• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ensemble Transform Sensitivity Method for AdaptiveObservations

    2016-08-12 03:41:27YuZHANGYuanfuXIEHongliWANGDehuiCHENandZoltanTOTH
    Advances in Atmospheric Sciences 2016年1期

    Yu ZHANG,Yuanfu XIE,HongliWANG,DehuiCHEN,and Zoltan TOTH

    1Nanjing University ofInformation Science and Technology,Nanjing 210044

    2Chinese Academy ofMeteorological Science,Beijing 100081

    3GlobalSystems Division,Earth System Research Laboratory,NOAA,Boulder,CO 80305,USA

    4Cooperative Institute forResearch in the Atmosphere,Colorado State University,FortCollins,CO 80523,USA

    5NationalMeteorologicalCentre,Beijing 100081

    Ensemble Transform Sensitivity Method for AdaptiveObservations

    Yu ZHANG1,2,3,Yuanfu XIE3?,HongliWANG3,4,DehuiCHEN5,and Zoltan TOTH3

    1Nanjing University ofInformation Science and Technology,Nanjing 210044

    2Chinese Academy ofMeteorological Science,Beijing 100081

    3GlobalSystems Division,Earth System Research Laboratory,NOAA,Boulder,CO 80305,USA

    4Cooperative Institute forResearch in the Atmosphere,Colorado State University,FortCollins,CO 80523,USA

    5NationalMeteorologicalCentre,Beijing 100081

    The Ensemble Transform(ET)method has been shown to be useful in providing guidance for adaptive observation deployment.Itpredicts forecasterrorvariance reduction foreach possibledeploymentusing itscorresponding transformation matrix in an ensemble subspace.In this paper,a new ET-based sensitivity(ETS)method,which calculates the gradientof forecast error variance reduction in terms of analysis error variance reduction,is proposed to specify regions for possible adaptiveobservations.ETS isa fi rstorderapproximation of the ET;itrequires justone calculation ofa transformationmatrix, increasing computational efficiency(60%–80%reduction in computational cost).An explicitmathematical formulation of the ETSgradient is derived and described.Both the ET and ETSmethods are applied to the Hurricane Irene(2011)case and a heavy rainfall case for comparison.The numerical results imply that the sensitive areasestimated by the ETSand ET are similar.However,ETS ismuchmore efficient,particularly when the resolution is higher and the number of ensemble members is larger.

    adaptive observation,high impactweather,ensemble transform

    1. Introduction

    For high-impactweather(HIW)events,adaptivemobile observation instruments or vehicles can be deployed to improve analysis quality and forecast accuracy.Several field campaignshave shown thatobservations sampled in dynamically sensitive areas have positive impacts on numerical weather prediction(Majumdar etal.,2001;Majumdar etal., 2011).For example,1–2 day forecastskillwas increased by assimilating targeted datadeployed in the Frontsand Atlantic Storm Track Experimentand the North Pacific Experiments (Joly et al.,1997;Joly et al.,1999;Langland et al.,1999a; Langland et al.,1999b).Assim ilation of adaptive observationssignificantly reduced typhoon track forecasterrorsover the western North Pacific and the Atlantic(Aberson,2003; Wu etal.,2007a;Aberson etal.,2011;Chou etal.,2011).

    A major challenge is to identify sensitive areas for deploying theadaptiveobservations in the hoursor daysahead of HIW events.There are severalapproaches thathave been developed to estimate sensitive areas,such as the singular vector method(Palmer et al.,1998;Buizza and Montani, 1999),theconditionalnonlinearoptimalperturbationmethod (Mu et al.,2009;Wang etal.,2011),and the adjoint sensitivity method(Wu et al.,2007b,2009).In general,an adjointmodel isusually required in theabove threeapproaches. In addition,ensemble-basedmethods,such as the ensemble transformation(ET)method(Bishop and Toth,1999),the ensemble transform Kalman fi lter(ETKF)method(Bishop et al.,2001),and ensemble sensitivity(Ancell and Hakim, 2007)arew idely used in field campaigns(Chang etal.,2013; Xieetal.,2013).

    The ensemble-based methods are less demanding computationally and have been extensively employed in practical applications(Ancell and Hakim,2007;Ito and Wu,2013). Thesemethods consider sensitivity in the subspace spanned by the ensemble forecasts and are computationally inexpensive in operational centerswhere ensemble forecastsare routinely produced.Among these methods,ET(Bishop and Toth,1999;hereafter BT1999)provides a practicalmethod foradaptive observations.Ithasbeen used for targeted dropsonde deployments in w inter storm reconnaissance(WSR) (Szunyogh et al.,2000).Later,ETKF was used to identify the sensitive region in WSR(Szunyogh et al.,2002).The dropsonde data collected over these sensitive areas improved theweather forecasts over the continental United States andAlaska(Szunyoghetal.,2000).However,the impactofdropsonde datamay be limited in global forecasts(Ham illetal., 2001),and high-resolution observation datasetsaresuggested for HIW(Bauer etal.,2011,Bergeretal.,2011).

    It is noted that ET is still expensive for high-resolution applicationsor those applicationsw ith large numbersof ensemblemembers.ET has been used at relatively coarse resolutions and a few vertical levels,e.g.,usually three vertical levels at the National Centers for Environmental Prediction (NCEP),and a relatively small number of ensemblemembers(30–60).As resolutions increase for HIW applications, the computational costgrows exponentially.This is because ET,aswell as the ETKF,has been implemented to exhaust all possible observation deployments.For example,it currently estimates sensitive areas by adding an observation at every analysis grid location,horizontally and vertically,and calculating theensemble transformation and the reduction of forecastvariance foreach observation.Becauseof theuseof amatrix decomposition of ensemble covariance,the computational costalso increasesasa cubic function of the number ofensemblemembers.Forhigh-resolution adaptiveobservation applications,or those w ith large numbers of ensemble members,the computationalcostcould be significant.ETKF can also be computationally expensive,the same as the ET method(Bishop et al.,2001).In order to further improve thesemethods for fine scale HIW applications,efficiency is an important factor to investigate.

    A new ET-based sensitivity(ETS)method is proposed in this paper to specify sensitive regions for adaptive observations.The proposedmethod calculates the sensitivity(gradient)of forecasterror variance reduction in terms of analysis error variance reduction.Thenew ly proposed ETSmethod is the fi rstorder approximation of the original perturbation ET method and reducescomputationalcostbecauseonly asingle transformationmatrix calculation is required.

    This paper is organized as follows.In section 2,we review the ET method.In section 3,we describe how ETS calculates the sensitivity w ith a single transformationmatrix calculation.We compare sensitive regionsusing ET and ETS for a hurricane case and a heavy rainfall case in section 4. Conclusionsand discussionsarepresented in section 5.

    2. Review of the ETmethod

    First,we review theETmethod(BT1999),with somematrix notations used to simplify the discussion(see Table 1). This review inmatrix forms helps illustrate the ETS derivation.

