• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variation in Summer Surface Air Tem perature over Northeast Asia and Its Associated Circulation Anomalies

    2016-08-12 03:41:26WeiCHENXiaoweiHONGRiyuLUAifenJINShizhuJIN
    Advances in Atmospheric Sciences 2016年1期

    WeiCHEN,XiaoweiHONG,2,Riyu LU?,Aifen JIN,Shizhu JIN,

    Jae-CheolNAM4,Jin-Ho SHIN4,Tae-Young GOO4,and Baek-Jo KIM4

    1State Key Laboratory ofNumericalModeling for Atmospheric Sciencesand Geophysical Fluid Dynamics,Institute ofAtmospheric Physics,Chinese Academy ofSciences,Beijing 100029

    2University ofChinese Academy ofSciences,Beijing 100049

    3DepartmentofGeography,Yanbian University,Yanji133002

    4National Institute ofMeteorologicalResearch,Korea Meteorological Administration,Jeju,Korea

    Variation in Summer Surface Air Tem perature over Northeast Asia and Its Associated Circulation Anomalies

    WeiCHEN1,XiaoweiHONG1,2,Riyu LU?1,Aifen JIN3,Shizhu JIN3,

    Jae-CheolNAM4,Jin-Ho SHIN4,Tae-Young GOO4,and Baek-Jo KIM4

    1State Key Laboratory ofNumericalModeling for Atmospheric Sciencesand Geophysical Fluid Dynamics,Institute ofAtmospheric Physics,Chinese Academy ofSciences,Beijing 100029

    2University ofChinese Academy ofSciences,Beijing 100049

    3DepartmentofGeography,Yanbian University,Yanji133002

    4National Institute ofMeteorologicalResearch,Korea Meteorological Administration,Jeju,Korea

    This study investigates the interannual variation of summer surface air temperature over Northeast Asia(NEA)and its associated circulation anomalies.Two leadingmodes for the temperature variability overNEA areobtained by EOFanalysis. The fi rst EOFmode is characterized by a homogeneous temperature anomaly over NEA and therefore is called the NEA mode.This anomaly extends from southeastof Lake Baikal to Japan,w ith a central area in Northeast China.The second EOFmode ischaracterized by a seesaw pattern,show ing a contrasting distribution between EastAsia(specifically including the ChangbaiMountains in NortheastChina,Korea,and Japan)and north of this region.Thismode isnamed the East Asia (EA)mode.Bothmodes contribute equivalently to the temperature variability in EA.

    The two leading modes are associated w ith different circulation anomalies.A warm NEA mode is associated w ith a positive geopotentialheightanomaly over NEA and thusaweakened upper-troposphericwesterly jet.On the other hand,a warm EA mode is related to a positive heightanomaly over EA and a northward displaced jet.In addition,the NEA mode tends to be related to the Eurasian teleconnection pattern,while the EAmode isassociatedw ith the EastAsia–Pacific/Pacific–Japan pattern.

    surface air temperature,NortheastAsia,EastAsia,circulation anomaly,interannualvariability

    1. Introduction

    Greatattention hasbeen paid to the interannual variability of Northeast Asia(NEA)summer temperature,because of its effects on the economy(e.g.,Ding,1980;Sun et al., 1983).The variability in NEA summer temperature is related to a variety of atmospheric patterns.Itwas found that the pattern ofwave trainsalong theupper-troposphericwesterly jetaffects theNEA summer temperature(Sato and Takahashi,2006).A Rossby wave pattern extending from the Indian Peninsula to NEA is associated w ith NEA temperature variability(Chen and Lu,2014a).In addition,the EastAsia–Pacific/Pacific–Japan(EAP/PJ)teleconnection pattern associatedw ith convection over the tropicalwestern North Pacific can alsomodulate thesummer climateoverNEA(Hirotaand Takahashi,2012;Chen and Lu,2014a).In addition to the two above-mentioned factors,many other factors,including the Okhotsk highs(Sato and Takahashi,2007),polar vortex (Zhang et al.,1985;Gu and Yang,2006),Northern Hem isphere annularmode(He etal.,2006;Wang and Sun,2009) andwestern North Pacific subtropicalhigh(Cuietal.,2007), are also known to influence NEA summer temperature.The variety of teleconnection patternsmentioned above is indicative of the complexity of the remote circulations associated w ith NEA summer temperature variability.

    It is expectable that the local circulation anomalies contribute to anomalous NEA temperature.In themiddle troposphere,anomalous geopotential height over NEA affects the local summer temperature(Northeast China Cold Summer Research Group,1979).If NEA is covered by negative height anomalies,cold air becomes active and flows southward from the high latitudes into NEA,resulting in a cold summer.On the other hand,positive height anomalies are associated w ith warmer NEA temperatures(Chen and Lu, 2014a).In the lower troposphere,an anticyclonic circula-tion anomaly occurs along w ith warming over NEA(Chen and Lu,2014a;Gao etal.,2014).The strong southwesterly in the west of the anticyclonic circulation prevents the cold air in the high latitudes from flow ing southward and results in ahigher than normal temperatureoverNEA(Chen and Lu, 2014a).

    Furthermore,climate variability over NEA exhibits a regional difference.Iwao and Takahashi(2006,2008)indicated that the interannualvariation ofprecipitationoverNEA showsaseesaw pattern in thenorth and southof Lake Baikal. Sun and Wang(2006)pointed out that the interannual variability of temperature in Northeast China exhibits a seesaw pattern between itsnorth and south areas,shown as the second dom inantmode,while the fi rst leadingmode showshomogeneous variability in the whole region.Therefore,the temperatures in the north and south areasof NortheastChina may exhibitsignificantly different variations.These studies suggested that the interannual variability of NEA summer temperature not only exhibits homogeneous variation,but also showsa regionaldifference in spatialdistribution.Thus, what kind ofmodes does NEA temperature exhibit?What circulation patternsareassociatedw ith such temperaturedistributions?To answer thesequestions thepresentstudy investigates the dom inantmodesof interannualvariability of NEA surfaceair temperatureand itsassociated circulationanomaly during summer.The remainder of the paper is organized as follows:We introduce the datasets used in thiswork in section 2.In section 3,the two leadingmodes of NEA summer temperature are described.The differentcirculation patterns associated w ith these twomodes are compared in section 4. And finally,conclusionsaregiven in section 5.

