• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    正交電場作用型自旋場效應(yīng)管的自旋極化控制

    2016-08-16 02:47:28肖運(yùn)昌彭濤朱昌勇王日興朱明旱
    關(guān)鍵詞:場效應(yīng)管文理學(xué)院電場

    肖運(yùn)昌, 彭濤, 朱昌勇, 王日興, 朱明旱

    正交電場作用型自旋場效應(yīng)管的自旋極化控制

    肖運(yùn)昌1, 彭濤1, 朱昌勇2, 王日興1, 朱明旱1

    (1. 湖南文理學(xué)院 電氣與信息工程學(xué)院, 湖南 常德, 415000; 2. 韶關(guān)學(xué)院 物理系, 廣東 韶關(guān), 512005)

    研究了電場調(diào)控型自旋場效應(yīng)管的量子輸運(yùn)過程。該場效應(yīng)管主要由雙正交電場和Rashba自旋軌道耦合共同調(diào)制。運(yùn)用散射矩陣方法并結(jié)合介觀體系的相關(guān)輸運(yùn)理論, 揭示了自旋場效應(yīng)管在各參數(shù)調(diào)控下的自旋量子輸運(yùn)過程, 其自旋輸運(yùn)規(guī)律可由相關(guān)理論給予解釋。數(shù)值計(jì)算表明, 與平行電場相比, 對于自旋軌道耦合型自旋場效應(yīng)管的量子輸運(yùn), 垂直電場的調(diào)制能夠?qū)е赂用黠@的自旋翻轉(zhuǎn)。

    自旋場效應(yīng)管; 自旋軌道耦合; 電場

    In these investigations, the external field effects, especially the electric fields, make crucial effects in the SOC realize and manipulations. Based on these works, study of the SOC system due to two orthogonal electric fields would be meaningful. Physically, study of this can not only clarify the spin properties of electric field modulations to the SFET, but also make the simulations of the SOC affected mesoscopic conductor clearly. Because that the external fields are always exist and well utilized in some semiconductor or cold atom simulated systems[22, 24-25]. In this work, by studies of the related physical properties of the SOC systems,parametric modulations to spin polarizations of the SFET are given in detail.

    1 Simulated model and formulations

    Fig.1 Schematic plots of the quantum transport in the spin field effect transistor system. The left and right are normal leads. The middle is the main effect region and subjected to two perpendicular electric fields and the Rashba spin orbit coupling.

    The prototypical model of the SFET is based on a microscopic conductor, as shown in Figure 1. The model is made up by two normal leads connected with a transport semiconductor channel, in the interfaces they are affected by a couple of interfacial potentials. The electrons are confined in the y—z plane and transport along the x-axis, their variations were characterized by the transmissions and reflections of the system[10, 19-21]. Therefore, the transport of an electron in the whole transport can be simply expressed by the quasi-one-dimensional electron gas, the Hamiltonian of the electrons in Leads can be written as

    where mfis the effective mass of an electron in the normal metal. The potential barriers around the interfaces are the position of x = x1and x = x2, the potentials form can be mathematical taken as

    presenting the size of the central region.

    Core of the model is the Rashba SOC region, which is shown in the middle part of Figure 1. As affected by two perpendicular electric fields, the Hamiltonian of the electron transport through the semiconductor can be physically treated as

    From this equation the system beyond the effective-mass approximation can be found easily. Where Hvis the kinetic energy part, HSOis the Hamiltonian of the SOC part and kαis the strength of the Rashba SOC, whichcan be tuned by the wavelength of the laser beams and the atomic mass. In the semiconductor, the external field Hextincludes the parallel part E∥and the perpendicular part E⊥.

    The wave function of an electron transfers from the left to the right lead can be generally expressed as

    In the equation α = L, R refer to two normal leads,is the Fermi wave-vector, andare the spins in the leads withcorresponding to the parallel and antiparallel of the spin eigenstates. In the center of the model wave functions with the eigenstates can be written as

    Where cnare the corresponding normalization coefficients andexpress the spinor forms as. Wave vectorscan be derived from the dispersion relation equations

    According to the scattering theory of the quantum transport, the electron reflections and transmissions can be derived by the scattering matrix involving to the system[19, 27]

    Thus the character of the quantum transport can be got, and more exactly the variation of the system can be measured by the number of the electrons in the propagating mode.

    2 Process analysis and numerical discussions

    Based on the above processions, the quantum transport in the SFET can be numerical studied, and the spin properties modulated by the external fields and SOCs also can be got. To get an intuitive physical picture of the spin quantum transport, we consider the typical InAs-based semiconductors and the mass difference is τ = ms/mf= 0.036[10, 20]. The Fermi energy is EF= 2.47 eV and the Fermi wave vector is kF= 4 nm-1, for expression convenient we defined a reference wave vector κF= 0.1 kF. Furthermore, all over the calculations the semiconductor length between two potentials is set as100 μm , the symmetric applied potentials are chosen asand controlled in the interfaces.

