉(zhuǎn)化的研究進(jìn)展[J]. 中國藥理學(xué)通報(bào), 2012, 28(7): 904-7.
[3]Zhu Z J, Ruan J S, Li Y, et al. Research progress of Wnt signaling pathway induced EMT in tumor cells[J].ChinPharmacolBull, 2012, 28(7): 904-7.
[4]Weigel D, Jurgens G, Kuttner F, et al. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo[J].Cell, 1989, 57(4): 645-58.
[5]Kaestner K H, Knochel W, Martinez D E. Unified nomenclature for the winged helix/forkhead transcription factors[J].GenesDev, 2000, 14(2): 142-6.
[6]Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism[J].DevBiol, 2002, 250(1): 1-23.
[7]Benayoun B A, Caburet S, Veitia R A. Forkhead transcription factors: key players in health and disease[J].TrendsGenet, 2011, 27(6): 224-32.
[8]Xia L, Huang W, Tian D, et al. Overexpression of forkhead box C1 promotes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma[J].Hepatology, 2013, 57(2): 610-24.
[9]Xu Z Y, Ding S M, Zhou L, et al. FOXC1 contributes to microvascular invasion in primary hepatocellular carcinoma via regulating epithelial-mesenchymal transition[J].IntJBiolSci, 2012, 8(8): 1130-41.
[10]Huang W, Chen Z, Zhang L, et al. Interleukin-8 induces expression of FOXC1 to promote transactivation of CXCR1 and CCL2 in hepatocellular carcinoma cell lines and formation of metastases in mice[J].Gastroenterology, 2015, 149(4): 1053-67.
[11]Mani S A, Yang J, Brooks M, et al. Mesenchyme forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers[J].ProcNatlAcadSciUSA, 2007, 104(24): 10069-74.
[12]Lim J C, Koh V C, Tan J S, et al. Prognostic significance of epithelial-mesenchymal transition proteins Twist and Foxc2 in phyllodes tumours of the breast[J].BreastCancerResTreat, 2015, 150(1): 19-29.
[13]Zhu J L, Song Y X, Wang Z N, et al. The clinical significance of mesenchyme forkhead 1(FoxC2) in gastric carcinoma[J].Histopathology, 2013, 62(7): 1038-48.
[14]Watanabe A, Suzuki H, Yokobori T, et al. Forkhead box protein C2 contributes to invasion and metastasis of extrahepatic cholangiocarcinoma, resulting in a poor prognosis[J].CancerSci, 2013, 104(11): 1427-32.
[15]Golden D, Cantley L G. Casein kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm[J].Oncogene, 2015, 34(36): 4702-12.
[16]Filhol O, Giacosa S, Wallez Y, et al. Protein kinase CK2 in breast cancer: the CK2beta regulatory subunit takes center stage in epithelial plasticity[J].CellMolLifeSci, 2015, 72(17): 3305-22.
[17]Kong F F, Qu Z Q, Yuan H H, et al. Overexpression of FOXM1 is associated with EMT and is a predictor of poor prognosis in non-small cell lung cancer[J].OncolRep, 2014, 31(6): 2660-8.
[18]Xu N, Jia D, Chen W, et al. FoxM1 is associated with poor prognosis of non-small cell lung cancer patients through promoting tumor metastasis[J].PLoSOne, 2013, 8(3): e59412.
[19]Bao B, Wang Z, Ali S, et al. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells[J].JCellBiochem, 2011, 112(9): 2296-306.
[20]Huang C, Xie D, Cui J, et al. FOXM1c promotes pancreatic cancer epithelial-to-mesenchymal transition and metastasis via upregulation of expression of the urokinase plasminogen activator system[J].ClinCancerRes, 2014, 20(6): 1477-88.
[21]Park H J, Gusarova G, Wang Z, et al. Deregulation of FoxM1b leads to tumour metastasis[J].EMBOMolMed, 2011, 3(1): 21-34.
[22]Huang C, Qiu Z, Wang L, et al. A novel FoxM1-caveolin signaling pathway promotes pancreatic cancer invasion and metastasis[J].CancerRes, 2012, 72(3): 655-65.
[23]Christensen J, Bentz S, Sengstag T, et al. FOXQ1, a novel target of the Wnt pathway and a new marker for activation of Wnt signaling in solid tumors[J].PLoSOne, 2013, 8(3): e60051.
[24]Abba M, Patil N, Rasheed K, et al. Unraveling the role of FOXQ1 in colorectal cancer metastasis[J].MolCancerRes, 2013, 11(9): 1017-28.