    2. Datasets

    The present study uses Climatic Research Unit(CRU; Harris et al.,2014)surface air temperature data based on weather station records,and monthly mean ERA-Interim (European Centre for Medium-RangeWeather Forecasts Interim Reanalysis)data(Dee etal.,2011)for the atmospheric circulation variables including geopotentialheight,temperatureand w ind fields.The study period is from 1979 to 2012. Themean of June,July and August(JJA)representssummer time.We highlight the interannual variability in this study and,considering thatthere isanappreciabledecadalvariation in NEA summer temperature(SunandWang,2006;Chenand Lu,2014b),obtain the component of interannual variability by applying a9-yearGaussian fi lter.Statisticsanalysis isperformed after the fi ltering of alldatasets.

    3. Leadingmodesof the summer tem perature over NEA

    Fig.1.The(a,c)fi rst and(b,d)second leadingmodes and their PC time series for the summer surface air temperature over NEA,determ ined by EOFanalysis.

    Figure 1 shows the two leadingmodes of NEA summer temperature,obtained by performing EOF analysis on the summer surface air temperature anomaly w ithin the region (30°–70°N,100°–150°E).These two leadingmodes explain 50.8%of the total variance.The fi rst leadingmode(EOF1) exhibitsasa homogeneous temperature anomaly over NEA, extending from southeastof Lake Baikal to Japan and w itha centralarea in NortheastChina(Fig.1a);the phase line of warm anomalies declines from northwest to southeast.This mode suggests a homogeneous change for the interannual variability of temperature over NEA,including the southeastern part of Russia,Mongolia,northern China,the Korean Peninsula and Japan.Thus,EOF-1 is named the NEA mode.Thismodeexplains27.7%of the totalvariance,which is dom inant in NEA.

    It should bementioned that the time series for the fi rst leading mode(PC1)shows a strong decadal variability,if the EOF analysis is performed using the original data(not shown).The decadal variance is so strong that itcan explain more than half of the total variance(55.6%).Therefore,to highlight the interannual variability,we remove the decadal variationsobtained by a 9-year Gaussian fi lter from the originaldata before perform ing the EOFanalysis.

    The second leadingmode(EOF 2)behaves as a seesaw pattern for the temperatureanomaly(Fig.1b),in contrastw ith the homogeneous anomaly in EOF1.A positive temperature anomaly and a negative anomaly are located south and north of 50°N,respectively.The positive anomaly is concentrated over EA,including the region of ChangbaiMountains in Northeast China,the Korean Peninsula and central Japan.On the other hand,the negative temperature anomaly isover the northeastof Lake Baikal.EOF-2 displaysan opposite temperatureanomaly between south and north ofNEA and explains23.1%of the totalvariance.EOF-2mainly contributes to ahomogeneous temperatureanomaly overEA,and is therefore called the EAmode.The seesaw pattern issimilar to the distribution of the temperature anomaly associated w ith the Okhotsk highs in Sato and Takahashi(2007,Fig. 6b).Additionally,it should be noted that the seesaw pattern in thisstudy issignificantly different from theseesaw pattern indicated by Sun and Wang(2006).In their result,the seesaw pattern shows a contrasting distribution of temperature anomalies between south and north of 45°N,rather than the latitude of 50°N in this study.This difference results from the different domains for the EOF analysis:we investigated thewhole NEA area,which ismuch larger than that in Sun andWang(2006),whose studywasbased on 23 stationsover NortheastChina.

    The surface temperature anomalies in 1980 and 2004, when a negative and a positive EA mode are dom inant in NEA,respectively,are illustrated in Fig.2.In 1980,there are negative temperature anomaliesalong the eastern border of Northeast China,over the Korean Peninsula and central Japan,and positive ones over other parts of NEA.This pattern is sim ilar to the distribution of the temperature anomaly corresponding to the strong Okhotsk highs(Fig.6b in Sato and Takahashi,2007).Actually,thehigher temperature in EA is contributed to by the frequent occurrence of the Okhotsk highs in summer 1980(Kodama,1997).The temperature pattern in 2004 is basically opposite to that in 1980,except for a positive anomaly near the southeast of Lake Baikal. These two years both show a seesaw pattern of the temperature anomaly,indicating a regional difference between the south and north of NEA.This figure confi rms the existence of the EAmode.

    Fig.2.Thesummersurfaceair temperatureanomaly(units:°C) overNEA during(a)1980 and(b)2004.

    Figure 3 shows the variance explained by these two modes in each grid box of NEA.PC1 contributes to the interannual variability of the temperature anomaly southeast of Lake Baikal(Fig.3a).Formost regions,the explained variance ismore than 20%,including Mongolia,Northeast China,the Korean Peninsulaand Japan.In central Northeast China,theexplained variance ismore than40%.On theother hand,PC2 is in response to the temperatureanomaly over the region of the ChangbaiMountains,Korean Peninsula,Japan and northeast of Lake Baikal(Fig.3b).The variance explained by PC2 in these regions isapproximately 40%.Overall,the interannual variability of NEA temperature ismodulated by these twomodes(Fig.3c).The temperature variances in EA can bemostly explained by these twomodes, which together explainmore than 60%of the total variance inmost areas of EA.In particular,these twomodes explain about90%of the totalvariance in the ChangbaiMountains.

    Fig.3.The variance for each grid over NEA explained by(a) PC1,(b)PC2 and(c)PC1 and PC2 combined.

    Figure 4 shows the time series of the temperature anomaly over EA,defined as the East Asian Temperature (EAT)index.The EAT index represents the temperature anomalies averaged over the region(35°–45°N,125°–145°E).The EAT index is closely relatedw ith PC1 and PC2, w ith correlation coefficients of 0.62 and 0.57,respectively, both significantat the 99%confidence level.The sim ilar coefficients suggest that the temperature anomalies in EA are equivalently affected by the NEA and EA modes,confi rming the results shown in Fig.3.Furthermore,the yearswhen PC1 and PC2 aregreater(less)than 0.8(?0.8)standard deviation aremarked.Half of the years(16 years)are dominated by only onemode:ten years by PC1 and six years by PC2. Seven years are dom inated by the combination of PC1 and PC2.Among them,PC1 and PC2 offset each other in four years and overlap in other years.These results suggest that attention should bepaid to both PC1 and PC2 for the temperature anomaly over EA.