    2.1. Forecasterrorestimation using a transformationmatrix

    Let EEE(t)denote a set of ensemble forecasts at a given forecast time t.This EEE(t)is amatrix w ith Mrows and K columns,where Mis the numberof gridded valuesof all the state variables and K is the number of ensemblemembers. Then,the ensemble perturbationmatrix XXXeisalso an M×K matrix,

    Here is theadaptiveobservation strategy in ET:Usea set of ensemble forecasts EEE(t)to determ inewhich possible deploymentsofobservational resourcesata futureanalysis time tfaw illm inim ize theexpected prediction errorof forecasts for the verification time tv,which are initialized w ith,inter alia, thesupplementaldata taken at tfa(BT1999).

    Table 1.Importantsymbols.

    Let XXXe(tfa)denote the perturbationsat tfa,XXXe(tv)the perturbationsat the tv,and YYY(tfa)the ensemble perturbationsafter assim ilating a setof data from a possible adaptive obser-vation deployment.ET findsa transformation of the ensemble perturbation XXXe(tfa)to YYY(tfa).Such a transformation can be uniquely determ ined if the number of ensemble forecasts is very large and unconstrained(Anderson,1997).Assume sucha transformationexists,and denote itasamatrix CCC,such that

    This CCC isa K×K matrix.

    Mathematically,the ensemble-based error covariance at the taapproximates the truth analysis error covariance of AAAe(tfa),

    The ensemble-based forecast error covariance at tv,PPPe(tv), can be approximated by

    In reality,the true analysis error covariance of AAAe(tfa)is unknown,but an approximation or guess can be estimated by a given data assim ilation system(BT1999).Let AAAg(tfa) denote the approximation of AAAe(tfa)and Eq.(3)is approximately satisfied.Thus,forcing transformed ensemble-based error covariance to be equal to the guessed adaptive analysis error covariance,

    The ETmethod finds a solution of CCCCCCTsatisfying Eq.(5). Note that there is really no need to explicitly calculate the transformationmatrix CCC in the ETmethod but CCCCCCT,a productof the transformation.For the sakeof simplicity,herewe assume that AAAgisa full rankmatrix(BT1999)and Eq.(5)can be rew ritten as

    Then if XXXe(tfa)isa full rank(e.g.,asetof independentensemblemembers),thematrixisinvertible.By multiplyingand XXXe(tfa)from the leftand rightof Eq. (5′),thesolution of theproductof the ET transformationmatrix(BT1999)is,

    Equation(6)is an equivalentvariation of the Equation(8)in BT1999.Thismatrix derivation of the productsimplifies the derivation of BT1999.

    2.2. Measurementofadaptive observation sensitivity

    Letβbe a parametermeasuring the percentage reductions in the analysiserroraftera setof adaptiveobservations are assim ilated.For example,β=1means zero percent reduction,β=0.5means50%reduction etc.Let AAAg(β)denote thebestguessof theanalysiserror covariancewith allpossibleadaptiveobservation reduction byβ,andαi(i=1,...,M) denote the i-th diagonalelementof AAAg.

    Note thatβ=(β1,β2,...)is a vector of all possible adaptiveobservation locations.Notice thatweused analysiserror variance only as BT1999 did.The components ofβmay or may not be equal to 1 corresponding to the given adaptive observation datasets.A valueof1 indicatesno errorvariance reductionatthis location,whileavalueof<1 indicatesanobservation at this location is assim ilated.The corresponding transformation matrix CCC(β)can be calculated by(6).One can use(4)to estimate the forecast error covariance PPPe(tv) associatedw ith theadaptiveobservation scheme.

    In order to calculate the observation sensitivity for an adaptive observation scheme,one has to define an output scalarmeasuring the sensitivity.A measurement is usually defined by an energy norm using forecastvariance information from(4).For example,a total dry energy norm(Ehrendorferetal.,1999)isexpressed as,

    ·A projection matrix?=diag(Pi),i=1...M,where Pi=1 if the i-th position is either the u or v state variables, andif the i-th position is the T state variable, otherw ise the valuesare zeros.

    ·The norm of forecasterror variances is the sum of the diagonalelementsof

    ·Themeasurementof the adaptive data impact is calculated as follows.Let ZZZ=(ZZZ,...,ZZZM)=XXXe(tv)T?,where ZZZiis the i-th column ofmatrix ZZZ.The forecasterror J is

    In general,the forecasterror variance reduction in ET at a possibleadaptive deploymentata location l is

    The forecasterror reduction estimations are obtained by repeating the above process for allpossible adaptive deployments.In BT1999,itwasassumed theanalysiserrorvariance is reduced by 0.5(Δβl=0.5).

    3. ETSmethod

    By perturbing all possible adaptive observation data,the ETmethodmay yield high order information about the sensitivity regionsbut it could be costly for high-resolution applicationsw ith large ensemblemembers.In this section,we consider a fi rst order approximation of the ET method,ET sensitivity.

    3.1. ET based sensitivity

    The basic idea of the ETS in this paper is to use the sensitivity(gradient)of forecasterror variance over the verification region in terms of analysis error variance to determ ine data sensitive regions foradaptiveobservations.It is the fi rst order approximation of Eq.(10),but only a single transformation matrix computation w ill be needed,thus improving computation efficiency when compared to ET.Themain objective is to derive amathematical formulation of?J/?βlin this paper.

    Follow ing Eq.(8),the gradientof J to the analysis error variance reduction ratioβis

    Theestimated forecasterror variance reduction is

    In the BT1999 implementation,dβis set to a constant w ith a value of 0.5.The ETmethod isapproximated by ETS derivatives.In operationalapplications,Δβcan be set to differentvaluesatdifferent locations thatcan really takeadvantage of an analysis error covariance,e.g.,a large reduction (Δβ)occursovera largeanalysiserror variance.

    3.2. Derivatives of the transformationmatrix C formulation

    Themain contribution of the ETSmethod is the derivation of an analytic gradient formulation of?CCCCCCT/?βin Eq. (11a)in termsof theerror reduction coefficientβl.

    For the ET transformation matrix CCC,let us introduce a matrix

    and then the product of ET transformation matrix CCCCCCT= KΨ?1as given in Eq.(6).Using an inversematrix derivative formulation,the ET transformation productderivative is,

    where,

    Thus,ET sensitivity can beobtained using Eqs.(11–14).

    Note the?AAAg/?βlis usually a constantmatrix.For an example of a diagonalmatrix of AAAg=diag(α1β1,...,αMβM) (BT1999),?AAAg/?βl|β=1is equal to a diagonal matrix of diag(0,...,0,αl,0,...,0).For a given guessed analysis error variance AAAg,the ET transformationmatrix CCCCCCTis determ ined.So the ET sensitivity from Eq.(15)can be obtained aftera single computation of a transformationmatrix instead of calculating ensemble transformations(CCC[β]CCCT[β])for all possible perturbations in ET using Eq.(10).