    Firstly, the wave vector discussions are given by the analysis of the given wave formulations. Mainly consider the Eq. (5), in the spin orbit coupled region, the wave vectors are determined by the solution of this equation. For calculation convenient dimensionless units can be applied to Eq. (5), the form can be simplified as

    Usually the evanescent wave should be not considered in the propagating mode, especially in the condition of the Griffith boundary conditions or the Floquet transport[28]. And the solutions of the wave vector function must be investigated comprehensively. Simply, when ignoring the perpendicular electric field effect, i.e. E⊥= 0 wave vectors can be exactly given

    Direct from equation (10), we can get that the no evanescent wave will allowed in the relation of E∥<τk2. Thus in the Floquet pump transport, only the appropriatecan make the pump process realized in the semiconductor system (the unit of the parallel couplings is 0.1κF~κF)[29]. While for the stronger parallel couplings, the pump process should be calculated as the evanescent waves[28]. Moreover, by influences of the parallel couplings, the time reversal symmetry of the system is broken, and the pure spin pumped currents appear in some proper parametric settings, just as the affect of the axial magnetic field[21].

    Fig.2 Total spin transmissions of the quantum transports, the solid, dashed lines correspond to different spin transmissions T↑and T↓. Here the strength of one of the parameters is set as 4kFand the other is out of considered, the spin transmissions modulated by the Rashba SOC are shown in the panels.

    Furthermore, when the parallel couplings are out of consideration, the double reflection of the semiconductors is occurred. The wave vectors areand exact solutions of the quantum transport can be derived. As considering the perpendicular electric field effect, to avoid the one-band case, the strength ofwill be limited in some values. Simply, when the perpendicular couplings are much smaller than the perpendicular electric field effect//EE⊥?, with omitting the perpendicular couplings wave vectors can be analytical derived as When only consider the SOC affections, that just the double reflection in semiconductors, wave vectors of spin modulations can be exactly got form the quantum transport equations[20], which are reduced from corresponding ones aswhen= 0 is chosen. From the equation it also can get that a no evanescent wave transport should be set in some proper values of the perpendicular electric fields. From the analytical waves as are shown in Eq. (10) and Eq. (11), we can also get that for the radical part of the equations, the perpendicular electric field can make more significant changes to the value of the wave vectors, i.e., the small modulations ofcan lead to the imaginary wave vectors in the quantum transport.

    In another way, numerical calculations of these conditions make further explanations to the analytical analysis. As all we know, when only the Rashba SOC is considered, i.e. E⊥= E∥= 0, there are no spin flipping in the spin precessions and the spin transmissions have the relations T↑↓= T↓↑= 0 and T↑↑= T↓↓, this also makes the total spin transmissions be equal T↑= T↓. Usually, Rashba SOC modulations to the quantum transport would be an excellent explanation of the physical essence of the SOC system. When one of the electric fields is exist, as shown in Figure 2, total spin transmissions of the transport are changed. For only the perpendicular electric field affect condition, as shown by the solid and dashed lines, oscillations of T↑and T↓almost keep the unchangeable amplitude but with some phase shift. This indicates that parameters of the perpendicular electric fields just make the sinusoidal differences to the final spin quantum transport, and the significant modulations to the spin transmissions are coincident with the analytical results of the previous paragraph. The dash-dot and dash-dot-dot lines show the parallel couplings effect to the spin transport,obviously, the spin transmissions oscillations to the Rashba SOC remain but the amplitude of the total spin transmissions are varied. In the oscillations the T↑and T↓almost keep the same phase and some oscillation peaks are divided from one to two. These mean that the parallel couplings will make significant influences to the amplitude and the phase of the simulated SOC transport. Particularly, the spin transmission resonant can easily occur in some Rashba SOC modulations, though as the system is affected by the barrier potentials and the perpendicular electric fields.

    Polarizations of the one electric field effect to the transport are also shown in Figure 3. Form the figure it can get that in both of the two conditions, the parameters make the polarization oscillations versus the Rashba SOC vary with each other. Non periodical oscillations are appeared, and the value of the polarizations can make the positive and negative change with the SOC regulation. For the same strength modulation, the amplitude of the E⊥affected oscillation is larger than that of the E∥affected one, as shown by the solid and dashed lines of Figure 3. This phenomenon tells that compared to the parallel coupling, the perpendicular electric field makes a more remarkable spin flipping to the quantum transport of the simulated system.

    Fig.3 Spin polarizations of the quantum transports. Only one of the parameters is set and the other one is out of considered. The solid lines correspond to E⊥= 4κFand the dashed lines correspond to E∥= 4κF.

    Then the electric field modulations to the transmission properties of the SOC system can also be calculated, numerical discussions are given as follows. In this condition, we consider there certain one of the two perpendicular electric fields and the SOC strength are set and investigate the transmission oscillations by modulated the other parameter. Though as subjected to the fixed size and SOC strength of the system, the transmissions are still oscillated with the electric fields, as shown in Figure 4. For fixed parameters, the transmissions are oscillated with the small parallel coupling around the large values. While strengthen the parallel coupling, the amplitude of the spin down transmission oscillations becomes larger, and the spin up transmission oscillations almost keep in a same value, these can be seen in Figure 4(a).

    Fig.4 Total spin transmissions of the quantum transports, the solid, dashed lines correspond to different spin transmissions T↑and T↓. Here the strength of Rashba SOC and one of the electric fields are set as 5κFand 2κFseparately. The spin transmissions are modulated by the other electric field as shown in the panels.