    Figure 5 shows the vertical profi les of temperature anomaliesoverNEA associatedw ith these twomodes.Along 125°–145°E,theNEAmode ischaracterized asastrong temperature anomaly in them idlatitudes(35°–55°N)(Fig.5a). The temperature anomalies extend from the lower to the upper troposphere.On the contrary,the EA mode is related to a shallow temperature anomaly confined to the lower troposphere,but much weaker in the m iddle and upper troposphere.In the upper troposphere,there are some positive anomalies,which aremainly over the higher latitudes rather than the EA region(Fig.5b).Additionally,the positive temperature anomaly around 40°N is associated w ith negative temperature anomalies in the higher and lower latitudes.Thus,in themeridional direction,the vertical structures for the summer temperature anomaly in response to these two modes are different.Furthermore,this difference can also be demonstrated in the zonaldirection(Figs.5c and d).Along 35°–45°N,the NEAmode showsa strong temperatureanomaly covering90°–150°E in thewhole troposphere, but the EAmode showsa positiveanomaly over120°–150°E and is mainly lim ited to the lower troposphere.It seems that the vertical profi le of the temperature anomaly associated w ith PC2 tends to be northward-and westward-tilted w ith height(Figs.5b and d),implying the existence of local baroclinic energy conversion from mean flows to the EAP/PJ pattern(Kosakaand Nakamura,2006;Chen etal.,2013).

    4. Circulation associated w ith NEA summ er tem perature variability

    These different temperature modes are associated w ith different circulation patterns.Figure 6 shows the 500 hPa geopotential height anomalies associated w ith the two PCs. For PC1,there is a remarkable positive geopotential height anomaly over NEA,w ith a central area in Northeast China. This positive anomaly covers the whole of NEA and is accompanied by warmer temperatures(Fig.1a).Furthermore, this positive anomaly is related to a negative and a positive anomaly over the north of the Caspian Sea and near the Scandinavian Peninsula,respectively,corresponding to the Eurasian teleconnection(EU)pattern(Wallace and Gutzler,1981).The correlation coefficientbetween PC1 and the EU index(Wallace and Gutzler,1981)is 0.47,significantat the 99%confidence level.Moreover,thewave activity flux shown in Fig.6a indicates that the EU teleconnection patterncan be considered as the eastward propagation of planetary waves from Western Europe to NEA,and can contribute to the NEA mode.These circulation anomaliesassociated w ith theNEAmodearedifferent from those in Sato and Takahashi (2006),who suggested thatawave trainalong thewesterly jet affects thesummer temperature in Japan.

    Fig.4.The time seriesof the EAT index(units:°C),defined as the surface air temperature averaged w ithin the region(35°–45°N,125°–145°E),marked in Fig.1.The yearswhen PC1 and PC2 are greater(less)than 0.8(?0.8)standard deviation aremarked.

    Fig.5.Regression of the vertical profi le of temperature anomalies(units:°C)onto the(a,c)fi rstand (b,d)second PC time series:(a,b)temperature anomalies averaged over 125°–145°E;(c,d)temperature anomaliesover35°–45°N.Shading indicates regionswhere anomaliesare significantat the 95% confidence level,according to the t-test.The thick contours represent0.3°C.

    For PC2,however,the positive geopotential height anomaly is weaker and southward shifted,being lim ited to EA.It is associated w ith negative anomalies over the northeastof Lake Baikal.The seesaw pattern of the geopotential heightanomaly corresponds to a sim ilar pattern for the temperature anomaly(Fig.1b).Additionally,it is also related to a negative anomaly over thewestern North Pacific.This distribution of circulation anomalies resembles the EAP/PJ pattern(e.g.,Nitta,1987;Huang and Sun,1992).Additionally,the wave activity flux shown in Fig.6b indicates that the EAP/PJ teleconnection is characterized by a connection among higher,middleand lower latitudes(e.g.,Nitta,1987). The correlation coefficient between PC2 and the EAP index(Huang and Yan,1999)is 0.82.Huang and Yan(1999) defined the EAP index by the 500 hPa geopotential height anomaly at 40°N minus that at 20°N and 60°N,along the longitude of 125°E.This close relationship between the EA mode and EAP pattern implies that the EA mode may be related to the convection anomalies in the tropicalwestern North Pacific,since it is well-known that the EAP/PJ pattern is closely associatedwith tropical convection anomalies. Actually,a positive(negative)EA mode is significantly associatedw ith significantly enhanced(suppressed)convection over the Philippine Sea,which is not shown,but can be illustrated by thehigh correlation coefficient(?0.74)between PC2 and the outgoing longwave radiation anomaly over the Philippine Sea(10°–25°N,120°–140°E).This EAP/PJ pattern issim ilar to thatin Hirotaand Takahashi(2012,Fig.4b). Hirota and Takahashi(2012)suggested that the EAP/PJpattern isan internalmode in theatmosphere,butcanbeaffected by the convection activity over the tropicalwestern North Pacific.Therefore,we suggest that the EA mode can also be considered as an internalmode,but is affected by tropical forcing.

    The temperature anomaly for the NEA mode ismainly contributed to by the local geopotential height anomaly (Chenand Lu,2014a;Gaoetal.,2014).Thepositiveanomaly southeast of Lake Baikal(Fig.6a)is closely related to the warm temperature over NEA(Fig.3a).On the other hand, the positive geopotentialheightanomaly associated w ith the EAmode(Fig.6b)is relatively weak,and its contribution to the temperatureanomaly in EAmay besmall.

    Fig.6.As in Fig.5 but for the500 hPageopotentialheightanomaly(units:m)and stationary wave activity flux[vectors;units:m2s?2;according to Takaya and Nakamura (2001)].

    The differences between the circulation patterns associated w ith two PCs can also be illustrated by the profi les of geopotential height(Fig.7).The profi le of geopotential heightassociated w ith PC1 showsa strong positive center inmiddle latitudes(Fig.7a).This anomaly extends from the upper to lower troposphere,being consistentw ith the deep temperature anomaly over NEA(Figs.5a and c).In addition,the positive anomaly seems to be isolated in themeridionaldirection,w ithoutconnectionw ith the lowerand higher latitudes.On the contrary,PC2 is associated with a narrow positive center in them iddle latitudes,and shows a“+?+”pattern from the lower to higher latitudes(Fig.7b),indicating a connection of the EA modew ith the lower and higher latitudes.

