• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      飼料纈氨酸水平對軍曹魚魚體脂肪含量、血漿生化指標(biāo)和肝臟脂肪代謝基因表達的影響

      2016-08-10 06:15:56麥康森劉迎隆艾慶輝
      水生生物學(xué)報 2016年4期
      關(guān)鍵詞:纈氨酸魚體轉(zhuǎn)氨酶

      王 震 徐 瑋 麥康森 路 凱 劉迎隆 艾慶輝

      (中國海洋大學(xué)教育部海水養(yǎng)殖重點實驗室, 農(nóng)業(yè)部海水養(yǎng)殖重點實驗室, 青島 266003)

      飼料纈氨酸水平對軍曹魚魚體脂肪含量、血漿生化指標(biāo)和肝臟脂肪代謝基因表達的影響

      王 震 徐 瑋 麥康森 路 凱 劉迎隆 艾慶輝

      (中國海洋大學(xué)教育部海水養(yǎng)殖重點實驗室, 農(nóng)業(yè)部海水養(yǎng)殖重點實驗室, 青島 266003)

      實驗旨在研究飼料纈氨酸水平對軍曹魚(Rachycentron canadum)[初始體質(zhì)量為(40.9±0.8) g]魚體脂肪含量、血漿生化指標(biāo)和肝臟脂肪代謝基因表達的影響。在基礎(chǔ)飼料中梯度添加晶體纈氨酸, 配制出纈氨酸含量分別為1.26% (缺乏組)、2.21% (適量組)和2.62% (過量組)3種等氮等脂飼料, 飼喂養(yǎng)殖在海水浮式網(wǎng)箱的軍曹魚10周, 每天飽食投喂2次。結(jié)果表明, 纈氨酸缺乏組的軍曹魚魚體和肌肉脂肪含量顯著低于纈氨酸適量組和過量組(P<0.05)。肝臟脂肪含量隨著飼料中纈氨酸含量從1.26%升高到2.21%而顯著升高(P<0.05), 然后隨之而逐漸下降(P>0.05)。軍曹魚血漿總蛋白和總膽固醇含量在纈氨酸缺乏飼料組顯著低于其他各處理組(P<0.05)。飼料纈氨酸水平對軍曹魚血漿谷草轉(zhuǎn)氨酶和谷丙轉(zhuǎn)氨酶均無顯著影響(P>0.05)。軍曹魚肝臟固醇調(diào)節(jié)元件結(jié)合蛋白-1 (Sterol regulatory element binding protein-1, SREBP-1)基因表達水平和肝臟脂肪酸合成酶(FAS)表達量, 均隨著飼料纈氨酸水平增加而顯著升高(P<0.05)。軍曹魚肝臟過氧化物酶體增殖物激活受體α (peroxisome proliferator activated receptor, PPARα)表達量在纈氨酸適量組, 顯著低于過量組(P<0.05), 而與缺乏組差異不顯著(P>0.05)。而隨著纈氨酸含量升高, 肉毒堿棕櫚酰轉(zhuǎn)移酶-1 (CPT-1, Carnitine palmitoyl transferase-1)表達量逐漸下降(P<0.05)??傊?飼料缺乏纈氨酸可減少軍曹魚魚體脂肪積累。飼料中纈氨酸水平對軍曹魚魚體脂肪沉積的影響, 可能是通過調(diào)控脂肪合成和β-氧化相關(guān)基因表達而實現(xiàn)的。

      軍曹魚; 纈氨酸; 脂肪含量; 生化指標(biāo); 脂肪代謝

      纈氨酸屬于支鏈氨基酸, 作為魚類十種必需氨基酸之一, 有著重要的生理功能[1—3]。有魚類纈氨酸研究主要集中在纈氨酸對魚類生長、飼料利用以及魚體組成的影響等方面。研究表明, 纈氨酸缺乏導(dǎo)致魚體生長下降、飼料利用率降低和蛋白質(zhì)合成減少[4—9]。然而, 纈氨酸對于魚體脂肪沉積的研究結(jié)果, 在不同魚類上差異比較大。研究發(fā)現(xiàn),飼料中缺乏纈氨酸能夠顯著降低魚體、肝臟和血漿脂肪含量[5, 6, 8, 10]。也有報道發(fā)現(xiàn), 魚體脂肪含量隨著飼料纈氨酸含量增加而顯著減少[6]。

