車升國, 袁 亮, 李燕婷, 林治安, 沈 兵, 胡樹文, 趙秉強*
(1農(nóng)業(yè)部植物營養(yǎng)與肥料重點實驗室,中國農(nóng)業(yè)科學院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,北京 100081;2中海石油化學股份有限公司,北京 100029; 3 中國農(nóng)業(yè)大學資源與環(huán)境學院,北京 100193)
?
我國主要麥區(qū)小麥氮素吸收及其產(chǎn)量效應(yīng)
車升國1, 袁 亮1, 李燕婷1, 林治安1, 沈 兵2, 胡樹文3, 趙秉強1*
(1農(nóng)業(yè)部植物營養(yǎng)與肥料重點實驗室,中國農(nóng)業(yè)科學院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,北京 100081;2中海石油化學股份有限公司,北京 100029; 3 中國農(nóng)業(yè)大學資源與環(huán)境學院,北京 100193)
小麥產(chǎn)量; 氮素吸收; 需氮量; 響應(yīng)特征
近年來在小麥產(chǎn)量、品質(zhì)、氮效率、氮平衡等方面已開展了大量的研究工作[13-16]。曹承富等[13]在安徽砂漿黑土的研究表明,施氮量為225 kg/hm2時皖麥38和皖麥44產(chǎn)量最高,分別為5.91 t/hm2和6.22 t/hm2,再增施氮肥(75 kg/hm2)小麥產(chǎn)量不升反降。徐鳳嬌等[14]研究表明,小麥產(chǎn)量與蛋白質(zhì)產(chǎn)量在施氮量為N 270 kg/hm2時達最高,再增施氮肥N 90 kg/hm2,小麥產(chǎn)量和蛋白質(zhì)產(chǎn)量均下降。黨廷輝等[15]在陜西黑壚土上的研究表明,麥田土壤中硝態(tài)氮數(shù)量、氮素盈余值與氮肥用量成正比。目前的研究主要集中于田塊尺度,或小樣本數(shù)的氮吸收規(guī)律,尚缺乏區(qū)域間大尺度、大樣本數(shù)量的深入探索[17]。因此,本文在收集2000年以后大量文獻數(shù)據(jù)和田間試驗數(shù)據(jù)的基礎(chǔ)上,系統(tǒng)分析我國黃淮海冬麥區(qū)、長江中下游冬麥區(qū)和西北冬春兼播麥區(qū)小麥主產(chǎn)區(qū)的小麥產(chǎn)量、籽粒氮含量、秸稈氮含量、地上部吸氮總量和生產(chǎn)100 kg小麥籽粒需氮量的區(qū)域差異,探索不同小麥產(chǎn)量水平下籽粒氮含量、秸稈氮含量和100 kg籽粒需氮量的變化特征,以期為我國小麥推薦施肥模型等提供科學的區(qū)域參數(shù),為指導(dǎo)小麥區(qū)域合理施肥提供理論依據(jù)與科學參考,實現(xiàn)我國小麥增產(chǎn)高產(chǎn),提高氮肥利用效率。
1.1研究區(qū)域概況
在參考我國小麥種植業(yè)區(qū)劃、中國化肥區(qū)劃等資料的基礎(chǔ)上[18-19],根據(jù)2013年我國小麥區(qū)域生產(chǎn)布局和產(chǎn)量情況,選擇3個主要的小麥生產(chǎn)區(qū)作為研究對象,分別為黃淮海冬(秋播)麥區(qū)(HH)、長江中下游冬(秋播)麥區(qū)(YR)和西北冬春兼播麥區(qū)(NW)。2013年3個小麥產(chǎn)區(qū)小麥的播種面積為21783千公頃,占我國小麥總播種面積的90.32%; 小麥產(chǎn)量11485萬噸,占我國小麥總產(chǎn)量的94.20%[2]。
黃淮海冬(秋播)麥區(qū)主要包括山東、河南、河北、北京、天津及江蘇和安徽北部。本區(qū)地處暖溫帶,氣候溫和,屬半濕潤性或半干旱季風氣候,土壤類型以褐土和潮土為主,小麥主要為冬小麥(冬小麥—夏玉米輪作)。2013年本區(qū)小麥播種面積和產(chǎn)量占全國的57.44%和66.64%[2]。
長江中下游冬(秋播)麥區(qū)包括浙江、湖北、湖南、江西及安徽和江蘇南部等。本區(qū)位于北亞熱帶季風區(qū),氣候溫暖濕潤,熱量豐富,土壤類型主要為水稻土、棕壤等,小麥主要為冬小麥(冬小麥—水稻或其他作物輪作)。2013年本區(qū)小麥播種面積和產(chǎn)量占全國的14.53%和13.74%[2]。
西北冬春兼播麥區(qū)包括陜西、山西、新疆、寧夏、甘肅和內(nèi)蒙古東部區(qū)域。本區(qū)處于中溫帶內(nèi)陸地區(qū),屬大陸性氣候,冬季寒冷,夏季炎熱,土壤以棕鈣土、灰鈣土、灌漠土、灰漠土等為主。小麥有冬小麥和春小麥。2013年本區(qū)小麥播種面積和產(chǎn)量占全國的18.35%和13.82%[2]。
1.2數(shù)據(jù)來源