    This comes from the parallel coupling makes weaker modulations than the perpendicular electric field asthe results of showing before. When consider the perpendicular electric field modulations to the system, the transmissions oscillations are shown in Figure 4(b). From the panel it can get that though the small perpendicular electric field can make obviously transmissions oscillations. In these oscillations, the spin down and spin up transmissions keep the same amplitude, and a half period phase difference appears in the small value. As increasing the strength of E⊥, the phase differences are changed, and in some values the perpendicular electric field can make the spin down and spin up transmissions achieve the peaks in the same phases, as shown in the Figure 4(b). Also the large enough E⊥can make the transmissions oscillate in larger amplitudes. This comes from the strong spin flipping characteristic of the perpendicular electric field.

    Finally, numerical discussions of the polarization properties due to the electric field effects in the quantum transport of the SOC system are given. Referring these calculations spin polarizations modulated by the accompanied parameters can be got as Figure 5. From the figure it can find that as consider the effects of one of the fixed electric fields, polarization oscillations versus the other electric field are still exist and the amplitudes are increased. Furthermore, in these conditions, even though taking into the small strength of the perpendicular electric field, the spin transmissions are all of large polarizations. For the large electric field modulation, the polarizations all keep the same oscillations style but strengthen in amplitudes as shown in Figure 3, which come from the significant modulation of the electric field modulations. So it is very important to choose proper electric field settings in the SOC system.

    Fig. 5 Spin polarizations of the quantum transports. One of the electric fields is set as 2κFand the Rashba SOC is set as 5κF. The other electric field (Ed, solid lines correspond to the E∥modulation and the dashed lines correspond to the E⊥modulation) modulations to the spin polarizations.

    3 Conclusion

    Particular for the quantum transport of the SOC system, we have studied the spin transmission and spin polarization properties by the SOC and two perpendicular electric field modulations. Comparing with different parametric modulations of the quantum transport, we clearly obtained the SOC and the electric field effects to the quantum transport of the SOC system. Furthermore, including the SOC and size oscillations effect of the system, the electric fields also make the spin transmissions and spin polarizations oscillate thoroughly. Furthermore, the parallel coupling modulations lead to the spin flipping of the quantum transport in the SOC system, and the perpendicular electric field can make an even more remarkable spin flipping to the spin transport. These can be easily understood by the analytical results of the spin wave vectors in some specific parametric modulations. Numerical results indicate that some complicate parametric modulations are still almost kept same modulations of the spin precessions.

    Acknowledgments: Thanks Doctor Zhong Q H and Luo W for their helpful and interesting discussions.

    [1] Datta S, Das B. Electronic analog of the electro-optic modulator [J]. Appl Phys Lett, 1990, 56(7): 665-667.

    [2] Ohno Y, Young D K, Beschoten B, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure [J]. Nature, 1999, 402: 790-792.

    [3] Schapers Th, Nitta J, Heersche H B, et al. Interference ferromagnet/semiconductor/ferromagnetic spin field effect transistor [J]. Phys Rev B, 2001, 64: 125314(1-5).

    [4] Khodas M, Shekhter A, Finkelstein A M. Spin polarization of electrons by nonmagnetic heterostructures: The basics ofspin optics [J]. Phys Rev Lett, 2004, 92(8): 086602(1-4).

    [5] Bercioux D, De Martino A. Spin-resolved scattering through spin-orbit nanostructures in graphene [J]. Phys Rev B, 2010,81: 165410(1-9).

    [6] Saarikoski H, Vazquez-Lozano J E, Baltanas J P, et al. Topological transitions in spin interferometers [J]. Phys Rev B,2015, 91: 241406(R)(1-5).

    [7] Wolf S A, Awshalom D D, Buhrman R A, et al. Spintronics: A spin-based electronics vision for the future [J]. Science,2001, 294:1 488-1 495.

    [8] Zutic I, Fabian J, Das Sarma S. Spintronics: fundamentals and applications [J]. Rev Mod Phys, 2004, 76: 323-410.

    [9] Rashba E I. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem [J]. Phys Rev B, 2000, 62(24): 67-70.

    [10] Lee M, Choi M S. Ballistic spin currents in mesoscopic metal/In(Ga)As/metal junctions [J]. Phys Rev B, 2005, 71:153306.

    [11] Zhu Z G, Jia C L, Berakdar J. Proposal for fast optical control of spin dynamics in a quantum wire [J]. Phys Rev B, 2010,82: 235304(1-5).

    [12] Zhang Y, Shibata K, Nagai N, et al. Terahertz intersublevel transitions in single self-assembled inas quantum dots with variable electron numbers [J]. Nano Lett, 2015, 15(2): 1 166-1 170.

    [13] Mireles F, Kirczenow G. Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires [J]. Phys Rev B, 2001, 64: 024426(1-13).

    [14] Kirczenow G. Ideal spin filters: A theoretical study of electron transmission through ordered and disordered interfaces between ferromagnetic metals and semiconductors [J]. Phys Rev B, 2001, 63: 054422(1-6).

    [15] Schliemann J, Egues J C, Loss D. Nonballistic spin-field-effect transistor [J]. Phys Rev Lett, 2003, 90: 146801(1-4).

    [16] Hasan M Z, Kane C L. Colloquium: Topological insulators [J]. Rev Mod Phys, 2010, 82: 3 045-3 047.

    [17] Qi X L, Zhang S C. Topological insulators and superconductors [J]. Rev Mod Phys, 2011, 83: 1 057-1 110.

    [18] Sugahara S, Takamura Y, Shuto Y, et al. Field-effect spin-transistors [M]. Springer Netherlands, 2016: 1 243-1 279.