      在哺乳動物上研究發(fā)現(xiàn), 支鏈氨基酸對于脂肪代謝具有重要的調(diào)控作用[11—13]。飼料中添加支鏈氨基酸能夠顯著降低小鼠體內(nèi)甘油三酯含量, 上調(diào)過氧化物酶體增殖物激活受體α (Peroxisome proliferator activated receptor, PPARα)基因表達, 表明脂肪降解相關(guān)基因被上調(diào)表達[12, 14]。研究發(fā)現(xiàn), 食物缺乏纈氨酸顯著降低了小鼠脂肪組織含量, 并證明脂肪組織含量降低是由于機體能量消耗增加和脂肪合成相關(guān)基因表達下調(diào)的結(jié)果[15]。然而, 在魚類上關(guān)于纈氨酸如何調(diào)控脂代謝的研究尚未見報道。

      本研究擬通過配制不同纈氨酸水平飼料投喂軍曹魚, 以探討飼料纈氨酸水平對于軍曹魚魚體脂肪含量、血漿生化指標(biāo)和肝臟脂肪代謝基因表達的影響, 為軍曹魚高效功能性配合飼料開發(fā)提供理論依據(jù)。

      1 材料與方法

      1.1 飼料配方和制備

      以魚粉、豆粕、明膠和啤酒酵母為蛋白源, 以魚油、豆油和卵磷脂為脂肪源, 實驗設(shè)計3種等氮等脂飼料, 纈氨酸含量別為1.26% (缺乏組)、2.21%(適量組) 和2.62% (過量組)(干物質(zhì)), 以甘氨酸為纈氨酸的等氮替代物(表 1)。以軍曹魚, 添加相對應(yīng)的晶體氨基酸, 使基礎(chǔ)飼料中除了纈氨酸以外, 其他各種氨基酸含量達到在軍曹魚魚體中的含量(表2)。所有蛋白源原料均過60目篩, 按梯度混合均勻,混勻后與魚油和豆油充分混合, 以6.0 mol/L NaOH調(diào)節(jié)飼料的pH達到7.0左右, 并添加適量水?dāng)嚢杌靹颍?用F(Ⅱ)-26型雙螺桿擠條機(華南理工大學(xué), 廣州)加工成硬顆粒飼料(4.0 mm×8.0 mm和6.0 mm× 8.0 mm), 然后置于45°C鼓風(fēng)烘箱烘干至飼料水分含量10%以下, 冷卻后用塑料袋包裝后保存于-20°C冰箱中備用。

      表 1 實驗飼料的配方以及營養(yǎng)組成(%干物質(zhì))Tab. 1 Formulation and chemical proximate composition of the experimental diets (% dry matter)

      1.2 養(yǎng)殖實驗和樣品采集

      健康無病的軍曹魚幼魚從廣東湛江附近一個商業(yè)魚苗場中購買。實驗開始之前, 所有魚均被暫養(yǎng)(2周)在海水浮動網(wǎng)箱(4.5 m×4.5 m×9.0 m), 暫養(yǎng)期間, 投喂3種試驗料的混合物(混合比例1∶1∶1)使之適用養(yǎng)殖環(huán)境和實驗飼料。在實驗開始前, 所有實驗魚饑餓24h, 用丁香酚(1∶10000)麻醉后稱體質(zhì)量。挑選規(guī)格均勻軍曹魚幼魚[平均初始體質(zhì)量(40.9±0.8) g], 分別隨機分配到9個海水網(wǎng)箱(1.5 m× 1.5 m×2.5 m)中, 每個網(wǎng)箱放養(yǎng)20尾。實驗設(shè)計3個重復(fù), 實驗為期10周。養(yǎng)殖實驗期間, 所有軍曹魚每天飽食投喂兩次(7:00和18:00), 記錄每天攝食量、死魚數(shù)量和重量, 監(jiān)測海水溫度、鹽度和溶解氧整個, 實驗期間, 海水水溫為26—32°C, 鹽度27‰—23‰, pH 7.1—7.4, 溶解氧在6.5 mg/L左右。

      實驗結(jié)束前, 所有實驗魚饑餓24h, 然后分別對每個網(wǎng)箱的實驗魚麻醉、計數(shù)并稱體質(zhì)量。每個實驗網(wǎng)箱, 隨機選取3尾魚用于魚體粗脂肪。隨機取4尾后用于靜脈取血, 隨后解剖取其肝臟樣品快速放于1.5 mL無RNAase離心管(RNAase-Free;Axygen), 并迅速放于液氮中冷凍并于-80°C冰箱保存。另取6尾魚, 取肝臟、內(nèi)臟團和肌肉置于10 mL離心管, 保存于-20°C冰箱, 用于后續(xù)分析脂肪含量。