    Figure 8 shows the zonalw ind anomalies at200 hPa associated w ith the NEA and EA modes.The NEA mode is associatedwithanegativeanomaly along 40°Nwhere theclimatologicalEastAsian jet(EAJ)locates.Therefore,theNEA mode is related to the change in the intensity of the EAJ.PC1 is significantly correlated w ith the EAJintensity index,w ith a negative correlation coefficientof?0.58.Here,we define the EAJindex as the200 hPazonalw ind anomaliesaveraged over(35°–45°N,100°–140°E),which is sim ilar to Lu(2004) butw ith a westward shift of the averaging region.The results suggest that a warm(cold)NEA mode corresponds to aweakened(strengthened)EAJ.The connection between the NEA mode and the EAJ intensity can be explained by the weakened meridional gradient of geopotential heights over the EA in association w ith the positive heightanomaly over NEA(Fig.6a).

    Fig.7.Asin Fig.5but for theverticalprofi leof thegeopotential heightanomaly averaged over125°–145°E(units:m).

    Fig.8.As in Fig.5 but for the 200 hPa zonalw ind anomaly (units:m s?1).The thick dashed lines represent the location of the climatological EastAsianwesterly jet.

    On the other hand,PC2 is associated w ith a positive anomaly and a negative one north and south of the EAJ,respectively(Fig.8b).Itmeans that the EAmode is related to a meridionalshiftof the EAJ.Furthermore,the correlation coefficientbetween PC2 and the EAJmeridional shift index is 0.69.The EAJmeridionalshift index isdefined as the difference of 200 hPa zonalw ind anomalies averaged over(40°–50°N,100°–140°E)and(30°–40°N,100°–140°E),which is similar to Lu(2004)and Lin and Lu(2005)butw ith awestward shift of the averaging regions.These results indicate thata positive(negative)EA mode is in response to a northward(southward)shift of the EAJ.The northward(southward)shiftof the EAJis associated w ith an anticyclonic(a cyclonic)anomaly(Fig.6b)and awarmer(colder)tempera-ture in EA(Fig.1b).

    5. Conclusions

    This study investigates the two leading modes of interannual variation of summer surface temperature over NEA during the period 1979–2012.EOF analysis is applied on NEA summer temperature using CRU data,which are based onweather station records.

    Two leadingmodes are demonstrated in this study.The fi rst leading mode is characterized as the NEA mode,w ith a homogeneous temperature anomaly covering thewhole of NEA.Thismode indicates a homogeneous change in the interannual variability of summer temperature extending from southeastof Lake Baikal to Japan.The second leadingmode exhibits as a seesaw pattern between the follow ing two regions:(1)the ChangbaiMountains in Northeast China,the Korea Peninsulaand central Japan;and(2)northeastof Lake Baikal.Thismode is called the EAmode.These twomodes are associated w ith different vertical structures of temperature:significantair temperature anomalies appear in the entire troposphere for the NEA mode,butare concentrated in the lower troposphere for the EAmode.

    Moreover,bothmodes are equivalently important to the temperature over the region of the ChangbaiMountains,Korean Peninsulaand central Japan.Thecorrelation coefficients between PC1 and PC2 w ith the temperature averaged over this region are 0.62 and 0.57,respectively.The interannual varianceof temperatureoverEA explained by theNEAmode is close to thatexplained by the EA mode.Thus,the results indicate that EA temperature ismodulated by the combination of these twomodes.

    The two leadingmodes are in response to different patterns of circulation anomalies.Thewarm NEA mode is related to a strong positive geopotential height anomaly over NEA in the entire troposphere,while the warm EA mode is associated w ith a positive height anomaly over EA and a strong negative anomaly to the north.Correspondingly, thewarm NEA mode is associated w ith a weakened uppertropospheric westerly jet,and thewarm EA mode is related to apoleward shiftedwesterly jet.In addition,theNEAmode tends to be related to the EU pattern,while the EA mode is closely related to the EAP/PJpattern.

    The present results suggest that the regional difference in interannual temperature variability in NEA should be noticed besides the homogeneous change.The homogeneous change(the NEA mode)and regional difference(the EA mode)are in response to different circulation patterns and different physical processes.In particular,bothmodes contributeequivalently and greatly to the temperatureanomalies over EA,suggesting that thesemodesshould be furtherstudied for a better understanding of temperature variability in EA.

    Acknow ledgements.Theauthorsacknow ledge the twoanonymous reviewers for their valuable comments and suggestions.This studywassupported by the NationalNatural Science Foundation of China(GrantNos.41105046 and 41320104007).

    REFERENCES

    Chen,G.S.,R.H.Huang,and L.T.Zhou,2013:Baroclinic instability of the silk road pattern induced by thermaldamping.J. Atmos.Sci.,70,2875–2893.

    Chen,W.,and R.Y.Lu,2014a:The interannual variation in monthly temperature over Northeast China during summer. Adv.Atmos.Sci.,31(4),515–524,doi:10.1007/s00376-013-3102-3.

    Chen,W.,and R.Y.Lu,2014b:A decadalshiftof summer surface air temperature over Northeast Asia around them id-1990s. Adv.Atmos.Sci.,31(4),735–742,doi:10.1007/s00376-013-3154-4.

    Cui,J.,J.Li,A.Z.Zhang,and Q.Yan,2007:Advances in studies of summer low temperature in NortheastChina.Meteorologica Monthly,33(4),3–9,doi:10.3969/j.issn.1000-0526.2007. 04.001.(in Chinese)

    Dee,D.P.,and Coauthors,2011:The ERA-Interim reanalysis: Configuration and performance of the data assim ilation system.Quart.J.Roy.Meteor.Soc.,137,553–597,doi:10.1002/ qj.828.

    Ding,S.S.,1980:The climatic analysis of low temperature in summer over the Northeast China and influence for agriculturalproduct.Acta Meteorologica Sinica,38(3),234–242.(in Chinese)

    Gao,Z.T.,Z.Z.Hu,B.Jha,S.Yang,J.S.Zhu,B.Z.Shen,and R.J.Zhang,2014:Variability and predictability of Northeast China climateduring 1948–2012.Climate Dyn.,43,787–804.

    Gu,S.N.,and X.Q.Yang,2006:Variability of the northern circumpolar vortex and its association w ith climate anomaly in China.Scientia Meteorologica Sinica,26(2),135–142.(in Chinese)

    Harris,I.,P.D.Jones,T.J.Osborn,and D.H.Lister,2014:Updated high-resolution gridsofmonthly climatic observations–the CRU TS3.10 Dataset.International Journal ofClimatology,34,623–642.doi:10.1002/joc.3711.