    3.3. Practicalprocedure and computation cost

    When applying ETS in practice,Eq.(15)is not solved directly.Hereare the implementation procedures:

    Step 1:Compute theperturbation fieldsatthe tfa:XXXe(tfa), and tv:XXXe(tv).

    Step 2:Initial the projection matrix?and the guessed analysiserrorvariance AAAg.

    Step 3:Compute the inverse of Eq.(12): XXX e(tfa)T AAA?1g XXX e(tfa)

    Step 4:Compute thematrix ZZZ:ZZZ=XXXe(tv)T?

    Step 5:Obtain all the signals[Eq.(11a)]:?J/?βl,l= 1...M.Decompositionof the K×K symmetricmatrix(CCCCCCT) takes K3/6 computing operations(Step 3 costs~K3/6).In order to obtain allof thesensitivity,ETSneeds to estimate the sensitivity atall the elements in the state vector(M),w ith an Eq.(11a)costof~M2(Step 5 costs~M2).So,thecomputation countof ETS isabout M2+K3/6.However,ET needs to decompose the CCCCCCTmatrix ateach elementin thestatevector [Eqs.(9)and(10)w ith a costof~M2+K3/6]to obtain allthe signals(forecasterror reduction).Themagnitude of K is about102.The Mis103in a very coarse resolution.Itcould rise to 108in thehigh-resolution case.Table2 shows theestimation of the computation countsof ET and ETS.ETSgains greatly in efficiency as itonly needs to decompose the CCCCCCTonce.When Mand K are large,thedifference issignificant.

    Table 2.Estimated computation countsof ET and ETS.

    4. Numericalexperiments

    In thissection,weapply ETand ETS forahurricane case and a rainfall case.The fi rst case,Hurricane Irene(2011), formed on 21 August,and became a hurricane on 22 August 2011.It then passed Exuma and Cat Islands.Itmade landfall near Cape Lookout,North Carolina at1200UTC on 27 August.It continued tracking north northeastward,andmoved over Manhattan,New York on 28 August.The heavy rainfalland strong w ind caused severe damage(Avila and Stewart,2012).We also apply ET and ETS for a heavy rainfall case.The heavy precipitation in this case is associated with a low level vortex that developed overwestern China during 3-5 August 2013.The hourly accumulate precipitation was>30mm over the Beijing areasat1200UTC 4August2013.

    4.1. Data and experimentsetup

    The European Centre for Medium-range Weather Forecastsensemble forecastsare used in thisstudy,which can be downloaded from the THORPEX Interactive Grand Global Ensemble(TIGGE)portal(http://apps.ecmw f.int/datasets/ data/tigge/).The initial time of the ensemble forecasts are at0000UTC 24August2011 and 1200UTC 3 August2013 for the hurricane and heavy rainfall case,respectively.The length of prediction time is 72-h w ith a 6-h interval for the ensemble prediction outputs.The variables selected for the ET dry energy norm are the temperatureand horizontalw ind componentsat the850,500 and 200 hPapressure levels.The diagonalvaluesof guessed analysiserror covariance AAAgused are the same as ETKF(Majumdar etal.,2002):the guessed analysiserror covarianceofw ind at the850,500 and 200 hPa pressure levels is 2.72,3.16 and 4.66m s?1separately;the guessed analysis error vovariance of temperature at the 850, 500 and 200 hPa pressure levels is 1.22,0.92°C and 1.82°C separately.

    For the hurricane case,the verification area(26°–40°N, 86°–70°W)ismarked by the inner rectangle showed in Fig. 1a).The estimation or potential targeting observation area is the whole domain(10°–50°N,100°–60°W).The ensemblemean indicated that the hurricane wasmoving towards the east coastof the U.S.at 0000 UTC 27 August,and it is selected as the tvin this case.Thereareseven tfafor theadaptive observations,?0 h,?12 h,?24 h,?36 h,?48 h,?60 h,and?72 h.The negative hours tfaindicate the number of hoursahead of the tv,correspondingly.For the heavy rainfall case,the verification area isover the Beijing area(38°–42°N, 114°–120°E),(Fig.1b).The estimation potential targeting area was covered from 100°E to 124°E and 34°N to 50°N. The tvis the heavy rainfall time,1200 UTC 4 August2013. The tfaare set to 6 h and 12 h ahead of the tv.As claimed in section3,ETSismoreefficientwhen thenumberofensemble members(K)and the elements in state vectors(MMM)aremathematically large.We set up six experiments(Table 3)w ithdifferent resolutions and ensemblemembers to demonstrate this claim numerically.The number of ensemblemembers vary from 10 to 30 to 50.Two resolutions are used,1°×1°and 2°×2°.As an example,K30R1 means the number of ensemblemembers is30 and the resolution is1°×1°.

    Fig.1.The domain and verification areas for the(a)Hurricane Irene(2011)and(b)Beijing rainfallcases.Contoursare theensemblemean geopotentialheightat500 hPa(gpm).The inner rectangle is the verification areas.

    Table 3.Setup of numerical Experiments.

    4.2. Summarymap

    Fig.2.The signals(color fi lled areas)identified by(a,c,e)ETS and(b,d,f)ET at a different tain K30R2 for the Hurricane Irene case.The taare(a,b)0000 UTC 25 August;(c,d)0000 UTC 26 August,(e,f)0000 UTC 27 August.The contours are the 500 hPa geopotential heightof the ensemble mean forecastateach ta.The inner rectangle is the verification area.The tvis0000UTC 27 August.

    A summarymap—the signalsof sensitivity identified by ET or ETS over the whole calculation domain—shows the sensitive area.ET considered each grid pointas a hypothetical adaptive site and identified sensitive areas by perturb-ing the analysis error variance ateach observation site.The signal—the reduction of forecasterror covarianceassociated w ith this grid point—can be obtained.The summary map can be plotted after perturbing the variance and calculating the reduction overall thegrid points.

    In contrast to these perturbationsof ET,the ETSmethod can obtain thesevaluesby asingle computation of thederivative,using the same amount of computation as would be needed for each individual ET perturbation.The derivatives areshown,aswellas the reduction ofanalysiserrorvariance. They represent the sensitivity signalsover the calculation domain.

    In order to compare the signals from ETSand ET atdifferent tfa,the signals from Eqs.(10)and(15,11b)are normalized in thisstudy, where Smax/Sminare themaximum/minimum valuesover the whole domain.Thus,the summary maps show the relative sensitivity of the ET or ETSmethods.

    4.3. Sensitive areas identified by ET and ETS

    The color fi lled areasof Fig.2 show the normalized signals identified by ET and ETS at different tfafor experiment K30R2 in the hurricane case.Itisseen thatETSand ET give similar signal patternsand evaluation.As the tfaapproached the tv,the signal(color fi lled contour areas)approached the verification areas.Thesensitivity areasaredistributed around the hurricane itself,and evolved into the verification areasat the tv.Figure3 shows thenormalized signals identified from ET and ETS from K50R2 and K10R1.The results are very close to K30R2.The signals are both located at the hurricane’s eastern center.It shows that the data sensitive region identified by ETS is very close to ET even when the resultsare from a different number of ensemblemembers and resolutions.Generally,the ETS can obtain the same sensitive areasas ETw ithouthigh consumption.