      1.3 化學(xué)分析

      飼料原料和飼料粗蛋白(凱氏定氮法)和全魚粗脂肪(索氏抽提測定法)的檢測方法均參考AOAC (1990)標(biāo)準(zhǔn)方法[16]。肝臟和肌肉脂肪含量, 以氯仿/甲醇(2∶1, v/v)方法提?。?7, 18]。飼料及原料氨基酸測定參照國標(biāo)測定方法(GB/T5009.124-2003), 采用日立L-8900全自動氨基酸測定儀(Hitachi L-8900 automatic amino acid analyzer, Hitachi, Japan)測得。血漿總蛋白(Total plasma protein, TP)、谷草轉(zhuǎn)氨酶活力(Aspartate aminotransferase, AST)、谷丙轉(zhuǎn)氨酶活力(Alanine aminotransferase, ALT)、血漿甘油三脂(Total triglyceride, TG)、血漿膽固醇(Total cholesterol, TC)、高密度脂蛋白膽固醇(High-density lipoproteincholesterol, HDL-C)和低密度脂蛋白膽固醇(Low-density lipoprotein cholesterol,LDL-C)均用全自動生化分析儀測定(邁瑞醫(yī)療國際股份有限公司, BS-200)使用其配套南京建成商業(yè)試劑盒測定。

      表 2 實驗飼料的氨基酸組成(%干物質(zhì))Tab. 2 Amino acid (AA) composition of diets (dry matter%)

      1.4 RNA提取和實時定量PCR

      肝臟組織在研缽中用液氮研磨后, 用Trizol試劑盒(Invitrogen, USA)提取RNA。用瓊脂糖凝膠電泳檢測總RNA的質(zhì)量。隨后, 用無RNAase Dnase (TaKaRa, Japan)去除DNA污染物, 并用Prime ScriptTMRT試劑盒(TaKaRa, Japan)將RNA反轉(zhuǎn)錄為cDNA。cDNA用超純水稀釋至80 ng/μL。定量PCR反應(yīng)體系為25 μL: 1 μL引物(10 μmol/L), 1 μL cDNA (80 ng/μL), 12.5 μL 2×SYBR Premix Ex TaqTMⅡ(TaKaRa, Japan)和9.5 μL 無RNase水。定量PCR使用的儀器是實時定量PCR儀(Eppendorf,Germany), 其反應(yīng)條件為: 95°C 2min, 1循環(huán);95°C變性10s, 退火10s, 59°C, 72°C延伸20s, 共計40個循環(huán)。表 3為脂肪酸合成酶(Fatty acid synthetase,F(xiàn)AS); 固醇調(diào)節(jié)元件結(jié)合蛋白-1 (Sterol regulatory element binding protein-1, SREBP-1); 過氧化物酶體增殖物激活受體γ (Peroxisome proliferator activated receptor, PPARγ); 肉堿脂酰轉(zhuǎn)移酶(Carnitine acyl transferase-Ⅰ, CPT-1); 乙酰輔酶A羧化酶1 (ACC-1, acetyl-coenzyme A carboxylase-1); 硬脂酰輔酶A去飽和酶(Stearoyl-CoA desaturase-1, SCD-1); 葡萄糖-6-磷酸脫氫酶(Glucose-6-phosphate dehydrogenase,G6PD); PPARα; 脂蛋白脂酶(Lipase lipoprotein lipase, LPL)的特異性引物。每個PCR反應(yīng)之后, 進行溶解曲線以檢驗定量PCR產(chǎn)物的單一性。通過2倍梯度稀釋得到6個濃度cDNA模板, 以每個濃度cDNA為模板, 通過定量PCR得出每對引物每個濃度cDNA的Ct值, 擬合得到一條隨拷貝數(shù)變化而Ct值變化的直線, 根據(jù)擬合得到直線斜率和E= 10(-1/Slope)-1, 并得出每對引物擴增效率(E)。本實驗β-actin、FAS、SERBP-1、PPARα、PPARγ、CPT-1、ACC1、G6PD、SCD-1和LPL的擴增效率為0.92—1.05。ΔCt絕對值[目的基因—內(nèi)參基因(βactin)]均小于0.100, 說明目的基因和內(nèi)參基因擴增效率一致, 可以使用2-ΔΔCt方法進行定量目的基因表達量。然后, 每個處理cDNA均進行定量PCR反應(yīng), 并按計算公式ΔCt(內(nèi)參基因)=Ct(樣品內(nèi)參基因)-Ct(對照內(nèi)參基因)計算ΔCt及2-ΔΔCt[19]。