    Hirota,N.,and M.Takahashi,2012:A tripolar pattern asan internalmode of the East Asian summermonsoon.Climate Dyn., 39,2219–2238.

    He,J.H.,Z.W.Wu,and L.Qi,2006:Relationships of Northern Hem ispheric annualmode and Northeast China cold vortex w ith summerprecipitation in EastAsiaand China.Journalof Meteorology and Environment,22,1–5.(in Chinese)

    Huang,G.,and Z.W.Yan,1999:The East Asian summermonsoon circulation anomaly index and its interannualvariations. Chinese Science Bulletin,44(14),1325–1329.

    Huang,R.H.,and F.Y.Sun,1992:Impactof the tropicalwestern Pacific on the East Asian summermonsoon.J.Meteor.Soc. Japan,70,243–256.

    Iwao,K.,and M.Takahashi,2006:Interannualchange in summertime precipitation over northeast Asia.Geophys.Res.Lett., 33,L16703,doi:10.1029/2006GL027119.

    Iwao,K.,and M.Takahashi,2008:A precipitation seesaw mode between Northeast Asia and Siberia in summer caused by Rossby waves over the Eurasian Continent.J.Climate,21, 2401–2419.

    Kodama,Y.M.,1997:Airmass transformation of the Yamase airflow in the summer of 1993.J.Meteor.Soc.Japan,75,737–751.

    Kosaka,Y.,and H.,Nakamura,2006:Structure and dynam ics of the summertime Pacific–Japan teleconnection pattern.Quart. J.Roy.Meteor.Soc.,132(619),2009–2030.

    Lin,Z.D.,and R.Y.Lu,2005:Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer.Adv.Atmos.Sci.,22,199–211,doi:10.1007/ BF02918509.

    Lu,R.Y.,2004:Associationsamong the components of the East Asian summermonsoon system in themeridional direction. J.Meteor.Soc.Japan,82,155–165.

    Nitta,T.,1987:Convectiveactivitiesin the tropicalwestern Pacific and their impacton the northern hem isphere summer circulation.J.Meteor.Soc.Japan,65,373–390.

    NortheastChina Cold Summer Research Group,1979:A preliminary study on the long range forecasting of the cold/warm summer in Northeast China.Acta Meteorologica Sinica, 37(3),44–58.

    Sato,N.,and M.Takahashi,2006:Dynamical processes related to the appearance of quasi-Stationary waves on the subtropical jetin them idsummernorthern hem isphere.J.Climate,19, 1531–1544.

    Sato,N.,and M.Takahashi,2007:Dynam icalprocesses related to theappearanceof theOkhotsk high during earlymidsummer. J.Climate,20,4982–4994.

    Sun,J.Q.,and H.J.Wang,2006:Regional difference of summer air temperature anomalies in NortheastChina and its relationship to atmospheric general circulation and sea surface temperature.Chinese JournalofGeophysics,49,588–598.

    Sun,Y.T.,S.Y.Wang,and Y.Q.Yang,1983:Studies on cool summerand crop yield in NortheastChina.Acta Meteorologica Sinica,41(3),313–321.(in Chinese)

    Takaya,K.,and H.Nakamura,2001:A formulation of a phaseindependentwave-activity flux for stationary and m igratory quasigeostrophic eddies on a zonally varying basic flow.J. Atmos.Sci.,58,608–627.

    Wang,H.J.,and J.Q.Sun,2009:Variability of northeast China river break-up date.Adv.Atmos.Sci.,26(4),701–706,doi: 10.1007/s00376-009-9035-1.

    Wallace,J.M.,and D.S.Gutzler,1981:Teleconnections in the geopotentialheight field during thenorthern hem ispherew inter.Mon.Wea.Rev.,109,784–812.

    Zhang,S.Q.,T.J.Yu,F.Y.Li,X.M.Wang,X.F.Wang,andW.M. Wu,1985:Seasonal variation of Northern Hem isphere polar vortex areaand associated intensity,and theirassociationw ith the temperatures in Northeast China.Scientia Atmospherica Sinica,9,178–185.(in Chinese)

    15 February 2015;revised 22 June 2015;accepted 26 June 2015)

    :Chen,W.,and Coauthors,2016:Variation in summersurfaceair temperatureoverNortheastAsiaand itsassociated circulation anomalies.Adv.Atmos.Sci.,33(1),1–9,

    10.1007/s00376-015-5056-0.