    [19] Ramaglia V M, Bercioux D, Cataudella V, et al. Spin polarization of electrons with Rashba double-refraction [J]. J Phys Cond Matt, 2004, 16: 9 143-9 1554.

    [20] Xiao Y C, Zhu R, Deng W J. Ballistic transport in extended Datta-Das spin field effect transistors [J]. Solid State Commun,2011, 151: 1 214-1 219.

    [21] Xiao Y C, Wang R X, Deng W Y. Quantum transport of the semiconductor pump: Due to an axial external field [J]. Physica B, 2014, 449: 42-46.

    [22] Brantut J P, Meineke J, Stadler D, et al. Conduction of ultracold fermions through a mesoscopic channel [J]. Science, 2012,337(6098): 1 069-1 071.

    [23] Stadler D, Krinner S, Meineke J, et al. Observing the drop of resistance in the flow of a superfluid Fermi gas [J]. Nature,2012, 491(7426): 736-739.

    [24] Zhang J Y, Ji S C, Chen Z, et al. Collective dipole oscillations of a spin-orbit coupled Bose-Einstein condensate [J]. Phys. Rev Lett, 2012, 109: 115301(1-4).

    [25] Lin Y J, Jimenez G, Spielman I B. Spin-orbit-coupled Bose-Einstein condensates [J]. Nature, 2011, 471: 83-85.

    [26] Molnar B, Peeters F M, Vasilopoulos P. Spin-dependent magnetotransport through a ring due to spin-orbit interaction [J]. Phys Rev B, 2004, 69: 155335(1-11).

    [27] Jiang K M, Yang J, Zhang R, et al. Ballistic transport properties in spin field-effect transistors [J]. J Appl Phys, 2008, 104:053722(1-11).

    [28] Moskalets M, Büttiker M. Floquet scattering theory of quantum pumps [J]. Phys Rev B, 2002, 66: 205320(1-10).

    [29] Cahay M, Bandyopadhyay S. Conductance modulation of spin interferom [J]. Phys Rev B, 2003, 68: 115316(1-5).

    (責(zé)任編校: 劉剛毅)

    Spin polarization control of the spin field effect transistors due to two orthogonal electric fields

    Xiao Yunchang1, Peng Tao1, Zhu Changyong2, Wang Rixing1, Zhu Minghan1
    (1. College of Electrical and Information Engineering, Hunan University of Arts and Science, Changde 415000,China; 2. Department of Physics, Shaoguan University, Shaoguan 512005, China)

    Quantum transports of the spin field effect transistors (SFET) tuned by electric field are investigated in this work. Target modulations of the SFET are two orthogonal electric fields and the Rashba spin-orbit coupling (SOC). By using the scattering matrix method and related transport theories in mesoscopic systems, investigations reveal that spin quantum transport of the SFET can be adjusted by the parametric modulations. Implements of the spin transport are systematic presented in theory. Numerical calculations show that compared to the parallel electric field, the perpendicular coupling modulations can make an even more remarkable spin flipping to the quantum transport in the SOC system.

    spin field effect transistors; spin orbit coupling; electric fields

    O 471

    1672-6146(2016)03-0038-07

    10.3969/j.issn.1672-6146.2016.03.009

    肖運(yùn)昌, phyxiaofan@163.com。

    2016-04-18

    湖南文理學(xué)院博士啟動基金(10133004); 湖南省自然科學(xué)基金(12JJ3061); 湖南省自然科學(xué)基金(2016JJ3096)。processions, not only the reliable spin injection measurements, but also the detailed spin precessions in the materials are detailed figured, results demonstrate that they are all adaptable to describe and understand spin properties of electrons in the devices. Lately, cold atom analog of the mesoscopic conductor has been realized with6Li atoms by Brantut et al[22]. As a foundation research, they show that the electric resistance is detectable even in the defect-free device. The typical quantum phenomena of physics such as quantized conduction, local resistance, and quantum phase transitions have been observed accordingly[23]. This work makes the quantum transport in cold atom simulations come true. In another recent experimental study, the spin orbit coupled system simulated by the cold atoms is successfully realized and investigated by Zhang et al[24]. In the broad parameter region, dynamics of the center-of-mass dipole oscillation can be studied, where spin-orbit coupling (SOC) is one of the main simulated parameters with the sum-rule approach. There are observable quantum phase transitions, which separate the magnetic nonzero-momentum condensate from the nonmagnetic zero-momentum phase, make the analogy of the spin orbit coupled bosons be achieved. All these results are in good agreements between the experimental and theoretical investigations.

    With rapid developments in investigations of the spin electrons[1-6], lots of related electronic devices named spintronics[7-8], physical phenomenon such as spin transports[9-12], spin precessions[13], injections and detection of spin polarizations[14], have been followed and thoroughly studied in recent years. One based on these fundamental researches and ingenious applications is realization of the spin field effect transistors (SFET), which has sparked various investigations in physical processes of quantum properties and spin precessions[15-17]. Generally speaking, the key advantage of the SFET is opening up a new possibility of the spin electrons control, which becomes a fantastic and vigorous reference for basic experimental tests in solid state systems[7, 18].