    Fig.3.The signals(color-fi lled areas)identified by(a,c)ETS and(b,d)ET in the Hurricane Irene case:(a,b)are Experiment K50R1;(c,d)experiment K10R2.The tais 0000 UTC 26 August2011.The contoursare the 500 hPa geopotentialheightofensemblemean forecasts.

    Fig.4.(a)Computational costof differentexperiments.(b)Relative computation time reduction.

    Fig.5.The signals(color fi lled areas)identified by(a,c)ETSand(b,d)ET in K30R2 for the Beijing rainfall case.The tvis 1200 UTC 4 August 2013.The taare(a,b)is 0000 UTC 4 August;(c,d) 0600 UTC 4 August.The w ind barbs are the horizontalw ind componentat850 hPa(units:m s?1). The contours are the 500 hPa geopotentialheightof the ensemblemean forecastateach t a.The inner rectangle is the verification area.

    ETS ismuch faster than ET because ET needs to loop over all the possible elements in the state vector(M),especiallywhen thenumberofensemblepredictionmembers(K) is large.Figure 4 shows the computational costs and relative computation time reduction w ith ETS and ET using a differentnumber of ensemble predictionmembers(K).The cost is less than 60 secondsw ith a fine resolution and few ensemble prediction members for ETS and ET.This is acceptable for the adaptive observations.However,the computational cost rises to about 1200 seconds w ith a 1°×1°resolution in the horizontaldirection,w ith three vertical levels and 50 ensemble prediction members.ETS only costs about 200 seconds.Overall,the computation time saved by ETwas60%–80%(Fig.4b).If the computational domain is larger(particularly foraglobalmodel)w ith higher resolution in the horizontal and vertical directions(here the computationswere conducted in three vertical levelsonly),the reduction in computational costswould bemuchmore significant w ith ETS compared to ET.

    Thesignals from theheavy rainfallcaseare shown in Fig. 5.Itcan be seen that the signalsare similarbetween ET and ETS.The sensitive areas were distributed around the w ind divergence(850 hPa)and the trough(500 hPa)at 12 hours ahead of the tv(Figs.5aand b).The signalsare located in the westof the verification areasat6 hoursahead of the tv(Figs. 5c and d).Although the sensitive areas from the ET covered a slightly larger area compared to ETS,signals w ith maximum values are located at almost the same position in ET and ETS.The follow ing section providesmore discussion on thedifferencesbetween ETSand ET.

    4.4. Differencesbetween ET and ETS

    Fig.6.The signals for the Hurricane Irene(2011)case.Contoursare the signals from(a–c)ET and(d) ETS.TheexperimentisK30R2.The tais0000UTC 26August2011.Color fi lled areasshow thesignal differencesbetween ETSand ET.Theanalysiserror reduction for ET is(a)0.2,(b),0.4 and(c)0.6.

    Fig.7.As in Fig.6 but for the rainfall case.The tais0000UTC 4August2013.

    In BT1999,the signals are calculated by Eq.(10).ETS used Eq.(15)to calculate the signals.So ETS is a fi rst order approximation of the ET.This also means the results from ETS should get closer to those of ET whenΔβapproaches zero.Herewe setup threemore numericalexperimentsusing differentΔβvalues for ET(Δβ=0.2,0.4,0.6). WhenΔβ=0.2 thismeans the ET signals are estimated by: sl=J[βl=1]?J[βl=0.8]It isnoted thatETSsignals[Eqs. (10a),(14)]do not vary w ith differentΔβ.Figures 6 and 7 show the ETSand ET signals for the Hurricane Irene(2011) and Beijing rainfall cases,respectively.The differences between ETSand ET are presented by the color shading colors. It is seen that for the smallestΔβ,the twomethods produce almost the same data sensitive region(Figs.6 and 7).And for larger values ofΔβ,the ETS signal distribution is still close to the ET signal;in particular,the centersof the signals from the twomethodsare almost the same evenw ith a large Δβ.Overall,for the Hurricane Irene(2011)case,both ET and ETS identify one sensitive region(Fig.6);for the rainfall case,one region w ith globalmaximum signals and two local regionsw ith localmaximum signals(Fig.7)are identified.The differencesbetween ET and ETS are acceptable, since the targeting observation focuseson the sensitive areas w ith amaximum(the center of the signals).Generally the signals from ET and ETSaresimilar.

    5. Conclusion and discussion

    Adaptive observations have the potential to improve weather forecasts.Among existing methods of identifying observation sensitivity regions,ET isattractivebecauseof its useofanalysiserror covariance information and itsefficiency compared to othermore complex methods.In this study,a new ly proposed ETS approach for adaptive observations is derived and demonstrated.The ETSmethod only usesa singlecomputation ofa transformationmatrix to yield asensitivity summary map,instead of calculating ensemble transformations for all possible perturbations,as in the ETmethod. Thus,it further increase the computationalefficiency.If the computationaldomain is larger(even global in thehorizontal direction),w ith higher resolution in the horizontal and vertical directions,the reduction in computational cost would be far greaterw ith ETS compared to ET.Numericalexperimentsw ith Hurricane Irene(2011)and a heavy rainfall case in Beijing showed thatETS reduced the computation costby 60%–80%.

    Thesummarymaps from the two casesshow thattheETS method produces a similar data sensitive region as the ET method,especially for the region w ith large signal values. Thus,the new method gains computational efficiency w ithout losing the positive characteristicsof the ETmethod.It is noted that,in general,themore realistic the analysis covariance is,thebetter the targeting region is thatcan be identified under the assumption of ET.As themain aim of this paper is mainly to introduce the ETSmethod,thebestguessofanalysis covariance,which can be provided by a data assimilation system(e.g.,ETKF),w ill be further studied in future work. Our plan is to implement ETS at the NCEP Environmental Modeling Center for WSR,and compare it to the existing ET adaptive observation method in future works.With its improved efficiency,ETS can be applied to severe weather eventsw ith high spatial resolution and a large number of ensemblemembers.

    Acknow ledgements.The authors thank John C.OSBORN at NOAA Earth System Research Laboratory for his English editorial supporton thismanuscript.The authorswould like to express their appreciation to the two anonymous reviewers for their commentson theearlierversion of themanuscript,which helped improve thepresentation of this paper.Thiswork was jointly sponsored by the Key Projectof theChineseNationalPrograms for FundamentalResearch and Development(“973Program”,GrantNo.2013CB430106),andthe Key Projectof the Chinese National Science&Technology Pillar Program during the Twelfth Five-year Plan Period(Grant No. 2012BAC22B01).

    REFERENCES

    Aberson,S.D.,2003:Targeted observations to improve operational tropical cyclone track forecast guidance.Mon.Wea. Rev.,131,1613–1628.