      1.5 統(tǒng)計分析

      實驗數(shù)據(jù)采用平均值±標(biāo)準(zhǔn)誤表示, 使用統(tǒng)計軟件SPSS17.0對數(shù)據(jù)進行單因素方差分析(One-Way ANOVA), 差異時采用Tukey's進行多重比較,以P<0.05為差異顯著性為標(biāo)準(zhǔn)。

      2 結(jié)果

      2.1 魚體、肝臟、肌肉以及內(nèi)臟團脂肪含量

      纈氨酸缺乏組的軍曹魚魚體脂肪含量顯著低于纈氨酸適量組(2.21%)和過量組(2.62%) (P<0.05)。肝臟脂肪含量隨著飼料纈氨酸含量從1.26%增加到2.21%而顯著升高(P<0.05), 然后隨之逐漸下降(P>0.05)。肌肉脂肪含量隨纈氨酸水平變化趨勢與魚體粗脂肪含量變化趨勢相似。軍曹魚內(nèi)臟團脂肪含量各處理組間差異不顯著(P>0.05) (表 4)。

      2.2 血漿生化指標(biāo)

      軍曹魚血漿總蛋白(TP)和總膽固醇(TC)濃度在纈氨酸缺乏組顯著低于其他各處理組(P<0.05),而其他各處理組間則差異不顯著 (P>0.05)。飼料纈氨酸水平對血漿甘油三脂(TG)濃度影響不顯著(P>0.05)。飼料纈氨酸水平對軍曹魚血漿葡萄糖、高密度脂蛋白、低密度脂蛋白濃度、谷草轉(zhuǎn)氨酶和谷丙轉(zhuǎn)氨酶活力均無顯著影響(P>0.05) (表 5)。

      2.3 軍曹魚肝臟脂肪代謝相關(guān)基因表達

      軍曹魚肝臟固醇調(diào)節(jié)元件結(jié)合蛋白(SREBP-1)基因表達水平, 隨著飼料纈氨酸水平增加而顯著升高(P<0.05)。肝臟脂肪酸合成酶(FAS)表達量隨飼料纈氨酸水平變化趨勢與SREBP-1基因表達量變化趨勢相似(P<0.05)。肝臟過氧化物酶體增殖物激活受體γ (PPAR γ), 乙酰輔酶羧化酶(ACC1), 葡萄糖-6-磷酸脫氫酶(G6PD)和硬脂酰輔酶A去飽和酶-1 (SCD-1)基因表達量, 則不受飼料纈氨酸水平調(diào)控(P>0.05) (圖 1)。軍曹魚肝臟過氧化物酶體增殖物激活受體(PPARα)表達量在纈氨酸適量組顯著低于纈氨酸過量處理組(P<0.05), 而與缺乏組差異不顯著(P>0.05)。隨著纈氨酸含量升高, 肉毒堿棕櫚酰轉(zhuǎn)移酶-1 (CPT-1)表達量逐漸下降(P<0.05)。肝臟脂蛋白脂酶(LPL) mRNA表達量在各處理組間差異不顯著(P>0.05) (圖 2)。

      表 3 定量PCR的特異性引物以及擴增片段長度Tab. 3 Nucleotide sequence of primers for real-time quantitative PCR amplification

      表 4 飼料纈氨酸水平對軍曹魚魚體、肝臟、肌肉和內(nèi)臟團的脂肪含量的影響(濕重%)Tab. 4 Lipid content of the whole body, liver, muscle and Visceral in cobia fed diets with graded levels of valine (% wet weight)

      表 5 飼料纈氨酸水平對軍曹魚血漿生化指標(biāo)的影響Tab. 5 Effects of dietary valine on the plasma biochemical index in cobia