    ?Corresponding author:Riyu LU

    Email:lr@mail.iap.ac.cn

    99在线人妻在线中文字幕| bbb黄色大片| 亚洲第一欧美日韩一区二区三区| 99热精品在线国产| 老熟妇乱子伦视频在线观看| 日韩精品青青久久久久久| 国产主播在线观看一区二区| 久久精品综合一区二区三区| 久久九九热精品免费| 真人一进一出gif抽搐免费| 日日干狠狠操夜夜爽| 男插女下体视频免费在线播放| 国内精品久久久久久久电影| 久久伊人香网站| 亚洲午夜理论影院| 国内精品美女久久久久久| 国产精品香港三级国产av潘金莲| 亚洲精品中文字幕一二三四区| 操出白浆在线播放| 中文字幕久久专区| 动漫黄色视频在线观看| 国产91精品成人一区二区三区| 噜噜噜噜噜久久久久久91| 久久性视频一级片| 两个人看的免费小视频| 国产亚洲av高清不卡| 高清毛片免费观看视频网站| 国产精品永久免费网站| 色老头精品视频在线观看| 男人舔奶头视频| 在线免费观看的www视频| a级毛片a级免费在线| 午夜福利视频1000在线观看| 欧美大码av| www日本在线高清视频| 999久久久国产精品视频| 他把我摸到了高潮在线观看| 欧美xxxx黑人xx丫x性爽| 欧美黄色淫秽网站| 成人永久免费在线观看视频| 2021天堂中文幕一二区在线观| 国产欧美日韩精品亚洲av| 精品久久久久久久末码| 精品久久久久久成人av| 亚洲色图av天堂| 99国产极品粉嫩在线观看| 一二三四社区在线视频社区8| 91久久精品国产一区二区成人 | 久久久精品欧美日韩精品| 18禁裸乳无遮挡免费网站照片| 亚洲第一欧美日韩一区二区三区| 国产精品99久久久久久久久| 国产野战对白在线观看| 国产精品女同一区二区软件 | 波多野结衣高清无吗| 国产成年人精品一区二区| 色精品久久人妻99蜜桃| 日本在线视频免费播放| 网址你懂的国产日韩在线| 日本五十路高清| 女生性感内裤真人,穿戴方法视频| 国产成人影院久久av| 欧美日韩亚洲国产一区二区在线观看| 中文字幕av在线有码专区| 亚洲人成网站在线播放欧美日韩| 1024香蕉在线观看| 久久性视频一级片| 夜夜躁狠狠躁天天躁| 麻豆成人av在线观看| 啦啦啦免费观看视频1| 最近视频中文字幕2019在线8| 99在线视频只有这里精品首页| 中文在线观看免费www的网站| 日韩精品中文字幕看吧| 国产不卡一卡二| 免费观看人在逋| 国产视频内射| 欧美乱色亚洲激情| 国产不卡一卡二| а√天堂www在线а√下载| 国产97色在线日韩免费| 国产精品乱码一区二三区的特点| 国产精品香港三级国产av潘金莲| a级毛片在线看网站| 精品日产1卡2卡| 欧美日韩国产亚洲二区| www日本黄色视频网| 亚洲精品美女久久av网站| 久久精品综合一区二区三区| 美女 人体艺术 gogo| 国内精品久久久久精免费| 亚洲国产日韩欧美精品在线观看 | 18禁观看日本| 欧美av亚洲av综合av国产av| 两个人视频免费观看高清| 最新在线观看一区二区三区| 成人永久免费在线观看视频| 国产真人三级小视频在线观看| 偷拍熟女少妇极品色| 99久久国产精品久久久| 国产熟女xx| 国产精品久久久久久亚洲av鲁大| 在线观看美女被高潮喷水网站 | 男女之事视频高清在线观看| 国产激情久久老熟女| 婷婷精品国产亚洲av| 国产蜜桃级精品一区二区三区| 性色avwww在线观看| 男女那种视频在线观看| 一进一出抽搐gif免费好疼| 日本精品一区二区三区蜜桃| 久久这里只有精品19| 欧美高清成人免费视频www| 2021天堂中文幕一二区在线观| 一个人免费在线观看电影 | 精品乱码久久久久久99久播| 后天国语完整版免费观看| 亚洲av中文字字幕乱码综合| 91字幕亚洲| 成在线人永久免费视频| 国产精品久久电影中文字幕| 精品国产超薄肉色丝袜足j| 亚洲国产欧洲综合997久久,| 欧美色欧美亚洲另类二区| 国产精品99久久久久久久久| 国产精品久久久人人做人人爽| a在线观看视频网站| 亚洲在线观看片| ponron亚洲| 淫秽高清视频在线观看| 婷婷丁香在线五月| 国产亚洲精品久久久久久毛片| 久久久久久久久久黄片| 美女 人体艺术 gogo| 久久精品亚洲精品国产色婷小说| 亚洲真实伦在线观看| 18禁美女被吸乳视频| 欧美日韩亚洲国产一区二区在线观看| 国产99白浆流出| 哪里可以看免费的av片| 国内精品久久久久久久电影| 国产乱人伦免费视频| 丰满人妻一区二区三区视频av | 桃色一区二区三区在线观看| 网址你懂的国产日韩在线| 97超视频在线观看视频| 欧美色欧美亚洲另类二区| 岛国在线观看网站| 波多野结衣高清作品| 女警被强在线播放| 婷婷亚洲欧美| 亚洲性夜色夜夜综合| 久久久国产成人精品二区| 一个人看的www免费观看视频| 久久中文看片网| 欧美日韩一级在线毛片| 天天一区二区日本电影三级| 久久天堂一区二区三区四区| 精品一区二区三区四区五区乱码| 国产精品1区2区在线观看.| 亚洲av美国av| 夜夜夜夜夜久久久久| 曰老女人黄片| 日韩三级视频一区二区三区| 成人三级做爰电影| 老司机在亚洲福利影院| 亚洲精品国产精品久久久不卡| 色视频www国产| 手机成人av网站| 国产成年人精品一区二区| 中文字幕精品亚洲无线码一区| 亚洲va日本ⅴa欧美va伊人久久| 久久婷婷人人爽人人干人人爱| 成年人黄色毛片网站| 久久久久久久久中文| 麻豆成人av在线观看| 床上黄色一级片| 又爽又黄无遮挡网站| 欧美日韩综合久久久久久 | 欧美中文综合在线视频| 久久久久久人人人人人| 欧美黑人巨大hd| 淫妇啪啪啪对白视频| 国产av在哪里看| 久久亚洲真实| 人人妻人人看人人澡| 国产又色又爽无遮挡免费看| 久99久视频精品免费| 国产精品乱码一区二三区的特点| 亚洲精品美女久久av网站| 首页视频小说图片口味搜索| 亚洲精品在线美女| 亚洲欧美一区二区三区黑人| 国产精品电影一区二区三区| 欧美在线黄色| 操出白浆在线播放| 在线观看免费视频日本深夜| 久久中文字幕一级| 久久人妻av系列| 人人妻,人人澡人人爽秒播| 