    Aberson,S.D.,S.J.Majumdar,C.A.Reynolds,and B.J.Etherton,2011:An observing system experiment for tropical cyclone targeting techniques using the global forecast system. Mon.Wea.Rev.,139,895–907.

    Ancell,B.,and G.J.Hakim,2007:Comparing adjoint-and ensemble-sensitivity analysisw ith applications to observation targeting.Mon.Wea.Rev.,135,4117–4134.

    Anderson,J.L.,1997:The impactof dynamical constraintson the selection of initial conditions for ensemble predictions:Low orderperfectmodel results.Mon.Wea.Rev.,125,2969–2983.

    Avila,L.A.,and S.Stewart,2012:Atlantic hurricanes 2011:A ll about Irene and Lee.Weatherwise,65,34–41.

    Bauer,P.,R.Buizza,C.Cardinali,and J.-N.Th′epaut,2011:Impactof singular vector based satellite data thinning on NWP. Quart.J.Roy.Meteor.Soc.,137,286–302.

    Berger,H.,R.Langland,C.S.Velden,C.A.Reynolds,and P. M.Pauley,2011:Impact of enhanced satellite-derived atmosphericmotion vector observations on numerical tropical cyclone track forecasts in the western North Pacific during TPARC/TCS-08.J.Appl.Meteor.Climatol.,50,2309–2318.

    Bishop,C.H.,and Z.Toth,1999:Ensemble transformation and adaptive observations.J.Atmos.Sci.,56,1748–1765.

    Bishop,C.H.,B.J.Etherton,and S.J.Majumdar,2001:Adaptive sampling w ith the ensemble transform Kalman fi lter.Part I: Theoreticalaspects.Mon.Wea.Rev.,129,420–436.

    Buizza,R.,and A.Montani,1999:Targeted observations using singular vectors.J.Atmos.Sci.,56,2965–2985.

    Chang,E.K.M.,M.H.Zheng,and K.Raeder,2013:Mediumrangeensemble sensitivity analysisof two extreme pacific extratropical cyclones.Mon.Wea.Rev.,141,211–231.

    Chou,K.-H.,C.-C.Wu,P.-H.Lin,S.D.Aberson,M.Weissmann, F.Harnisch,and T.Nakazawa,2011:The impact of dropw indsonde observations on typhoon track forecasts in DOTSTAR and T-PARC.Mon.Wea.Rev.,139,1728–1743.

    Ehrendorfer,M.,R.M.Errico,and K.D.Raeder,1999:Singularvectorperturbation grow th in aprimitiveequationmodelw ith moistphysics.J.Atmos.Sci.,56,1627–1648.

    Ham ill,T.M.,J.S.Whitaker,and C.Snyder,2001:Distancedependent fi ltering of background error covariance estimates in an ensemble Kalman fi lter.Mon.Wea.Rev.,129,2776–2790.

    Ito,K.,and C.-C.Wu,2013:Typhoon-position-oriented sensitivity analysis.Part I:Theory and verification.J.Atmos.Sci.,70, 2525–2546.

    Joly,A.,and Coauthors,1997:The frontsand Atlantic storm-track experiment(FASTEX):Scientific objectives and experimentaldesign.Bull.Amer.Meteor.Soc.,78,1917–1940.

    Joly,A.,and Coauthors,1999:Overview of the field phase of the fronts and Atlantic Storm-Track EXperiment(FASTEX) project.Quart.J.Roy.Meteor.Soc.,125,3131–3163.

    Langland,R.H.,R.Gelaro,G.D.Rohaly,and M.A.Shapiro, 1999a:Targeted observations in FASTEX:Adjoint-based targeting proceduresand data impactexperiments in IOP17 and IOP18.Quart.J.Roy.Meteor.Soc.,125,3241–3270.

    Langland,R.H.,and Coauthors,1999b:The North Pacific experiment(NORPEX-98):Targeted observations for improved North American weather forecasts.Bull.Amer.Meteor.Soc., 80,1363–1384.

    Majumdar,S.J.,C.H.Bishop,B.J.Etherton,I.Szunyogh,and Z. Toth,2001:Can an ensemble transform Kalman fi lter predict the reduction in forecast-error variance produced by targeted observations?Quart.J.Roy.Meteor.Soc.,127,2803–2820.

    Majumdar,S.J.,C.H.Bishop,B.J.Etherton,and Z.Toth,2002: Adaptive sampling w ith the ensemble transform Kalman fi lter.Part II:Field program implementation.Mon.Wea.Rev., 130,1356–1369.

    Majumdar,S.J.,and Coauthors,2011:Targeted observations for improving numerical weather prediction:An overview. WWRP/THORPEX No.15.

    Mu,M.,F.F.Zhou,and H.L.Wang,2009:A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction:Conditional nonlinear optimal perturbation.Mon.Wea.Rev.,137,1623–1639.

    Palmer,T.N.,R.Gelaro,J.Barkmeijer,and R.Buizza,1998:Singular vectors,metrics,and adaptive observations.J.Atmos. Sci.,55,633–653.

    Szunyogh,I.,Z.Toth,R.E.Morss,S.J.Majumdar,and C.H. Bishop,2000:The effectof targeted dropsonde observations during the 1999 w inter storm reconnaissance program.Mon. Wea.Rev.,128,3520–3537.

    Szunyogh,I.,Z.Toth,A.V.Zim in,S.J.Majumdar,and A.Persson,2002:Propagation of theeffectof targeted observations: The 2000 w inter storm reconnaissance program.Mon.Wea. Rev.,130,1144–1165.

    Wang,H.L.,M.Mu,X.Y.Huang,2011:Application of conditional non-linear optimal perturbations to tropical cyclone adaptive observation using the weather research forecasting (WRF)model.Tellus A,63,939–957.

    Wu,C.-C.,K.-H.Chou,P.-H.Lin,S.D.Aberson,M.S.Peng,and T.Nakazawa,2007a:The impactof dropw indsonde data on typhoon track forecasts in DOTSTAR.Wea.Forecasting,22, 1157–1176.

    Wu,C.-C.,J.-H.Chen,P.-H.Lin,and K.-H.Chou,2007b:Targeted observationsof tropicalcyclonemovementbased on the adjoint-derived sensitivity steering vector.J.Atmos.Sci.,64, 2611–2626.

    Wu,C.-C.,S.-G.Chen,J.-H.Chen,K.-H.Chou,and P.-H.Lin, 2009:Interaction of Typhoon Shanshan(2006)w ith them idlatitude trough from both adjoint-derived sensitivity steering vector and potential vorticity perspectives.Mon.Wea.Rev., 137,852–862.

    Xie,B.G.,F.Q.Zhang,Q.H.Zhang,J.Poterjoy,and Y.H.Weng, 2013:Observing strategy and observation targeting for tropical cyclones using ensemble-based sensitivity analysis and dataassimilation.Mon.Wea.Rev.,141,1437–1453.