本研究所涉及數(shù)據(jù)包括小麥產(chǎn)量、籽粒氮吸收量、秸稈氮吸收量、地上部氮吸收總量、籽粒含氮量、秸稈含氮量等。數(shù)據(jù)來自于課題組“十一五”、“十二五”國家科技支撐計劃課題的試驗數(shù)據(jù)等,以及2000年后公開發(fā)表的文獻資料,包括期刊文獻、碩博畢業(yè)論文、書籍等。選擇研究區(qū)域的樣點數(shù),其中產(chǎn)量數(shù)據(jù)為5484組、籽粒氮含量3456組、秸稈氮含量2460組、植株氮積累量4962組和生產(chǎn)100 kg籽粒需氮量數(shù)據(jù)5073組。詳細樣點分布見圖1和表1。
1.3數(shù)據(jù)處理
利用Excel (2003) 進行數(shù)據(jù)的預(yù)處理; 應(yīng)用Sigmplot10.0軟件制作小麥籽粒氮含量、小麥秸稈氮含量、100 kg籽粒需氮量與產(chǎn)量變化的關(guān)系圖,同時分析小麥產(chǎn)量與地上部吸收氮總量的相互關(guān)系并制圖。黃淮海冬麥區(qū)、長江中下游冬麥區(qū)、西北冬春兼播麥區(qū)及全國樣點的小麥產(chǎn)量與小麥吸收氮總量進行模擬分析時,模型選試指數(shù)函數(shù)、線性函數(shù)、多項式、乘冪函數(shù)等,經(jīng)多次調(diào)試選用R2最高、顯著性最好的乘冪函數(shù)Y=aXb(a、b為常數(shù))。
圖1 我國小麥產(chǎn)區(qū)數(shù)據(jù)樣點分布圖Fig.1 Distribution map of the sample points for wheat in China
2.1小麥主產(chǎn)區(qū)的氮素吸收規(guī)律
黃淮海冬麥區(qū)小麥產(chǎn)量最高,達7.06 t/hm2(n=3027),西北冬春兼播麥區(qū)最低,僅為4.71 t/hm2(n=1398),長江中下游冬麥區(qū)居中,為5.60 t/hm2(n=1059)。區(qū)域間小麥產(chǎn)量水平的不同,氮素吸收量也存在差異。黃淮海冬麥區(qū)籽粒氮含量、秸稈氮含量、地上部吸氮總量較高,分別為2.24%、0.56%、211.1 kg/hm2; 長江中下游冬麥區(qū)籽粒氮含量、秸稈氮含量、地上部吸氮總量分別為1.92%、0.5%、146.7 kg/hm2; 西北冬春兼播麥區(qū)籽粒氮含量、秸稈氮含量、地上部吸氮總量分別為2.14%、0.53%、138.0 kg/hm2(表1)。
圖2 黃淮海冬麥區(qū)(HH)、長江中下游冬麥區(qū)(YR)、西北冬春兼播麥區(qū)(NW)及全國(All)小麥產(chǎn)量與地上部氮吸收總量的相關(guān)關(guān)系Fig.2 Relations between the aboveground plant N uptakes and wheat yields for Huang-Huai-Hai winter wheat planting region(HH), Yangtze River winter wheat planting region(YR), Northwest China winter-spring wheat planting region(NW) and the whole China(All)
2.2小麥氮素吸收特征及其產(chǎn)量效應(yīng)
圖3 黃淮海冬麥區(qū)(HH)、長江中下游冬麥區(qū)(YR)、西北冬春兼播麥區(qū)(NW)及全國(All)小麥籽粒與秸稈氮素含量Fig.3 The N concentrations in grains and straw in Huang-huai-hai winter wheat planting region(HH), Yangtze River winter wheat planting region(YR), Northwest China spring-winter wheat planting region(NW) and the whole China(All)
[注(Note): 盒狀圖中箱體中部的實線和虛線分別代表中值和平均值,箱體上下邊代表75%和25%位點,上下橫線代表90%和10%位點,上下圓點代表95%和5%位點Solid and dashed lines in this box figure indicate median and mean, respectively. The box boundaries indicate the 75th quartiles and 25th quartiles, the whisker caps indicate 90th and 10th percentiles, and the circles represent the 95th and 5th percentiles.]