[25]Huang W, Chen Z, Shang X, et al. Sox12, a direct target of FoxQ1, promotes hepatocellular carcinoma metastasis through up-regulating Twist1 and FGFBP1[J].Hepatology, 2015, 61(6): 1920-33.
[26]Xia L, Huang W, Tian D, et al. Forkhead box Q1 promotes hepatocellular carcinoma metastasis by transactivating ZEB2 and VersicanV1 expression[J].Hepatology, 2014, 59(3): 958-73.
[27]Feng J, Xu L, Ni S, et al. Involvement of FoxQ1 in NSCLC through regulating EMT and increasing chemosensitivity[J].Oncotarget, 2014, 5(20): 9689-702.
[28]Feng J, Zhang X, Zhu H, et al. FoxQ1 overexpression influences poor prognosis in non-small cell lung cancer, associates with the phenomenon of EMT[J].PLoSOne, 2012, 7(6): e39937.
[29]Meng F, Speyer C L, Zhang B, et al. PDGFRalpha and beta play critical roles in mediating Foxq1-driven breast cancer stemness and chemoresistance[J].CancerRes, 2015, 75(3): 584-93.
[30]Fan D M, Feng X S, Qi P W, et al. Forkhead factor FOXQ1 promotes TGF-beta1 expression and induces epithelial-mesenchymal transition[J].MolCellBiochem, 2014, 397(1-2): 179-86.
[31]Gao M, Wu R C, Herlinger A L, et al. Identification of the NAC1-regulated genes in ovarian cancer[J].AmJPathol, 2014, 184(1): 133-40.
[32]Gao M, Shih Ie M, Wang T L. The role of forkhead box Q1 transcription factor in ovarian epithelial carcinomas[J].IntJMolSci, 2012, 13(11): 13881-93.
[33]Zhu Z, Zhu Z, Pang Z, et al. Short hairpin RNA targeting FOXQ1 inhibits invasion and metastasis via the reversal of epithelial-mesenchymal transition in bladder cancer[J].IntJOncol, 2013, 42(4): 1271-8.
[34]Taube J H, Herschkowitz J I, Komurov K, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes[J].ProcNatlAcadSciUSA, 2010, 107(35): 15449-54.
[35]Sarkar T R, Battula V L, Werden S J, et al. GD3 synthase regulates epithelial-mesenchymal transition and metastasis in breast cancer[J].Oncogene,2015, 34(23): 2958-67.
[36]Sehrawat A, Kim S H, Vogt A, et al. Suppression of FOXQ1 in benzyl isothiocyanate-mediated inhibition of epithelial-mesenchymal transition in human breast cancer cells[J].Carcinogenesis, 2013, 34(4): 864-73.
[37]Katoh M, Igarashi M, Fukuda H, et al. Cancer genetics and genomics of human FOX family genes[J].CancerLett, 2013, 328(2): 198-206.
[38]Yang J, Li T, Gao C, et al. FOXO1 3′UTR functions as a ceRNA in repressing the metastases of breast cancer cells via regulating miRNA activity[J].FEBSLett, 2014, 588(17): 3218-24.
[39]Ni D, Ma X, Li H Z, et al. Downregulation of FOXO3a promotes tumor metastasis and is associated with metastasis-free survival of patients with clear cell renal cell carcinoma[J].ClinCancerRes, 2014, 20(7): 1779-90.
[40]Liu H, Yin J, Wang H, et al. FOXO3a modulates WNT/beta-catenin signaling and suppresses epithelial-to-mesenchymal transition in prostate cancer cells[J].CellSignal, 2015, 27(3): 510-8.
[41]Magnani L, Eeckhoute J, Lupien M. Pioneer factors: directing transcriptional regulators within the chromatin environment[J].TrendsGenet, 2011, 27(11): 465-74.
[42]Van Der Heul-Nieuwenhuijsen L, Dits N F, Jenster G. Gene expression of forkhead transcription factors in the normal and diseased human prostate[J].BJUInt, 2009, 103(11): 1574-80.
[43]Wang H, Meyer C A, Fei T, et al. A systematic approach identifies FOXA1 as a key factor in the loss of epithelial traits during the epithelial-to-mesenchymal transition in lung cancer[J].BMCGenomics, 2013, 14: 680.
[44]Zhang X L, Wang H S, Liu N, et al. Bisphenol A stimulates the epithelial mesenchymal transition of estrogen negative breast cancer cells via FOXA1 signals[J].ArchBiochemBiophys, 2015, 585: 10-6.
[45]Liu Y N, Abou-Kheir W, Yin J J, et al. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor beta-initiated prostate cancer epithelial-mesenchymal transition[J].MolCellBiol, 2012, 32(5): 941-53.