      圖 1 飼料中纈氨酸水平對于軍曹魚肝臟脂肪合成相關(guān)基因(SREBP-1、PPARγ、FAS、ACC-1、FAS、SCD-1和G6PD)表達的影響Fig. 1 Effect of cobia (Rachycentron canadum) fed diets containing deficient (1.26%), moderate (2.21%) and excess (2.62%) levels of valine on relative expression of hepatic lipogenesis related genes: SREBP-1, PPARγ, FAS, ACC-1, SCD-1 and G6PD

      圖 2 飼料中纈氨酸水平對于軍曹魚肝臟脂肪酸氧化相關(guān)基因(PPARα、CPT-1和LPL)Fig. 2 Effect of cobia (Rachycentron canadum) fed diets containing deficient (1.26%), moderate (2.21%) and excess (2.62%)levels of valine on fatty acid oxidation-related genes: peroxisome proliferator activated receptorα (PPARα), carnitine acyl transferase-Ⅰ (CPT-1) and lipoprotein lipase (LPL) in liver for 10 weeks

      3 討論

      本研究發(fā)現(xiàn), 軍曹魚攝食纈氨酸缺乏飼料, 顯著降低了魚體、肝臟和肌肉脂肪含量。印度鯉魚(Cirrhinus mrigala)[5]、建鯉(Cyprinus carpio var. Jian)[6]和卡特拉魮(Catla catla)[9]的研究結(jié)果與本實驗的結(jié)果相同, 發(fā)現(xiàn)魚體脂肪含量隨著飼料纈氨酸含量增加而顯著升高。哺乳動物上研究表明, 氨基酸代謝能夠顯著影響體內(nèi)脂肪沉積[11]。飼料缺乏或過量支鏈氨基酸均能夠減少小鼠體內(nèi)脂肪沉積[13, 14, 20, 21]。這些研究結(jié)果表明, 飼料缺乏纈氨酸能夠抑制機體脂肪積累。纈氨酸過量所導(dǎo)致的肝臟脂肪含量減少現(xiàn)象, 可能是由于氨基酸不平衡導(dǎo)致過度的能量消耗引起。

      肝臟作為魚類營養(yǎng)物質(zhì)(脂肪、蛋白和糖類等)代謝中心, 其健康狀況對于魚類正常代謝有重要影響[22, 23]。血清生化指標(biāo)通常反映動物體內(nèi)代謝情況[24—26]。谷草轉(zhuǎn)氨酶和谷丙轉(zhuǎn)氨酶是肝細胞最重要氨基轉(zhuǎn)移酶, 通常參與機體內(nèi)蛋白質(zhì)和氨基酸代謝, 其活性代表體內(nèi)氨基酸代謝強弱[27, 28]。肝臟處于健康狀態(tài)轉(zhuǎn)氨酶主要存在肝臟細胞中, 而機體肝臟發(fā)生病變會引起細胞通透性增加, 進而使細胞轉(zhuǎn)氨酶轉(zhuǎn)移到血液中, 因此血漿谷草轉(zhuǎn)氨酶和谷丙轉(zhuǎn)氨酶活力可以反映肝臟健康狀況[22, 23]。本實驗發(fā)現(xiàn), 飼料纈氨酸含量對血漿谷草轉(zhuǎn)氨酶和谷丙轉(zhuǎn)氨酶活力影響不顯著, 表明纈氨酸過量和缺乏對于軍曹魚肝臟沒有明顯損害, 肝臟能夠進行正常的營養(yǎng)代謝。