圖4 黃淮海冬麥區(qū)(HH)、長江中下游冬麥區(qū)(YR)、西北冬春兼播麥區(qū)(NW)及全國(All)100 kg小麥籽粒需氮量Fig.4 The N requirement amounts per 100 kg grains in Huang-huai-hai winter wheat planting region(HH), Yangtze River winter wheat planting region(YR), Northwest China spring-winter wheat planting region and the whole China(All)
[注(Note): 盒狀圖中箱體中部的實線和虛線分別代表中值和平均值,箱體上下邊代表75%和25%位點,上下橫線代表90%和10%位點,上下圓點代表95%和5%位點Solid and dashed lines in this box figure indicate median and mean, respectively. The box boundaries indicate the 75th quartiles and 25th quartiles, the whisker caps indicate 90th and 10th percentiles, and the circles represent the 95th and 5th percentiles.]
[1]Zhang J. China’s success in increasing per capita food production[J]. Journal of Experimental Botany, 2011, 62: 3707-3711.
[2]中華人民共和國國家統(tǒng)計局. 中國統(tǒng)計年鑒(2014)[M]. 北京: 中國統(tǒng)計出版社, 2014.
National Bureau of Statistics of the People’s Republic of China. China statistical yearbook (2014)[M]. Beijing: China Statistics Press, 2014.
[3]趙秉強. 新型肥料[M]. 北京: 科學出版社, 2014.
Zhao B Q. New fertilizer[M]. Beijing: Science Press, 2004.
[4]閆湘. 我國化肥利用現(xiàn)狀與養(yǎng)分資源高效利用研究[D]. 北京: 中國農(nóng)業(yè)科學院博士學位論文, 2008.
Yan X. Study on present status of chemical fertilizer application and high efficient utilization of nutrition in China[D]. PhD Dissertation of Chinese Academy of Agricultural Sciences, 2008.
[5]李絮花, 趙秉強. 山東省作物專用復(fù)混肥料農(nóng)藝配方[M]. 北京: 中國農(nóng)業(yè)出版社, 2014.
Li X H, Zhao B Q. Agronomic formula of crops-special compound fertilizer at Shandong province[M]. Beijing: China Agriculture Press, 2014.
[6]唐慎欣. 小麥-玉米種植體系中養(yǎng)分資源利用規(guī)律及平衡研究[D]. 泰安: 山東農(nóng)業(yè)大學碩士學位論文, 2012.
Tang S X. Study on soil nutrient resource and nutrient balance of wheat-maize rotation[D]. Taian: MS Thesis of Shandong Agricultural University, 2012.
[7]彭雪松. 河南省小麥玉米化肥施用狀況與應(yīng)用效果研究[D]. 鄭州: 河南農(nóng)業(yè)大學碩士學位論文, 2012.
Peng X S. Study on chemical fertilizer consumption and application effect on wheat and maize in Henan[D]. Zhengzhou: MS Thesis of Henan Agricultural University, 2012.
[8]戴相林. 關(guān)中中西部地區(qū)農(nóng)田土壤養(yǎng)分平衡狀況演變研究[D]. 楊陵: 西北農(nóng)林科技大學碩士學位論文, 2012.
Dai X L. Changes of nutrient balances in soil in Midwest region of Guanzhong plain[D]. Yangling: MS Thesis of Northwest A & F University, 2012.
[9]張福鎖,王激情,張衛(wèi)峰,等. 中國主要糧食作物肥料利用率現(xiàn)狀與提高途徑[J]. 土壤學報, 2008, 45(5): 915-924.
Zhang F S, Wang J Q, Zhang W F,etal. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915-924.
[10]Guo J H, Liu X J, Zhang Y,etal. Significant acidification in major Chinese croplands[J]. Science, 2010, 327: 1008-1010.
[11]Zhao B Q, Li X Y, Li H,etal. Results from long-term fertilizer experiments in China: The risk of groundwater pollution by nitrate[J]. NJAS-Wageningen Journal of Life Sciences, 2011, 58: 177-183.