[46]Jin H J, Zhao J C, Ogden I, et al. Androgen receptor-independent function of FoxA1 in prostate cancer metastasis[J].CancerRes, 2013, 73(12): 3725-36.
[47]Zhang C, Wang L, Wu D, et al. Definition of a FoxA1 Cistrome that is crucial for G1 to S-phase cell-cycle transit in castration-resistant prostate cancer[J].CancerRes, 2011, 71(21): 6738-48.
[48]Song Y, Washington M K, Crawford H C. Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer[J].CancerRes, 2010, 70(5): 2115-25.
[49]Zhang Z, Yang C, Gao W, et al. FOXA2 attenuates the epithelial to mesenchymal transition by regulating the transcription of E-cadherin and ZEB2 in human breast cancer[J].CancerLett, 2015, 361(2): 240-50.
[50]Wang J, Zhu C P, Hu P F, et al. FOXA2 suppresses the metastasis of hepatocellular carcinoma partially through matrix metalloproteinase-9 inhibition[J].Carcinogenesis, 2014, 35(11): 2576-83.
[51]Tang Y, Shu G, Yuan X, et al. FOXA2 functions as a suppressor of tumor metastasis by inhibition of epithelial-to-mesenchymal transition in human lung cancers[J].CellRes, 2011, 21(2): 316-26.
[52]Wang Q S, Kong P Z, Li X Q, et al. FOXF2 deficiency promotes epithelial-mesenchymal transition and metastasis of basal-like breast cancer[J].BreastCancerRes, 2015, 17: 30.
[53]Cai J, Tian A X, Wang Q S, et al. FOXF2 suppresses the FOXC2-mediated epithelial-mesenchymal transition and multidrug resistance of basal-like breast cancer[J].CancerLett, 2015, 367(2): 129-37.
[54]Tian H P, Lun S M, Huang H J, et al. DNA methylation affects the SP1-regulated transcription of FOXF2 in breast cancer cells[J].JBiolChem, 2015, 290(31): 19173-83.
[55]He G, Hu S, Zhang D, et al. Hypermethylation of FOXD3 suppresses cell proliferation, invasion and metastasis in hepatocellular carcinoma[J].ExpMolPathol, 2015, 99(2): 374-82.
[56]Chu T L, Zhao H M, Li Y, et al. FoxD3 deficiency promotes breast cancer progression by induction of epithelial-mesenchymal transition[J].Oncogene, 2014, 446(2): 580-4.
[57]Sun T, Wang H, Li Q, et al. Forkhead box protein k1 recruits TET1 to act as a tumor suppressor and is associated with MRI detection[J].JpnJClinOncol, 2016,46(3):209-21.
[58]Zhang G, He P, Gaedcke J, et al. FOXL1, a novel candidate tumor suppressor, inhibits tumor aggressiveness and predicts outcome in human pancreatic cancer[J].CancerRes, 2013, 73(17): 5416-25.
[59]田超, 江國榮, 周梁, 等. 間質(zhì)干細(xì)胞與腫瘤的關(guān)系研究進(jìn)展[J]. 中國藥理學(xué)通報(bào), 2013, 29(3): 303-6.
[59]Tian C, Jiang G R, Zhou L, et al. Mesenchymal stem cells and tumor[J].ChinPharmacolBull,2013,29(3): 303-6.
[60]Cuyas E, Corominas-Faja B, Menendez J A. The nutritional phenome of EMT-induced cancer stem-like cells[J].Oncotarget, 2014, 5(12): 3970-82.
[61]Scheel C, Eaton E N, Li S H, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast[J].Cell, 2011, 145(6): 926-40.
[62]Hollier B G, Tinnirello A A, Werden S J, et al. FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer[J].CancerRes, 2013, 73(6): 1981-92.
[63]Qiao Y, Jiang X, Lee S T, et al. FOXQ1 regulates epithelial-mesenchymal transition in human cancers[J].CancerRes, 2011, 71(8): 3076-86.
[64]Chiu W T, Huang Y F, Tsai H Y, et al. FOXM1 confers to epithelial-mesenchymal transition, stemness and chemoresistance in epithelial ovarian carcinoma cells[J].Oncotarget, 2015, 6(4): 2349-65.
[65]劉曉霓, 謝立, 王延軍, 等. 逆轉(zhuǎn)腫瘤上皮間質(zhì)化藥理研究進(jìn)展[J]. 中國藥理學(xué)通報(bào), 2013, 29(11): 1481-5.