    At the beginning of the investigations of SFET, feasibilities of theory and experiments in semiconductors with delta potentials on the chip have been studied in detail[19-21]. For their easy modulations to the spin

    猜你喜歡
    場效應(yīng)管文理學(xué)院電場
    巧用對稱法 妙解電場題
    長江大學(xué)文理學(xué)院作品選登
    湖北師范大學(xué)文理學(xué)院作品
    大眾文藝(2020年15期)2020-09-11 02:28:04
    黑夜的獻(xiàn)詩
    大眾文藝(2019年23期)2019-12-15 09:59:08
    N溝道結(jié)型場效應(yīng)管應(yīng)用電路設(shè)計(jì)
    電子制作(2018年23期)2018-12-26 01:01:26
    場效應(yīng)管檢測與應(yīng)用電路探討
    電子測試(2018年13期)2018-09-26 03:29:38
    西安文理學(xué)院高萍教授
    電場強(qiáng)度單個表達(dá)的比較
    電場中六個常見物理量的大小比較
    場效應(yīng)管實(shí)驗(yàn)電路設(shè)計(jì)與測試
    国产欧美日韩精品亚洲av| 人妻久久中文字幕网| 在线观看午夜福利视频| 国产精品影院久久| 国产精品乱码一区二三区的特点 | 亚洲黑人精品在线| 成年人黄色毛片网站| 在线av久久热| 免费在线观看日本一区| 老熟妇乱子伦视频在线观看| 精品国产超薄肉色丝袜足j| a级毛片黄视频| 亚洲精品成人av观看孕妇| 精品国产超薄肉色丝袜足j| 少妇粗大呻吟视频| 日本欧美视频一区| 精品一区二区三卡| 日本黄色日本黄色录像| 亚洲av美国av| 亚洲成av片中文字幕在线观看| 1024香蕉在线观看| 亚洲av美国av| 国产三级黄色录像| 亚洲性夜色夜夜综合| 视频区欧美日本亚洲| 欧美精品人与动牲交sv欧美| 国产欧美日韩综合在线一区二区| 色尼玛亚洲综合影院| 国产人伦9x9x在线观看| 久久青草综合色| 国产成人免费无遮挡视频| 下体分泌物呈黄色| 一级a爱视频在线免费观看| 久久精品亚洲精品国产色婷小说| 亚洲午夜理论影院| 中文字幕高清在线视频| 国产免费男女视频| 一级a爱视频在线免费观看| 国产成人欧美| 精品人妻1区二区| 日韩精品免费视频一区二区三区| a级片在线免费高清观看视频| 欧美老熟妇乱子伦牲交| 亚洲av电影在线进入| 高清黄色对白视频在线免费看| 麻豆国产av国片精品| 成人三级做爰电影| 精品国产乱子伦一区二区三区| 999久久久精品免费观看国产| 亚洲,欧美精品.| 一级,二级,三级黄色视频| 国产男女内射视频| 一边摸一边抽搐一进一出视频| 天天影视国产精品| 91精品三级在线观看| 色94色欧美一区二区| 欧美日本中文国产一区发布| 交换朋友夫妻互换小说| 波多野结衣一区麻豆| 女人精品久久久久毛片| 亚洲五月婷婷丁香| 三级毛片av免费| 成熟少妇高潮喷水视频| 最近最新中文字幕大全电影3 | 成人18禁在线播放| 国产精品电影一区二区三区 | 欧美日韩乱码在线| 免费观看a级毛片全部| 亚洲国产中文字幕在线视频| 亚洲一区中文字幕在线| 欧美老熟妇乱子伦牲交| 三级毛片av免费| 亚洲 欧美一区二区三区| 亚洲精品中文字幕在线视频| 90打野战视频偷拍视频| 欧美黄色淫秽网站| 欧美乱码精品一区二区三区| 精品人妻在线不人妻| 交换朋友夫妻互换小说| 99久久综合精品五月天人人| 亚洲专区国产一区二区| 亚洲精品美女久久av网站| 亚洲人成电影免费在线| 老司机深夜福利视频在线观看| 免费少妇av软件| 最近最新中文字幕大全免费视频| 久久人妻av系列| 国产无遮挡羞羞视频在线观看| 国产高清激情床上av| 亚洲精华国产精华精| www.熟女人妻精品国产| 亚洲熟女毛片儿| 免费在线观看完整版高清| 久久九九热精品免费| 久久午夜综合久久蜜桃| 午夜两性在线视频| 国产精品一区二区在线观看99| 国产精品秋霞免费鲁丝片| 91在线观看av| 一区二区日韩欧美中文字幕| 国产色视频综合| 亚洲精品av麻豆狂野| 国产精品综合久久久久久久免费 | 悠悠久久av| 国产欧美亚洲国产| 女人被狂操c到高潮| 亚洲国产精品合色在线| www.999成人在线观看| 久久亚洲真实| xxx96com| 国产日韩欧美亚洲二区| 欧美在线一区亚洲| 黄色怎么调成土黄色| 精品电影一区二区在线| 性色av乱码一区二区三区2| 欧美中文综合在线视频| 国产精品久久久久久精品古装| 天堂√8在线中文| 热99re8久久精品国产| 丁香六月欧美| 在线观看一区二区三区激情| 高清毛片免费观看视频网站 | 美国免费a级毛片| 亚洲国产看品久久| 波多野结衣一区麻豆| 在线国产一区二区在线| 精品视频人人做人人爽| 桃红色精品国产亚洲av| 精品卡一卡二卡四卡免费| 亚洲欧美色中文字幕在线| 亚洲黑人精品在线| 怎么达到女性高潮| 91成人精品电影| 亚洲一码二码三码区别大吗| 国产精品欧美亚洲77777| 亚洲成人免费电影在线观看| 90打野战视频偷拍视频| 精品午夜福利视频在线观看一区| 国产无遮挡羞羞视频在线观看| 岛国毛片在线播放| 91麻豆av在线| 国产无遮挡羞羞视频在线观看| 国产精品.