[12]Bouwman A F. Direct emissions of nitrous oxide from agricultural soils[J]. Nutrient Cycling in Agroecosystems, 1996, 46: 53-70.
[13]曹承富, 孔令聰, 汪建來, 等. 施氮量對強筋和中筋小麥產(chǎn)量和品質(zhì)及養(yǎng)分吸收的影響[J]. 植物營養(yǎng)與肥料學報, 2005, 11(1): 46-50.
Cao C F, Kong L C, Wang J L,etal. Effects of nitrogen on yield, quality and nutritive absorption of middle and strong gluten wheat[J]. Plant Nutrition and Fertilizer Science, 2005, 11(1): 46-50.
[14]徐鳳嬌, 趙廣才, 田奇卓, 等. 施氮量對不同品質(zhì)類型小麥產(chǎn)量和加工品質(zhì)的影響[J]. 植物營養(yǎng)與肥料學報, 2012, 18(2): 300-306.
Xu F J, Zhao G C, Tian Q Z,etal. Effects of nitrogen fertilization on grain yield and processing quality of different wheat genotypes[J]. Plant Nutrition and Fertilizer Science, 2012, 18(2): 300-306.
[15]黨廷輝, 戚龍海, 郭勝利, 郝明德. 旱地土壤硝態(tài)氮與氮素平衡、氮肥利用的關(guān)系[J]. 植物營養(yǎng)與肥料學報, 2009, 15 (3): 573-577.
Dang T H, Qi L H, Guo S L, Hao M D. Relationship between soil nitrate, nitrogen balance and utilization in rainfed land[J]. Plant Nutrition and Fertilizer Science, 2009, 15 (3): 573-577.
[16]高會議, 郭勝利, 劉文兆, 車升國. 施肥措施對黃土旱塬區(qū)小麥產(chǎn)量和土壤有機碳積累的影響[J]. 植物營養(yǎng)與肥料學報, 2009, 15 (6): 1333-1338.
Gao H Y, Guo S L, Liu W Z, Che S G. Effect of fertilization on wheat yield and soil organic carbon accumulation in rainfed loessial tablelands[J]. Plant Nutrition and Fertilizer Science, 2009, 15 (6): 1333-1338.
[17]串麗敏. 基于產(chǎn)量反應(yīng)和農(nóng)學效率的小麥推薦施肥方法研究[D]. 北京: 中國農(nóng)業(yè)科學院博士學位論文,2013.
Chuan L M. Methodology of fertilizer recommendation based on yield response and agronomic efficiency for wheat[D]. Beijing: PhD Dissertation of Chinese Academy of Agricultural Sciences,
2013.[18]趙廣才. 中國小麥種植區(qū)劃研究(一)[J]. 麥類作物學報, 2010, 30(5): 886-895.
Zhao G C. Study on Chinese wheat planting regionalization (1)[J]. Journal of Triticeae Crops, 2010, 30(5): 886-895.
[19]中國農(nóng)業(yè)科學院土壤肥料研究所. 中國化肥區(qū)劃[M]. 北京: 中國農(nóng)業(yè)科技出版社, 1986.
Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences. Zone of fertilizer in China[M]. Beijing: China Agricultural Science and Technology Press, 1986.
[20]Liu M Q, Yu Z R, Liu Y H, Konijn N T. Fertilizer requirements for wheat and maize in China: The QUEFTS approach[J]. Nutrient Cycling in Agroecosystems, 2006, 74: 245-258.
[21]田中偉. 小麥產(chǎn)量和氮素吸收利用特性的改良特征及生理基礎(chǔ)[D]. 南京: 南京農(nóng)業(yè)大學博士學位論文,2012.
Tian Z W. Genetic improvement of grain yield and characteristics of nitrogen uptake and utilization in winter wheat and its physiological basis[D]. Nanjing: PhD Dissertation of Nanjing Agricultural University, 2012.
[22]Foulkes M J, Snape J W, Shearman V Jetal. Genetic progress in yield potential in wheat: recent advances and future prospects[J]. Journal of Agricultural Science, 2007, 145: 17-29.
[23]Zhu Z L, Chen D L. Nitrogen fertilizer use in China-contributionsto food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agrocosystems, 2002, 63: 117-127.
[24]Zhao B, Li X, Li X,etal. Long-term fertilizer experimentnetwork in China: crop yields and soil nutrient trends[J]. Agronomy Journal, 2010, 102 (1): 216-230.