    23 January 2015;revised 11May 2015;accepted 15 June 2015)

    :Zhang,Y.,Y.F.Xie,H.L.Wang,D.H.Chen,and Z.Toth,2016:Ensemble transform sensitivity method for adaptive observations.Adv.Atmos.Sci.,33(1),10–20,

    10.1007/s00376-015-5031-9.

    ?Corresponding author:Yuanfu XIE

    E-mail:yuanfu.xie@noaa.gov

    精品久久久久久成人av| 中国美女看黄片| 村上凉子中文字幕在线| 久9热在线精品视频| 免费人成视频x8x8入口观看| 久久久水蜜桃国产精品网| 亚洲第一青青草原| 黄片小视频在线播放| 国产精品二区激情视频| 这个男人来自地球电影免费观看| 亚洲男人的天堂狠狠| 亚洲一区二区三区不卡视频| 欧美+亚洲+日韩+国产| 久久久国产欧美日韩av| 嫩草影院精品99| 日韩大码丰满熟妇| 精品久久久久久久久久久久久 | 午夜影院日韩av| 久久久久久国产a免费观看| 一本久久中文字幕| 国内精品久久久久精免费| 久热爱精品视频在线9| 亚洲国产毛片av蜜桃av| 免费搜索国产男女视频| 校园春色视频在线观看| 亚洲国产日韩欧美精品在线观看 | 桃色一区二区三区在线观看| 一卡2卡三卡四卡精品乱码亚洲| 老鸭窝网址在线观看| 久久国产精品人妻蜜桃| 好男人在线观看高清免费视频 | 国产片内射在线| 在线av久久热| 免费看十八禁软件| 中亚洲国语对白在线视频| 午夜精品在线福利| 女警被强在线播放| 操出白浆在线播放| 精品第一国产精品| 一二三四在线观看免费中文在| 美女大奶头视频| 嫩草影院精品99| 久久这里只有精品19| 国产成人av激情在线播放| 在线观看66精品国产| 美女午夜性视频免费| or卡值多少钱| aaaaa片日本免费| 国产成人精品久久二区二区免费| 亚洲美女黄片视频| av视频在线观看入口| 国产单亲对白刺激| 女性被躁到高潮视频| 老司机靠b影院| 久久欧美精品欧美久久欧美| 51午夜福利影视在线观看| 午夜老司机福利片| 人人澡人人妻人| 人人妻人人看人人澡| 亚洲 欧美 日韩 在线 免费| av天堂在线播放| 亚洲av日韩精品久久久久久密| 久久伊人香网站| 91av网站免费观看| 在线av久久热| 白带黄色成豆腐渣| 亚洲,欧美精品.| 久久亚洲真实| 正在播放国产对白刺激| 黄色成人免费大全| 亚洲激情在线av| 一级片免费观看大全| 国产激情久久老熟女| 欧美不卡视频在线免费观看 | 亚洲精品色激情综合| 一边摸一边抽搐一进一小说| 欧美最黄视频在线播放免费| 成人国产一区最新在线观看| 淫秽高清视频在线观看| 99久久精品国产亚洲精品| 热re99久久国产66热| 神马国产精品三级电影在线观看 | 99久久国产精品久久久| av电影中文网址| 婷婷精品国产亚洲av在线| 久久久久久国产a免费观看| 可以在线观看的亚洲视频| 午夜免费鲁丝| 999久久久精品免费观看国产| 91麻豆精品激情在线观看国产| 国产精品 国内视频| 色av中文字幕| 又黄又爽又免费观看的视频| 午夜免费观看网址| 日韩有码中文字幕| 国产亚洲精品av在线| 国产99白浆流出| 一进一出抽搐gif免费好疼| 嫁个100分男人电影在线观看| 两性夫妻黄色片| 中文字幕人妻熟女乱码| 大香蕉久久成人网| 非洲黑人性xxxx精品又粗又长| 女警被强在线播放| 两个人看的免费小视频| 精品不卡国产一区二区三区| 91字幕亚洲| 在线国产一区二区在线| 国产高清激情床上av| 18禁国产床啪视频网站| 免费看美女性在线毛片视频| 中文字幕人妻熟女乱码| 高清在线国产一区| 人人妻人人看人人澡| 白带黄色成豆腐渣| av中文乱码字幕在线| 99精品欧美一区二区三区四区| 欧美日韩亚洲综合一区二区三区_| 在线观看午夜福利视频| 久99久视频精品免费| 国产麻豆成人av免费视频| 欧美成人免费av一区二区三区| 免费在线观看亚洲国产| 亚洲一区高清亚洲精品| 亚洲精品国产一区二区精华液| 久久久久久久久免费视频了| 成人精品一区二区免费| 一级黄色大片毛片| 天天躁夜夜躁狠狠躁躁| 国产不卡一卡二| 国产91精品成人一区二区三区| 免费高清在线观看日韩| 久久亚洲真实| 麻豆国产av国片精品| 十分钟在线观看高清视频www| 国产片内射在线| 日日夜夜操网爽| 女性被躁到高潮视频| 免费在线观看影片大全网站| 国产精品久久久av美女十八| 中文字幕人妻丝袜一区二区| 免费女性裸体啪啪无遮挡网站| 可以在线观看的亚洲视频| 国内久久婷婷六月综合欲色啪| 欧美乱码精品一区二区三区| 午夜福利高清视频| avwww免费| 国产精品免费一区二区三区在线| 亚洲av片天天在线观看| 欧美成人午夜精品| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲男人天堂网一区| 黄色视频不卡| 一本一本综合久久| 99热这里只有精品一区 | 日日爽夜夜爽网站| 免费在线观看日本一区| 国产视频一区二区在线看| 亚洲国产看品久久| 成人亚洲精品一区在线观看| av超薄肉色丝袜交足视频| 亚洲精品久久国产高清桃花| 国产视频内射| 人人澡人人妻人| 白带黄色成豆腐渣| 亚洲真实伦在线观看| 长腿黑丝高跟| 一边摸一边抽搐一进一小说| 国产日本99.