91在线精品国自产拍蜜月 | 999精品在线视频| 制服丝袜大香蕉在线| 久久国产精品人妻蜜桃| 国产三级在线视频| 欧美成狂野欧美在线观看| 国产亚洲精品一区二区www| 免费av毛片视频| 在线免费观看不下载黄p国产 | 国产精华一区二区三区| 无限看片的www在线观看| 国产91精品成人一区二区三区| 很黄的视频免费| 亚洲自偷自拍图片 自拍| 亚洲精品色激情综合| 精品熟女少妇八av免费久了| 国产伦精品一区二区三区四那| 日本五十路高清| 叶爱在线成人免费视频播放| 美女高潮的动态| 熟女电影av网| 国产成人精品久久二区二区91| 国内精品久久久久精免费| 97人妻精品一区二区三区麻豆| 黄片大片在线免费观看| 国产精品乱码一区二三区的特点| 国产精品爽爽va在线观看网站| 国产精品 欧美亚洲| 伊人久久大香线蕉亚洲五| 久久亚洲真实| 成人永久免费在线观看视频| 日韩三级视频一区二区三区| 精品久久久久久久久久久久久| 日韩欧美国产一区二区入口| 两性夫妻黄色片| 日日摸夜夜添夜夜添小说| 国产精品香港三级国产av潘金莲| 国产亚洲欧美98| 欧美三级亚洲精品| 99久久无色码亚洲精品果冻| 国产伦在线观看视频一区| 精品乱码久久久久久99久播| 亚洲国产中文字幕在线视频| 欧美日本亚洲视频在线播放| 亚洲成av人片免费观看| 欧美日韩精品网址| 少妇裸体淫交视频免费看高清| 午夜久久久久精精品| 2021天堂中文幕一二区在线观| 国产亚洲精品久久久com| 好看av亚洲va欧美ⅴa在| 久久久久久久久久黄片| 欧美日韩亚洲国产一区二区在线观看| 最好的美女福利视频网| 一级作爱视频免费观看| 成人特级黄色片久久久久久久| а√天堂www在线а√下载| 国产av麻豆久久久久久久| 日本 av在线| 97超级碰碰碰精品色视频在线观看| 夜夜看夜夜爽夜夜摸| 亚洲欧美一区二区三区黑人| 亚洲av片天天在线观看| 国产一区二区在线av高清观看| 欧洲精品卡2卡3卡4卡5卡区| 丁香欧美五月| 两人在一起打扑克的视频| 国内精品美女久久久久久| 母亲3免费完整高清在线观看| 波多野结衣巨乳人妻| 国产精品,欧美在线| 久久草成人影院| 日韩免费av在线播放| 中亚洲国语对白在线视频| 国产伦在线观看视频一区| 久久精品影院6| 国产高清videossex| 国产精品久久久av美女十八| 亚洲人与动物交配视频| 全区人妻精品视频| 成人无遮挡网站| 搞女人的毛片| 日韩欧美免费精品| 久久久久久久久中文| 国产成年人精品一区二区| 99热这里只有精品一区 | 久久久色成人| 动漫黄色视频在线观看| 国产成人影院久久av| 欧美激情久久久久久爽电影| 亚洲狠狠婷婷综合久久图片| 国产av麻豆久久久久久久| 国产精品免费一区二区三区在线| 日韩欧美在线二视频| 国产三级在线视频| 久99久视频精品免费| 国产精品久久久久久久电影 | 午夜福利成人在线免费观看| 18禁黄网站禁片免费观看直播| 99久久国产精品久久久| 亚洲专区中文字幕在线| 国产真实乱freesex| 亚洲熟女毛片儿| 69av精品久久久久久| 韩国av一区二区三区四区| 中文字幕人妻丝袜一区二区| 最近最新中文字幕大全电影3| 久久国产精品影院| 岛国在线免费视频观看| 天天一区二区日本电影三级| 嫩草影院精品99| 精品国内亚洲2022精品成人| 波多野结衣高清作品| 级片在线观看| 国产精品香港三级国产av潘金莲| 欧美极品一区二区三区四区| 成人国产一区最新在线观看| 一进一出抽搐动态| 久久精品人妻少妇| bbb黄色大片| 国产一区二区三区视频了| 欧美成人一区二区免费高清观看 | 国产亚洲精品久久久com| 变态另类成人亚洲欧美熟女| 亚洲精华国产精华精| 亚洲欧美日韩东京热| or卡值多少钱| 亚洲午夜理论影院| av在线天堂中文字幕| 窝窝影院91人妻| 亚洲18禁久久av| 中文字幕最新亚洲高清| 香蕉av资源在线| www.精华液| 国产一区二区在线观看日韩 | 亚洲欧洲精品一区二区精品久久久| 一级a爱片免费观看的视频| 桃色一区二区三区在线观看| 此物有八面人人有两片| 99热6这里只有精品| 99视频精品全部免费 在线 | www.自偷自拍.com| 国内精品久久久久久久电影| 免费看a级黄色片| 三级毛片av免费| 999久久久国产精品视频| 麻豆国产av国片精品| 亚洲电影在线观看av| 又大又爽又粗| 久久香蕉精品热| 欧美成人一区二区免费高清观看 | 欧美日韩福利视频一区二区| 午夜福利高清视频| 亚洲欧美日韩高清专用| 99久久久亚洲精品蜜臀av| 后天国语完整版免费观看| 国产午夜福利久久久久久| 免费看十八禁软件| 亚洲电影在线观看av| 国产成人影院久久av| 在线观看免费视频日本深夜| 禁无遮挡网站| 三级国产精品欧美在线观看 | 女人高潮潮喷娇喘18禁视频| 国产精品亚洲av一区麻豆| 免费看a级黄色片| 99久久精品国产亚洲精品| 久久欧美精品欧美久久欧美| 免费在线观看亚洲国产| 亚洲美女黄片视频| 中出人妻视频一区二区| 一a级毛片在线观看| 欧美极品一区二区三区四区| 黄色女人牲交| 观看免费一级毛片| 波多野结衣高清作品| 人妻丰满熟妇av一区二区三区| 亚洲av美国av| 国产激情欧美一区二区| 亚洲无线在线观看| 久久久久免费精品人妻一区二区| 性色av乱码一区二区三区2| 日韩国内少妇激情av| 性色av乱码一区二区三区2| 不卡av一区二区三区| 搡老妇女老女人老熟妇| 欧美激情久久久久久爽电影| 麻豆av在线久日| 三级男女做爰猛烈吃奶摸视频| 日本 欧美在线| 在线观看66精品国产| 午夜福利在线观看吧| 三级男女做爰猛烈吃奶摸视频| 免费看十八禁软件| 国内精品美女久久久久久| 欧美色视频一区免费| 免费在线观看影片大全网站| 国产麻豆成人av免费视频| 欧美+亚洲+日韩+国产| 亚洲人成伊人成综合网2020| 亚洲国产精品999在线| 欧美中文日本在线观看视频| 精品国产三级普通话版| 国产综合懂色| 国产午夜精品久久久久久| 99久久精品一区二区三区| 亚洲中文av在线| 小蜜桃在线观看免费完整版高清| 午夜激情欧美在线| 