      魚體脂肪沉積主要是受體內(nèi)脂肪合成和降解代謝過程調(diào)控[18, 29—31]。首先, 脂質(zhì)合成主要是依賴于脂肪合成酶表達和活性高低, 脂肪合成酶基因表達則是主要是由SREBP-1調(diào)控[31, 32], FAS是脂肪酸從頭合成的限速酶, 對體內(nèi)脂肪從頭合成發(fā)揮主導(dǎo)作用[11]。本實驗發(fā)現(xiàn), 纈氨酸缺乏顯著降低了FAS 和SREBP-1轉(zhuǎn)錄水平, 這表明纈氨酸缺乏抑制了軍曹魚脂肪合成能力。這與哺乳動物上研究結(jié)果相似, 必需氨基酸缺乏(蛋氨酸、亮氨酸、異亮氨酸和纈氨酸)抑制了甘油三脂合成相關(guān)基因表達[11, 15]。機體脂肪沉積一般與SREBP-1和FAS表達呈正相關(guān)關(guān)系[15]。研究發(fā)現(xiàn), 培養(yǎng)液添加亮氨酸顯著提高了虹鱒肝臟細胞SREBP-1和FAS轉(zhuǎn)錄水平表達量[33]。GCN2 (General control nonrepressed 2)信號通路能夠感知機體內(nèi)必需氨基酸缺乏, 進而抑制體內(nèi)脂肪酸從頭合成能力[11, 15, 34—36]。因此, 纈氨酸缺乏所導(dǎo)致脂肪含量的減少, 可能是由于脂肪合成相關(guān)基因表達下降所導(dǎo)致, 更為直接的證據(jù)需要進一研究。本實驗發(fā)現(xiàn), 纈氨酸缺乏抑制了肝臟CPT-Ⅰ (β-氧化過程的關(guān)鍵基因)基因表達。這與哺乳動物研究結(jié)果不同, 小鼠攝食必需氨基酸缺乏飼料能夠激活線粒體β-氧化[13, 15, 37]。投喂軍曹魚蛋氨酸缺乏飼料也能夠顯著上調(diào)軍曹魚β-氧化相關(guān)基因表達[38]。氨基酸對于β-氧化基因表達差異的影響, 可能是不同營養(yǎng)和物種對于β-氧化基因的調(diào)控方式不同, 其機制有待于進一步研究。

      總之, 飼料中缺乏纈氨酸能夠減少軍曹魚魚體脂肪沉積。而飼料中纈氨酸水平影響軍曹魚魚體的脂肪沉積, 可能是通過調(diào)控脂肪合成和β-氧化相關(guān)基因表達等途徑實現(xiàn)的。

      [1]Robaina L, Izquierdo M, Moyano F, et al. Soybean and lupin seed meals as protein sources in diets for gilthead seabream (Sparus aurata): nutritional and histological implications [J]. Aquaculture, 1995, 130(2): 219—233

      [2]Aoyama T, Fukui K, Takamatsu K, et al. Soy protein isolate and its hydrolysate reduce body fat of dietary obese rats and genetically obese mice (yellow K K) [J]. Nutrition, 2000, 16(5): 349—354

      [3]Dias J, Alvarez M, Arzel J, et al. Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax) [J].Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology,2005, 142(1): 19—31

      [4]Abidi S, Khan M. Dietary valine requirement of Indian major carp, Labeo rohita (Hamilton) fry [J]. Journal of Applied Ichthyology, 2004, 20(2): 118—122

      [5]Ahmed I, Khan M A. Dietary branched-chain amino acid valine, isoleucine and leucine requirements of fingerling Indian major carp, Cirrhinus mrigala (Hamilton) [J]. British Journal of Nutrition, 2006, 96(3): 450—460

      [6]Dong M, Feng L, Kuang S Y, et al. Growth, body composition, intestinal enzyme activities and microflora of juvenile Jian carp (Cyprinus carpio var. Jian) fed graded levels of dietary valine [J]. Aquaculture Nutrition, 2013,19(1): 1—14

      [7]Pohlenz C, Buentello A, Miller T, et al. Effects of dietary arginine on endocrine growth factors of channel catfish,Ictalurus punctatus [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology,2013, 166(2): 215—221

      [8]Rahimnejad S, Lee K J. Dietary valine requirement of juvenile red sea bream Pagrus major [J]. Aquaculture,2013, 416: 212—218

      [9]Zehra S, Khan M A. Dietary Valine Requirement of fingerling Catla catla [J]. Journal of Applied Aquaculture,2014, 26(3): 232—251

      [10]Zehra S, Khan M A. Dietary isoleucine requirement of fingerling catla, Catla catla (Hamilton), based on growth,protein productive value, isoleucine retention efficiency and carcass composition [J]. Aquaculture International,2013, 21(6):1243—1259

      [11]Guo F, Cavener D R. The GCN2 eIF2α kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid [J]. Cell Metabolism, 2007, 5(2):103—114

      [12]Zhang Y, Guo K, LeBlanc R E, et al. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms [J]. Diabetes, 2007, 56(6): 1647—1654

      [13]Cheng Y, Meng Q, Wang C, et al. Leucine deprivation decreases fat mass by stimulation of lipolysis in white adipose tissue and upregulation of uncoupling protein 1 (UCP1) in brown adipose tissue [J]. Diabetes, 2010,59(1): 17—25