[25]Xu X P, He P, Pampolino M F,etal. Nutrient requirements for maize in China based on QUEFTS analysis[J]. Field Crops Research, 2013, 150: 115-125.
[26]Witt C, Dobermann A, Abdulrachman S,etal. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia[J]. Field Crops Research, 1999, 63: 113-138.
[27]Yue S C, Meng Q F, Zhao R F,etal. Change in nitrogenrequirement with increasing grain yield for winter wheat[J]. Agronomy Journal, 2012, 104: 1687-1693.
N uptake and yield response of wheat in main wheat production regions of China
CHE Sheng-guo1, YUAN Liang1, LI Yan-ting1, LIN Zhi-an1, SHEN Bing2, HU Shu-wen3, ZHAO Bing-qiang1*
(1KeyLaboratoryofPlantNutritionandFertilizer,MinistryofAgriculture/InstituteofAgriculturalResourcesandRegionalPlanning,ChineseAcademyofAgriculturalSciences,Beijing100081,China; 2ChinaBlueChemicalLtd.,Beijing100029,China;3CollegeofResourcesandEnvironmentalSciences,ChinaAgriculturalUniversity,Beijing100193,China)
【Objectives】 Investigating the regional variation in N use efficiency and yield is helpful to guild regional fertilization and planning of wheat all over the country. This differences of N absorption among wheat-planting regions and their grain yields response of wheat were compared in this paper. 【Methods】 Based on mass data published in journals and field experiments in China after 2000, the wheat yield, N concentrations in grains and straw, and N uptake among Huang-huai-hai winter wheat planting region (HH), Northwest China winter-spring wheat planting region (NW) and Yangtze River winter wheat planting region (YR) were summerized, and 100 kg grain N absorption by wheat under different yield levels was proposed. 【Results】The results show that wheat grain yield, N contents in grains and straw, above-ground N uptake and N needed per 100 kg-grains have significant regional variations. The mean grain yield in China is 6.18 t/hm2with a variable coefficients of 34.37%. The highest grain yield is 7.05 t/hm2in whinter wheat area in HH and the lowest is 4.71 t/hm2in mixed spring and wheat area in NW, and the yield in whinter wheat area in midle and lower area of YR is 5.60 t/hm2. The N needed per 100 kg grain in China is 2.87 kg with a variable coefficient of 25.43%. The highest N needed per 100 kg-grains production is 2.98 kg in HH and the lowest is 2.60 kg in YR, and mid is 2.84 kg in NW. The mean N concentrations in grains and straws and the plant N uptake are 2.17%, 0.55% and 180.9 kg/hm2, with the corresponding variable coefficients of 23.96%, 38.18% and 44.50%, respectively. The N concentrations in grains and straw and the plant N uptake are all the highest in HH with values of 2.24%, 0.56% and 211.1 kg/hm2, following is in YR with values of 1.92%, 0.5% and 146.7 kg/hm2and in NW 2.14%, 0.53% and 138.0 kg/hm2, respectively. The N requirement per 100 kg grain, N concentrations in grains and straw increase with increasing wheat yields. The N requirement amounts are 2.79 kg, 2.80 kg, 2.91 kg, 3.03 kg and 3.05 kg for wheat yields <4.5 t/hm2, 4.5-6.5 t/hm2, 6.5-8.5 t/hm2, 8.5-10.5 t/hm2, and >10.5 t/hm2, respectively. The N concentrations in grains are 2.01%, 2.11%, 2.27%, 2.26% and 2.40% and the N concentrations in straw are 0.46%, 0.53%, 0.58%, 0.61% and 0.63% for the corresponding wheat yields, respectively. 【Conclusions】 The differences of temperature, water and soil among the wheat-planting regions cause the differences of N absorption characteristics. The difference should be taken into account for improving wheat yield and N use efficiency, and wheat grain yield and N absorption for special regions.
wheat yield; N uptake; N requirement; response characteristic
2015-01-26接受日期: 2015-04-01
國家“十二五”科技支撐計劃項目(2011BAD11B05, 2013BAD05B04) 資助。
車升國(1983—),男,山東臨沂人,博士生,助理研究員,主要從事農(nóng)田土壤肥力研究。
Tel: 010-82108664, E-mail: cheshengguo@caas.cn。*通信作者 Tel: 010-82108658, E-mail: zhaobingqiang@caas.cn
S512.1.01
A
1008-505X(2016)02-0287-09