国产野战对白在线观看| 亚洲avbb在线观看| 国产欧美日韩一区二区三| 制服人妻中文乱码| 中文字幕人妻丝袜一区二区| 亚洲中文日韩欧美视频| 国产黄色小视频在线观看| 国产伦在线观看视频一区| 亚洲精品中文字幕一二三四区| 激情在线观看视频在线高清| 性色avwww在线观看| 国产一级毛片七仙女欲春2| 欧美色视频一区免费| 男人舔女人的私密视频| 欧美中文日本在线观看视频| 久久婷婷人人爽人人干人人爱| 中文在线观看免费www的网站| 亚洲18禁久久av| 国产1区2区3区精品| 99在线人妻在线中文字幕| 中文字幕av在线有码专区| 国内毛片毛片毛片毛片毛片| 老司机在亚洲福利影院| 欧美乱妇无乱码| 亚洲专区中文字幕在线| 久久久国产成人精品二区| 久久精品人妻少妇| 99热6这里只有精品| 亚洲欧美日韩无卡精品| 国产精品 欧美亚洲| 在线免费观看的www视频| 脱女人内裤的视频| 国内毛片毛片毛片毛片毛片| 一个人看的www免费观看视频| 嫁个100分男人电影在线观看| 麻豆久久精品国产亚洲av| 1024手机看黄色片| 亚洲精品在线美女| 国模一区二区三区四区视频 | av在线天堂中文字幕| 99久久精品一区二区三区| 嫩草影院精品99| 欧美精品啪啪一区二区三区| 成人无遮挡网站| 麻豆久久精品国产亚洲av| 精品无人区乱码1区二区| 丁香欧美五月| 级片在线观看| 国产精品日韩av在线免费观看| 成人永久免费在线观看视频| 精品久久久久久久末码| 国产高清视频在线播放一区| 久久午夜亚洲精品久久| 国产亚洲精品久久久久久毛片| 国模一区二区三区四区视频 | 日本撒尿小便嘘嘘汇集6| 国产精品久久久av美女十八| 久久午夜综合久久蜜桃| 久久精品综合一区二区三区| 在线十欧美十亚洲十日本专区| 国模一区二区三区四区视频 | 亚洲精品456在线播放app | 成人一区二区视频在线观看| 免费看美女性在线毛片视频| 亚洲精品一卡2卡三卡4卡5卡| 两性夫妻黄色片| 欧美又色又爽又黄视频| 亚洲精品456在线播放app | 成人欧美大片| 黄频高清免费视频| 天堂av国产一区二区熟女人妻| 长腿黑丝高跟| 久久精品亚洲精品国产色婷小说| 又大又爽又粗| 男人舔奶头视频| 欧美极品一区二区三区四区| 亚洲18禁久久av| 欧美日本视频| 成人无遮挡网站| 成年女人看的毛片在线观看| av片东京热男人的天堂| 国产精品久久久人人做人人爽| 99精品在免费线老司机午夜| 一个人免费在线观看电影 | 在线免费观看不下载黄p国产 | 男女那种视频在线观看| 天天添夜夜摸| 变态另类成人亚洲欧美熟女| 国产成人aa在线观看| 91av网一区二区| 久久人妻av系列| a级毛片a级免费在线| 激情在线观看视频在线高清| 亚洲国产色片| 美女午夜性视频免费| 久久人妻av系列| 亚洲av电影在线进入| 成年版毛片免费区| 麻豆成人午夜福利视频| 成人三级黄色视频| 淫妇啪啪啪对白视频| av在线天堂中文字幕| 久久国产精品影院| 美女 人体艺术 gogo| 精品国产三级普通话版| 国产伦精品一区二区三区四那| 亚洲七黄色美女视频| 午夜福利在线观看免费完整高清在 | 老司机在亚洲福利影院| 十八禁人妻一区二区| 此物有八面人人有两片| 国产精品永久免费网站| 淫秽高清视频在线观看| 一二三四在线观看免费中文在| 99精品久久久久人妻精品| 五月伊人婷婷丁香| 亚洲欧美日韩高清在线视频| 一个人免费在线观看电影 | 日本撒尿小便嘘嘘汇集6| 国产免费av片在线观看野外av| 看片在线看免费视频| а√天堂www在线а√下载| 不卡一级毛片| 99久久综合精品五月天人人| 天堂动漫精品| 免费看光身美女| 久久午夜亚洲精品久久| 一级a爱片免费观看的视频| 夜夜躁狠狠躁天天躁| 一夜夜www| 熟女电影av网| 首页视频小说图片口味搜索| 亚洲精品色激情综合| 熟妇人妻久久中文字幕3abv| 香蕉国产在线看| 欧美av亚洲av综合av国产av| 欧美一级a爱片免费观看看| 日本免费a在线| 亚洲中文字幕一区二区三区有码在线看 | 日韩中文字幕欧美一区二区| 国产97色在线日韩免费| 国产成年人精品一区二区| 不卡av一区二区三区| 麻豆国产av国片精品| 国产又色又爽无遮挡免费看| 国产精品野战在线观看| 嫩草影院入口| 久久久久亚洲av毛片大全| 午夜成年电影在线免费观看| 国产成人福利小说| 国产乱人伦免费视频| 美女 人体艺术 gogo| 国产欧美日韩一区二区三| 国产亚洲精品一区二区www| 免费观看的影片在线观看| 亚洲国产精品sss在线观看| 国产在线精品亚洲第一网站| 亚洲精品中文字幕一二三四区| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产中文字幕在线视频| 淫秽高清视频在线观看| 亚洲熟女毛片儿| 成年女人毛片免费观看观看9| 国产精品一区二区三区四区久久| 在线十欧美十亚洲十日本专区| 欧美日韩一级在线毛片| 黄色女人牲交| 欧美日韩国产亚洲二区| 真人一进一出gif抽搐免费| 国产不卡一卡二| 看黄色毛片网站| 男女视频在线观看网站免费| 人人妻,人人澡人人爽秒播| 两个人看的免费小视频| 欧美成人性av电影在线观看| 老熟妇仑乱视频hdxx| 欧美国产日韩亚洲一区| 噜噜噜噜噜久久久久久91| 亚洲电影在线观看av| 成人三级做爰电影| 九九热线精品视视频播放| 国产精品亚洲一级av第二区| 欧美3d第一页| 19禁男女啪啪无遮挡网站| 变态另类成人亚洲欧美熟女| 欧美3d第一页| 久久香蕉国产精品| 国产精品亚洲一级av第二区| 久久草成人影院| 久久久久久国产a免费观看| 麻豆成人av在线观看| 黄色片一级片一级黄色片| 少妇人妻一区二区三区视频| 国产久久久一区二区三区| 久久久久久久午夜电影| 国产精品久久久久久久电影 | 岛国在线观看网站| 国产成人一区二区三区免费视频网站| 午夜福利欧美成人| 真实男女啪啪啪动态图| 亚洲av日韩精品久久久久久密| 女同久久另类99精品国产91| 国产精品亚洲av一区麻豆| 亚洲18禁久久av| 一本综合久久免费| 欧美成人一区二区免费高清观看 |