免费观看| 黑人欧美特级aaaaaa片| 欧美 亚洲 国产 日韩一| 在线观看www视频免费| 99热只有精品国产| 99国产精品一区二区蜜桃av| 欧美黄色淫秽网站| 黄片播放在线免费| 午夜两性在线视频| 国产在线观看jvid| 国产亚洲欧美在线一区二区| 免费观看人在逋| 亚洲精华国产精华精| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av成人av| 88av欧美| 亚洲aⅴ乱码一区二区在线播放 | av有码第一页| 亚洲精华国产精华精| a在线观看视频网站| 午夜激情福利司机影院| 亚洲国产中文字幕在线视频| 欧美精品啪啪一区二区三区| 午夜免费成人在线视频| 久久香蕉国产精品| 国产色视频综合| 日本在线视频免费播放| 亚洲精品中文字幕在线视频| 大型av网站在线播放| 18禁观看日本| 久久精品国产综合久久久| 久久国产乱子伦精品免费另类| 久久精品国产亚洲av高清一级| 国产又黄又爽又无遮挡在线| 亚洲av成人不卡在线观看播放网| 欧美黑人巨大hd| 日日爽夜夜爽网站| 国产精品久久久久久精品电影 | 午夜视频精品福利| 啪啪无遮挡十八禁网站| 一级毛片高清免费大全| 午夜福利高清视频| 午夜福利视频1000在线观看| 欧美乱色亚洲激情| 成人免费观看视频高清| 美女 人体艺术 gogo| 久久国产亚洲av麻豆专区| 亚洲人成网站在线播放欧美日韩| 国产精品综合久久久久久久免费| 两个人免费观看高清视频| 大型av网站在线播放| 女警被强在线播放| 人人澡人人妻人| 一边摸一边做爽爽视频免费| 久久精品aⅴ一区二区三区四区| 亚洲精品中文字幕一二三四区| 女人被狂操c到高潮| 亚洲色图av天堂| 一二三四社区在线视频社区8| 欧美中文日本在线观看视频| 悠悠久久av| 夜夜爽天天搞| 精品国产国语对白av| 他把我摸到了高潮在线观看| 欧美黄色淫秽网站| 中亚洲国语对白在线视频| 精品国内亚洲2022精品成人| 一级a爱片免费观看的视频| 亚洲成av人片免费观看| 在线十欧美十亚洲十日本专区| 亚洲男人天堂网一区| 中出人妻视频一区二区| 波多野结衣高清无吗| 欧美成人一区二区免费高清观看 | 国产成人欧美在线观看| 欧美亚洲日本最大视频资源| 男女视频在线观看网站免费 | 亚洲专区中文字幕在线| 午夜福利视频1000在线观看| 在线观看66精品国产| 欧美日韩亚洲综合一区二区三区_| 精品久久久久久久久久免费视频| 一a级毛片在线观看| 成年人黄色毛片网站| av有码第一页| 日日爽夜夜爽网站| 国产成人欧美| 天堂动漫精品| 一级作爱视频免费观看| 91大片在线观看| 亚洲成人免费电影在线观看| 黄色视频,在线免费观看| 欧美大码av| 精品久久久久久,| 午夜精品久久久久久毛片777| 欧美国产精品va在线观看不卡| 国产成年人精品一区二区| 少妇的丰满在线观看| 色哟哟哟哟哟哟| 亚洲七黄色美女视频| 99国产精品99久久久久| 国产欧美日韩精品亚洲av| 91麻豆av在线| 亚洲精品在线观看二区| 免费看十八禁软件| 国产精品免费视频内射| 少妇裸体淫交视频免费看高清 | 久久精品成人免费网站| 波多野结衣高清作品| 亚洲欧美一区二区三区黑人| 久久精品国产99精品国产亚洲性色| 精品国产国语对白av| 一进一出抽搐gif免费好疼| 一a级毛片在线观看| 淫秽高清视频在线观看| 国产成人欧美在线观看| 国产精品乱码一区二三区的特点| 久久狼人影院| 国产成人精品久久二区二区91| 99热这里只有精品一区 | 久久午夜亚洲精品久久| 成年人黄色毛片网站| 成人18禁高潮啪啪吃奶动态图| 亚洲国产欧美日韩在线播放| 成人三级黄色视频| 91av网站免费观看| 国产精品 欧美亚洲| 黄网站色视频无遮挡免费观看| 女性生殖器流出的白浆| 97超级碰碰碰精品色视频在线观看| 国产精品国产高清国产av| 在线观看一区二区三区| 俄罗斯特黄特色一大片| 国产真实乱freesex| 国产一区在线观看成人免费| 欧美成人性av电影在线观看| 国产成人啪精品午夜网站| 香蕉久久夜色| 国产av一区二区精品久久| 在线观看日韩欧美| 99久久久亚洲精品蜜臀av| 老鸭窝网址在线观看| 午夜日韩欧美国产| 黄色视频不卡| 国产精品野战在线观看| 哪里可以看免费的av片| 黄色a级毛片大全视频| 久久精品国产亚洲av香蕉五月| 在线看三级毛片| 999久久久国产精品视频| 一夜夜www| 91九色精品人成在线观看| 日韩三级视频一区二区三区| 欧美一级a爱片免费观看看 | 制服丝袜大香蕉在线| 一区二区三区国产精品乱码| 中文字幕人妻丝袜一区二区| 怎么达到女性高潮| 国产精品一区二区三区四区久久 | 亚洲国产看品久久| 成年免费大片在线观看| 婷婷精品国产亚洲av在线| 国产av又大| 亚洲av片天天在线观看| 亚洲精品国产精品久久久不卡| 久久人妻av系列| 午夜福利欧美成人| 可以免费在线观看a视频的电影网站| 日本五十路高清| 最近在线观看免费完整版| 久久香蕉精品热| 免费高清在线观看日韩| 色av中文字幕| 天堂影院成人在线观看| 久久草成人影院| 中文字幕精品免费在线观看视频| 日韩精品免费视频一区二区三区| 一级片免费观看大全| 最近最新中文字幕大全电影3 | 此物有八面人人有两片| 中亚洲国语对白在线视频| 淫妇啪啪啪对白视频| 色在线成人网| 制服诱惑二区| 我的亚洲天堂| 18禁观看日本| 亚洲av熟女| 伦理电影免费视频| 99久久久亚洲精品蜜臀av| 日本免费a在线| 久久伊人香网站| 12—13女人毛片做爰片一| 亚洲av第一区精品v没综合| 中文字幕最新亚洲高清| 亚洲成人国产一区在线观看| 精品第一国产精品| АⅤ资源中文在线天堂| 男人舔奶头视频| 中文字幕人妻熟女乱码| 日本黄色视频三级网站网址| 大香蕉久久成人网| 黄色 视频免费看| 香蕉国产在线看| 亚洲熟女毛片儿| 夜夜爽天天搞| 亚洲成人免费电影在线观看| 久久九九热精品免费| 国产一区二区三区视频了| 亚洲精华国产精华精| 变态另类成人亚洲欧美熟女| 丝袜人妻中文字幕| 成人特级黄色片久久久久久久| 91国产中文字幕| 黄网站色视频无遮挡免费观看| 大香蕉久久成人网| 999精品在线视频| 一本一本综合久久| 久久久久久国产a免费观看| 熟女电影av网| netflix在线观看网站| ponron亚洲| 搡老妇女老女人老熟妇| 亚洲av第一区精品v没综合| 中亚洲国语对白在线视频| 怎么达到女性高潮| 波多野结衣高清无吗| 91av网站免费观看| 国产精品永久免费网站| 麻豆久久精品国产亚洲av| 中文字幕人妻丝袜一区二区| 成人国语在线视频| 侵犯人妻中文字幕一二三四区| 久久99热这里只有精品18| 亚洲成av人片免费观看| 精品不卡国产一区二区三区| 