久久久| 夜夜夜夜夜久久久久| av不卡在线播放| 久热这里只有精品99| 欧美乱妇无乱码| 在线观看免费高清a一片| 亚洲美女黄片视频| 亚洲五月婷婷丁香| 国产成+人综合+亚洲专区| 久久狼人影院| av福利片在线| 欧美激情久久久久久爽电影 | 巨乳人妻的诱惑在线观看| 日韩人妻精品一区2区三区| 精品第一国产精品| 村上凉子中文字幕在线| 国产精华一区二区三区| 又黄又粗又硬又大视频| 国产精品国产av在线观看| 免费观看a级毛片全部| 亚洲一区二区三区不卡视频| 精品乱码久久久久久99久播| 老司机午夜福利在线观看视频| 国产视频一区二区在线看| 亚洲精品粉嫩美女一区| 国产精品免费大片| 婷婷成人精品国产| 在线看a的网站| 久久ye,这里只有精品| 一进一出抽搐gif免费好疼 | 国产精品永久免费网站| 丝瓜视频免费看黄片| 国产成人精品久久二区二区91| 亚洲情色 制服丝袜| 午夜免费成人在线视频| 一边摸一边抽搐一进一小说 | 久久精品国产亚洲av高清一级| 中文字幕最新亚洲高清| 国产成人系列免费观看| 69精品国产乱码久久久| 国产精品1区2区在线观看. | 久久久久久久久免费视频了| 亚洲成人免费电影在线观看| 成人国产一区最新在线观看| 每晚都被弄得嗷嗷叫到高潮| 黄色女人牲交| 一进一出抽搐动态| 麻豆成人av在线观看| 亚洲av日韩精品久久久久久密| 成人三级做爰电影| 99久久人妻综合| 夜夜爽天天搞| 韩国av一区二区三区四区| 久热这里只有精品99| 日本一区二区免费在线视频| 国产亚洲精品久久久久久毛片 | netflix在线观看网站| av欧美777| 桃红色精品国产亚洲av| 免费日韩欧美在线观看| 久久久久久久午夜电影 | 免费在线观看视频国产中文字幕亚洲| 国产精品免费一区二区三区在线 | 一本综合久久免费| 19禁男女啪啪无遮挡网站| 久久久久久亚洲精品国产蜜桃av| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清 | 国精品久久久久久国模美| 亚洲成人免费av在线播放| 亚洲精品自拍成人| 色婷婷久久久亚洲欧美| 成人免费观看视频高清| 欧美中文综合在线视频| 午夜影院日韩av| 十八禁人妻一区二区| 亚洲av成人一区二区三| 99热只有精品国产| 亚洲成国产人片在线观看| 日本黄色视频三级网站网址 | 日本黄色视频三级网站网址 | 黑人操中国人逼视频| 好男人电影高清在线观看| 久久人妻福利社区极品人妻图片| 18禁裸乳无遮挡动漫免费视频| 老司机深夜福利视频在线观看| 亚洲精品一二三| 日本wwww免费看| 国产精品1区2区在线观看. | 成人精品一区二区免费| 国产一卡二卡三卡精品| 久久久久视频综合| av天堂在线播放| 中亚洲国语对白在线视频| 日日爽夜夜爽网站| 人妻 亚洲 视频| aaaaa片日本免费| 在线观看66精品国产| 男女床上黄色一级片免费看| 男女高潮啪啪啪动态图| 美女午夜性视频免费| 国产精品 国内视频| 国产1区2区3区精品| 久久久精品免费免费高清| 性少妇av在线| 每晚都被弄得嗷嗷叫到高潮| 欧美亚洲 丝袜 人妻 在线| 一级毛片精品| 国产精品免费一区二区三区在线 | 成人av一区二区三区在线看| 麻豆av在线久日| 韩国av一区二区三区四区| 亚洲第一青青草原| 男女高潮啪啪啪动态图| 国产真人三级小视频在线观看| 欧美人与性动交α欧美精品济南到| 欧美日韩av久久| 一个人免费在线观看的高清视频| 久久青草综合色| 亚洲精品久久成人aⅴ小说| 性少妇av在线| 丝瓜视频免费看黄片| 国产成人影院久久av| 亚洲一区二区三区不卡视频| 在线天堂中文资源库| 欧美另类亚洲清纯唯美| 日本五十路高清| 高清毛片免费观看视频网站 | 不卡一级毛片| 亚洲一区二区三区欧美精品| 亚洲一区中文字幕在线| 久久精品国产亚洲av高清一级| 国产精品电影一区二区三区 | 午夜日韩欧美国产| 欧美黑人欧美精品刺激| 国产成人啪精品午夜网站| 国产在线一区二区三区精| a在线观看视频网站| 欧美性长视频在线观看| 大陆偷拍与自拍| 亚洲精品久久午夜乱码| 亚洲av美国av| 亚洲精品国产色婷婷电影| 十八禁高潮呻吟视频| 青草久久国产| 又紧又爽又黄一区二区| 