[65]Liu X N, Xie L, Wang Y J, et al.Advance of pharmacological studies on reversing epithelial-mesenchymal transition of tumors[J].ChinPharmacolBull,2013,29(11): 1481-5.
[66]Zhou Z, Zhang L, Xie B, et al. FOXC2 promotes chemoresistance in nasopharyngeal carcinomas via induction of epithelial mesenchymal transition[J].CancerLett, 2015, 363(2): 137-45.
[67]Tkocz D, Crawford N T, Buckley N E, et al. BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers[J].Oncogene, 2012, 31(32): 3667-78.
[68]Yu Y H, Chen H A, Chen P S, et al. MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol[J].Oncogene, 2013, 32(4): 431-43.
[69]Yu C, Chen L, Yie L, et al. Targeting FoxM1 inhibits proliferation, invasion and migration of nasopharyngeal carcinoma through the epithelialto-mesenchymal transition pathway[J].OncolRep, 2015, 33(5): 2402-10.
[70]Wang Y, Yao B, Wang Y, et al. Increased FoxM1 expression is a target for metformin in the suppression of EMT in prostate cancer[J].IntJMolMed, 2014, 33(6): 1514-22.
[71]Zhu Y, Jiang Q, Lou X, et al. MicroRNAs up-regulated by CagA of Helicobacter pylori induce intestinal metaplasia of gastric epithelial cells[J].PLoSOne, 2012, 7(4): e35147.
[72]Li Z, Ying X, Chen H, et al. MicroRNA-194 inhibits the epithelial-mesenchymal transition in gastric cancer cells by targeting FoxM1[J].DigDisSci, 2014, 59(9): 2145-52.
[73]Li J, Wang Y, Luo J, et al. miR-134 inhibits epithelial to mesenchymal transition by targeting FOXM1 in non-small cell lung cancer cells[J].FEBSLett, 2012, 586(20): 3761-5.
[74]Lin Z, Sun L, Chen W, et al. miR-639 regulates transforming growth factor beta-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting FOXC1[J].CancerSci, 2014, 105(10): 1288-98.
[75]Deng X G, Qiu R L, Wu Y H, et al. Overexpression of miR-122 promotes the hepatic differentiation and maturation of mouse ESCs through a miR-122/FoxA1/HNF4a-positive feedback loop[J].LiverInt, 2014, 34(2): 281-95.
Research progress of epithelial mesenchymal transition mediated by FOX family in tumor metastasis
JIANG Zong-sheng1,3,RUAN Jun-shan2,3,WANG Shao-ming2,3
(1.CollegeofPharmacy,F(xiàn)ujianMedicalUniversity;2.FujianProvincialHospital,ClinicalCollegeofFujianMedicalUniversity;3.MolecularBiologyLaboratoryofTraditionalChineseMedicine,F(xiàn)ujianProvincialHospital,Fuzhou350001,China)
Epithelial mesenchymal transition(EMT) is one of the important biological processes in tumor invasion and metastasis. However, due to the complexity of EMT signaling pathway and its unclear molecular mechanism, the treatment of EMT is still a worldwide problem. But many studies have proved that EMT is not an irreversible process. In recent years, the research of FOX gene family in EMT shows its important role in tumor metastasis. This review focuses on the FOX-mediated EMT process in many kinds of tumor, aiming to have a better understanding of EMT signaling network, and provide a new target for the effective prevention of EMT.
EMT; FOX; transcription; molecular target; cancer stem cells; drug resistance
2016-04-07,
2016-05-10
國家自然科學(xué)基金面上項(xiàng)目(No 81273647);福建省自然科學(xué)基金資助項(xiàng)目(No 2013J01365);福建省衛(wèi)生系統(tǒng)中青年骨干人才重點(diǎn)項(xiàng)目(No 2015-ZQN-ZD-2);國家衛(wèi)計(jì)委共建科學(xué)研究基金項(xiàng)目(No WKJ-FJ-19)
蔣宗勝(1992-),男,碩士生,研究方向:藥物干預(yù)腫瘤轉(zhuǎn)移分子機(jī)制,E-mail:296847770@qq.com;
王少明(1959-),男,主任藥師,碩士生導(dǎo)師,研究方向:藥物干預(yù)腫瘤轉(zhuǎn)移分子機(jī)制、醫(yī)院藥學(xué),通訊作者,E-mail:cnfjwsm@163.com
A
1001-1978(2016)08-1053-06
R-05;R329.24;R394.2;R73-37
網(wǎng)絡(luò)出版時(shí)間:2016-7-19 10:43網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/34.1086.R.20160719.1043.010.html