91麻豆精品激情在线观看国产| 精品一区二区三区四区五区乱码| 亚洲人成网站在线播放欧美日韩| 俄罗斯特黄特色一大片| 国产片内射在线| 妹子高潮喷水视频| 久久久精品欧美日韩精品| 高潮久久久久久久久久久不卡| 国内揄拍国产精品人妻在线 | 国产单亲对白刺激| 岛国在线观看网站| 黄片小视频在线播放| 欧美另类亚洲清纯唯美| 悠悠久久av| 午夜福利在线观看吧| 中文资源天堂在线| 精品乱码久久久久久99久播| 欧美色欧美亚洲另类二区| 日韩精品中文字幕看吧| 男人舔女人的私密视频| 叶爱在线成人免费视频播放| 国产aⅴ精品一区二区三区波| 成人av一区二区三区在线看| 一区二区日韩欧美中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 色尼玛亚洲综合影院| 老司机在亚洲福利影院| 久久亚洲精品不卡| av福利片在线| 亚洲av五月六月丁香网| 日韩三级视频一区二区三区| 制服人妻中文乱码| 欧美亚洲日本最大视频资源| videosex国产| 国产精品永久免费网站| 午夜福利18| 视频在线观看一区二区三区| 淫妇啪啪啪对白视频| 12—13女人毛片做爰片一| 午夜福利视频1000在线观看| 欧美精品啪啪一区二区三区| 女性生殖器流出的白浆| 老司机福利观看| 少妇粗大呻吟视频| 狠狠狠狠99中文字幕| 久久 成人 亚洲| 日本 av在线| 在线观看日韩欧美| www日本在线高清视频| 亚洲熟妇熟女久久| 亚洲在线自拍视频| 欧美午夜高清在线| 精品久久蜜臀av无| 亚洲专区中文字幕在线| 久久久久国内视频| 曰老女人黄片| АⅤ资源中文在线天堂| 久久久久免费精品人妻一区二区 | 色综合欧美亚洲国产小说| 国产精品久久电影中文字幕| 色综合亚洲欧美另类图片| 两个人看的免费小视频| 美女高潮到喷水免费观看| 亚洲国产欧美网| 亚洲第一青青草原| 国产片内射在线| 亚洲专区中文字幕在线| 日韩国内少妇激情av| 18禁观看日本| 免费在线观看亚洲国产| 久久国产精品男人的天堂亚洲| 国产高清videossex| 国产一卡二卡三卡精品| 午夜日韩欧美国产| 国产成人精品无人区| 亚洲国产高清在线一区二区三 | 欧美性长视频在线观看| 99国产综合亚洲精品| 成人一区二区视频在线观看| 国产主播在线观看一区二区| 在线观看日韩欧美| 国产精品一区二区精品视频观看| 国产精品九九99| 国产精品永久免费网站| 国产不卡一卡二| e午夜精品久久久久久久| 此物有八面人人有两片| 久久香蕉激情| 精品一区二区三区视频在线观看免费| 久久久久九九精品影院| 黄网站色视频无遮挡免费观看| 在线观看免费午夜福利视频| 亚洲国产毛片av蜜桃av| 中文在线观看免费www的网站 | 麻豆成人午夜福利视频| 此物有八面人人有两片| 法律面前人人平等表现在哪些方面| 亚洲男人天堂网一区| netflix在线观看网站| 亚洲国产欧美一区二区综合| 日韩中文字幕欧美一区二区| 很黄的视频免费| 一区二区日韩欧美中文字幕| 久久 成人 亚洲| 男女之事视频高清在线观看| 亚洲成人免费电影在线观看| 亚洲国产精品sss在线观看| 日韩欧美国产在线观看| 国产一区二区三区在线臀色熟女| 成年版毛片免费区| 操出白浆在线播放| 久久国产精品男人的天堂亚洲| 久久久久久久久免费视频了| or卡值多少钱| 又紧又爽又黄一区二区| 无人区码免费观看不卡| av欧美777| 淫妇啪啪啪对白视频| 极品教师在线免费播放| 国产亚洲精品久久久久久毛片| 99在线视频只有这里精品首页| 国产精品久久久av美女十八| 精品第一国产精品| 少妇裸体淫交视频免费看高清 | 此物有八面人人有两片| 国产精品永久免费网站| 久久精品影院6| 亚洲最大成人中文| 午夜精品在线福利| 国产在线观看jvid| 婷婷精品国产亚洲av在线| 少妇裸体淫交视频免费看高清 | 久久久久九九精品影院| 午夜激情av网站| 夜夜爽天天搞| 老司机深夜福利视频在线观看| 淫秽高清视频在线观看| 久久精品国产综合久久久| a级毛片a级免费在线| 91九色精品人成在线观看| 成在线人永久免费视频| 国产精品亚洲美女久久久| 老汉色av国产亚洲站长工具| 国产亚洲精品一区二区www| 人成视频在线观看免费观看| 99久久久亚洲精品蜜臀av| 成熟少妇高潮喷水视频| 天堂√8在线中文| 亚洲午夜精品一区,二区,三区| 男人操女人黄网站| 亚洲国产精品999在线| 黑人欧美特级aaaaaa片| 亚洲欧美一区二区三区黑人| 亚洲精品国产区一区二| 中出人妻视频一区二区| 19禁男女啪啪无遮挡网站| 岛国在线观看网站| 女警被强在线播放| 一区二区日韩欧美中文字幕| 午夜日韩欧美国产| 桃红色精品国产亚洲av| 午夜福利18| 国内精品久久久久精免费| 香蕉丝袜av| 亚洲一区二区三区色噜噜| 免费看日本二区| 黄色视频不卡| 欧美日韩精品网址| 国产麻豆成人av免费视频| 精品国产美女av久久久久小说| 亚洲国产欧美网| 国产精华一区二区三区| 2021天堂中文幕一二区在线观 | 国产精品自产拍在线观看55亚洲| 国产亚洲av高清不卡| 国产精品亚洲av一区麻豆| 国产91精品成人一区二区三区| 欧美乱色亚洲激情| 一本一本综合久久| 国产精品香港三级国产av潘金莲| 脱女人内裤的视频| 亚洲精华国产精华精| 最好的美女福利视频网| 国产在线精品亚洲第一网站| 国产成人精品无人区| 亚洲精品中文字幕在线视频| 欧美中文综合在线视频| 日本精品一区二区三区蜜桃| 91九色精品人成在线观看| 日韩av在线大香蕉| 国产高清视频在线播放一区| 亚洲国产精品久久男人天堂| 亚洲九九香蕉| 成人特级黄色片久久久久久久| 特大巨黑吊av在线直播 | 国产免费男女视频| 久9热在线精品视频| 国产免费av片在线观看野外av| 又黄又粗又硬又大视频| 午夜精品久久久久久毛片777| 亚洲片人在线观看| 亚洲一区二区三区不卡视频| tocl精华| 美女免费视频网站| 黄色毛片三级朝国网站| 午夜免费激情av| 国产精品香港三级国产av潘金莲| 国产成人精品久久二区二区免费| 两性夫妻黄色片| avwww免费| 成人永久免费在线观看视频| 国产精品美女特级片免费视频播放器 |