男女免费视频国产| 91九色精品人成在线观看| 午夜福利,免费看| 欧美成人免费av一区二区三区 | 制服诱惑二区| 成人特级黄色片久久久久久久| 亚洲精品中文字幕一二三四区| 看片在线看免费视频| 少妇被粗大的猛进出69影院| 精品久久蜜臀av无| 十八禁高潮呻吟视频| 成人黄色视频免费在线看| 黑人巨大精品欧美一区二区mp4| 久久中文字幕人妻熟女| 色播在线永久视频| 19禁男女啪啪无遮挡网站| 国产日韩一区二区三区精品不卡| 午夜福利乱码中文字幕| 久久久久国产一级毛片高清牌| 自线自在国产av| 久久久久国内视频| 国产精品免费视频内射| av网站免费在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 久久久久精品人妻al黑| 久久青草综合色| 宅男免费午夜| 最近最新中文字幕大全电影3 | 夜夜夜夜夜久久久久| 午夜视频精品福利| 成人黄色视频免费在线看| 建设人人有责人人尽责人人享有的| 亚洲av日韩在线播放| 亚洲中文日韩欧美视频| 成人亚洲精品一区在线观看| 精品国内亚洲2022精品成人 | 国产成人啪精品午夜网站| 好男人电影高清在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产精品一区二区免费欧美| 老熟妇仑乱视频hdxx| 大陆偷拍与自拍| 男女高潮啪啪啪动态图| 悠悠久久av| 这个男人来自地球电影免费观看| 啦啦啦视频在线资源免费观看| 国产不卡一卡二| 欧美成狂野欧美在线观看| 久久精品亚洲熟妇少妇任你| 国产av一区二区精品久久| av片东京热男人的天堂| 国产精品久久久久久精品古装| 满18在线观看网站| 国产片内射在线| 人人妻,人人澡人人爽秒播| 嫁个100分男人电影在线观看| 热re99久久国产66热| 一进一出好大好爽视频| 精品久久久久久电影网| 国产精品免费视频内射| 国产一区二区激情短视频| 18禁裸乳无遮挡动漫免费视频| 精品少妇一区二区三区视频日本电影| 人人妻人人爽人人添夜夜欢视频| 国产黄色免费在线视频| 黄色怎么调成土黄色| 日韩成人在线观看一区二区三区| 欧美乱妇无乱码| 高清欧美精品videossex| 丰满的人妻完整版| 99久久国产精品久久久| 超碰成人久久| www.999成人在线观看| 国产精品亚洲av一区麻豆| 超碰97精品在线观看| 狠狠狠狠99中文字幕| 脱女人内裤的视频| 亚洲欧美色中文字幕在线| 国产精品成人在线| 激情在线观看视频在线高清 | 国产男女内射视频| 999久久久国产精品视频| 亚洲精品中文字幕一二三四区| 男男h啪啪无遮挡| 在线观看免费视频网站a站| 男人操女人黄网站| 国产亚洲精品一区二区www | av天堂久久9| 久久人人97超碰香蕉20202| 一级片免费观看大全| 怎么达到女性高潮| videos熟女内射| 超色免费av| 日韩免费高清中文字幕av| 宅男免费午夜| av片东京热男人的天堂| 亚洲熟女毛片儿| 欧美日韩乱码在线| 我的亚洲天堂| 新久久久久国产一级毛片| 色精品久久人妻99蜜桃| 男男h啪啪无遮挡| 国产欧美日韩精品亚洲av| www.精华液| 涩涩av久久男人的天堂| 啪啪无遮挡十八禁网站| 美女扒开内裤让男人捅视频| 国产成人欧美| 久久亚洲真实| 久久 成人 亚洲| 久久精品aⅴ一区二区三区四区| 久久久国产成人免费| a级毛片黄视频| 久久国产精品大桥未久av| 在线播放国产精品三级| 精品亚洲成国产av| 欧美精品一区二区免费开放| 热99国产精品久久久久久7| 精品乱码久久久久久99久播| av片东京热男人的天堂| 黄网站色视频无遮挡免费观看| 国产精品.久久久| 国产麻豆69| 国产视频一区二区在线看| 亚洲av熟女| 热re99久久国产66热| 宅男免费午夜| 中文字幕色久视频| 女人被躁到高潮嗷嗷叫费观| 亚洲国产欧美一区二区综合| 欧美日韩国产mv在线观看视频| 亚洲熟妇中文字幕五十中出 | 后天国语完整版免费观看| 欧美人与性动交α欧美软件| 国产精品久久久人人做人人爽| 十分钟在线观看高清视频www| 悠悠久久av| 欧美乱妇无乱码| 麻豆成人av在线观看| 成在线人永久免费视频| 怎么达到女性高潮| 亚洲精品一二三| 日本vs欧美在线观看视频| 老汉色∧v一级毛片| 久久久久国内视频| 757午夜福利合集在线观看| 黄色视频,在线免费观看| 久久青草综合色| 91麻豆精品激情在线观看国产 | 色婷婷av一区二区三区视频| 一进一出抽搐gif免费好疼 | 男人操女人黄网站| 777久久人妻少妇嫩草av网站| 亚洲性夜色夜夜综合| 黄色毛片三级朝国网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 欧美国产精品va在线观看不卡| 日韩欧美免费精品| 91精品国产国语对白视频| 亚洲精品粉嫩美女一区| 最新美女视频免费是黄的| 999精品在线视频| 久久精品国产清高在天天线| 午夜精品在线福利| 国产精品1区2区在线观看. | 可以免费在线观看a视频的电影网站| 午夜精品国产一区二区电影| 久久精品91无色码中文字幕| 亚洲熟女毛片儿| 久久久国产成人免费| 老熟女久久久| 18禁裸乳无遮挡动漫免费视频| 国产xxxxx性猛交| 欧美国产精品一级二级三级| 亚洲熟妇中文字幕五十中出 | 日韩欧美国产一区二区入口| 99久久综合精品五月天人人| 久久精品国产清高在天天线| 一区二区三区国产精品乱码| 亚洲av熟女| 国产精品一区二区精品视频观看| tocl精华| 乱人伦中国视频| 91麻豆av在线| 亚洲,欧美精品.| 热re99久久国产66热| 狠狠婷婷综合久久久久久88av| 在线十欧美十亚洲十日本专区| 一边摸一边抽搐一进一小说 | 在线av久久热| 少妇被粗大的猛进出69影院| av国产精品久久久久影院| 久久人妻福利社区极品人妻图片| 九色亚洲精品在线播放| 成人黄色视频免费在线看| 久久精品国产a三级三级三级| 久久久久国产一级毛片高清牌| 久久中文看片网| 国产1区2区3区精品| 91成年电影在线观看| 色综合婷婷激情| 国产精品九九99| 久久国产亚洲av麻豆专区| 国产精品久久久久成人av| 日韩成人在线观看一区二区三区| 久久久久久亚洲精品国产蜜桃av| 婷婷精品国产亚洲av在线 | 美国免费a级毛片| 国内毛片毛片毛片毛片毛片| 成人精品一区二区免费| 国产午夜精品久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣av一区二区av| 亚洲一区高清亚洲精品| 99久久人妻综合| 国产麻豆69| 涩涩av久久男人的天堂| 日本撒尿小便嘘嘘汇集6| 国产成人欧美| 久久精品亚洲av国产电影网| 精品福利观看| 精品国产一区二区三区久久久樱花| 亚洲av片天天在线观看| 深夜精品福利| 久久人妻av系列| 18禁国产床啪视频网站| 国产激情久久老熟女| 日韩欧美国产一区二区入口| 18禁裸乳无遮挡免费网站照片 | 国产一区二区三区视频了| 波多野结衣一区麻豆| 精品国产亚洲在线| 满18在线观看网站| 欧美精品av麻豆av| 午夜福利乱码中文字幕| 最新在线观看一区二区三区| 日本五十路高清| 99热网站在线观看| 自线自在国产av| bbb黄色大片| 亚洲精品国产区一区二| 日韩欧美免费精品| 热re99久久国产66热| 老汉色av国产亚洲站长工具| 精品久久蜜臀av无| 亚洲专区中文字幕在线| 人人妻人人澡人人看| 999精品在线视频| 一区在线观看完整版| 午夜精品国产一区二区电影| 在线观看免费午夜福利视频| 纯流量卡能插随身wifi吗| 久99久视频精品免费| av线在线观看网站| 99久久精品国产亚洲精品| 精品亚洲成a人片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 成人亚洲精品一区在线观看| 水蜜桃什么品种好| 黄色片一级片一级黄色片| 成年动漫av网址| 丁香六月欧美| 一本综合久久免费| 在线观看免费日韩欧美大片| 精品亚洲成国产av| 夜夜躁狠狠躁天天躁| 久久人妻熟女aⅴ| 国产精品久久久久久精品古装| 少妇的丰满在线观看| 亚洲成人国产一区在线观看| 咕卡用的链子| 黄片大片在线免费观看| 日本五十路高清| 国产高清国产精品国产三级| 国产av精品麻豆| 久久久精品区二区三区| 首页视频小说图片口味搜索| 久久中文看片网| 欧美 亚洲 国产 日韩一| 午夜精品在线福利| 欧美在线黄色| 少妇猛男粗大的猛烈进出视频| av网站免费在线观看视频| 伊人久久大香线蕉亚洲五| 男女高潮啪啪啪动态图| 国产男女超爽视频在线观看| 变态另类成人亚洲欧美熟女 | 成人手机av| 日韩成人在线观看一区二区三区| 人人澡人人妻人| 亚洲av日韩在线播放| 久久久久久人人人人人| 色尼玛亚洲综合影院| 精品久久久久久久毛片微露脸| 女同久久另类99精品国产91| 国产精品亚洲av一区麻豆| 中文字幕人妻丝袜一区二区| 欧美国产精品va在线观看不卡| 国产精品美女特级片免费视频播放器 | 日韩一卡2卡3卡4卡2021年| 国产高清激情床上av| 欧美乱码精品一区二区三区| 久久性视频一级片| 天天影视国产精品| 啦啦啦在线免费观看视频4| 视频在线观看一区二区三区| 十八禁高潮呻吟视频| 人妻丰满熟妇av一区二区三区 | 王馨瑶露胸无遮挡在线观看| 十八禁人妻一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 丁香六月欧美| 久久精品成人免费网站| 在线视频色国产色| xxxhd国产人妻xxx| 夜夜爽天天搞| 日本五十路高清| 看免费av毛片| 国产精品 国内视频| 村上凉子中文字幕在线| xxxhd国产人妻xxx| 午夜福利在线观看吧| 午夜福利视频在线观看免费| 一级毛片精品| 这个男人来自地球电影免费观看| 一级a爱片免费观看的视频|