      [14]Nishimura J, Masaki T, Arakawa M, et al. Isoleucine prevents the accumulation of tissue triglycerides and upregulates the expression of PPARα and uncoupling protein in diet-induced obese mice [J]. The Journal of Nutrition,2010, 140 (3): 496—500

      [15]Du Y, Meng Q, Zhang Q, et al. Isoleucine or valine deprivation stimulates fat loss via increasing energy expenditure and regulating lipid metabolism in WAT [J]. Amino Acids, 2012, 43(2): 725—734

      [16]AOAC W H. Official Methods of Analysis of the Associa tion of Official Analytical Chemists [M]. Association of Official Analytical Chemists, Arlington, VA, USA. 1990

      [17]Herzig S, Hedrick S, Morantte I, et al. CREB controls hepatic lipid metabolism through nuclear hormone receptor PPARγ [J]. Nature, 2003, 426 (6963): 190—193

      [18]Peng M, Xu W, Mai K, et al. Growth performance, lipid deposition and hepatic lipid metabolism related gene expression in juvenile turbot (Scophthalmus maximus L.)fed diets with various fish oil substitution levels by soybean oil [J]. Aquaculture, 2014, 433: 442—449.

      [19]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod [J]. Methods, 2001, 25(4): 402—408

      [20]Chen H, Simar D, Ting J, et al. Leucine improves glucose and lipid status in offspring from obese dams, dependent on diet type, but not caloric intake [J]. Journal of Neuroendocrinology, 2012, 24(10): 1356—1364

      [21]Hasek B, Boudreau A, Shin J, et al. Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats [J], Diabetes, 2013, 62: 3362—3372

      [22]Pianesso D, Neto J R, Da Silva L, et al. Determination of tryptophan requirements for juvenile silver catfish (Rhamdia quelen) and its effects on growth performance, plasma and hepatic metabolites and digestive enzymes activity [J]. Animal Feed Science and Technology, 2015, 210:172—183

      [23]Qiang J, Yang H, Wang H, et al. Effects of different dietary protein on serum biochemical indices and expression of liver HSP70 mRNA in gift tilapia (Oreochromis Nioticus) under low temperature stress [J]. Acta Hydrobiologica Sinca, 2013, 37(3): 434—443 [強俊, 楊弘, 王輝, 等.飼料蛋白水平對低溫應(yīng)激下吉富羅非魚血清生化指標(biāo)和HSP70 mRNA表達的影響. 水生生物學(xué)報, 2013,37(3): 434—443]

      [24]Zhang S, Ai Q H, Mai K S, et al. Effects of fish meal replacement with crystalline amino acid on digestive and metabolic enzymes of tongue sole (Cynoglossus Semilaevis Gunther, 1873) larvae [J]. Acta Hydrobiologica Sinca, 2014, 38(5): 801—808 [張珊, 艾慶輝, 麥康森, 等.晶體氨基酸替代魚粉蛋白對半滑舌鰨稚魚消化酶和代謝酶活力的影響. 水生生物學(xué)報, 2014, 38(5):801—808]

      [25]Zhou Q C, Wu Z H, Chi S Y, et al. Dietary lysine requirement of juvenile cobia (Rachycentron canadum) [J]. Aquaculture, 2007, 273(4): 634—640

      [26]Zhou X, Yang F, Zhou A, et al. The lysine requirement of juvenile soft shell turtle [J]. Journal of Fisheries of China,2001, 25(5): 454—459

      [27]Wang J Y, Li P Y, Song Z D, et al. Effects of dietary Yucca Schidigera extract on the growth performance,blood physiological and biochemical indices of turbot (Scophihalmus Maximus) [J]. Acta Hydrobiologica Sinca,2014, 38(6): 1117—1126 [王際英, 李培玉, 宋志東,等.飼料中添加絲蘭提取物對大菱鲆幼魚生長和生理及水環(huán)境的影響. 水生生物學(xué)報, 2014, 38(6): 1117—1126]

      [28]Zehra S, Khan M A. Dietary leucine requirement of fingerling Catla catla (Hamilton) based on growth, feed conversion ratio, RNA/DNA ratio, leucine gain, blood indices and carcass composition [J]. Aquaculture International, 2015, 23(2): 577—595

      [29]Shi X, Luo Z, Huang C, et al. Effect of substituting chlorella SP for regular fishmeal on growth, body composition, hepatic lipid metabolism and histology crucian carp Carassius auratus [J]. Acta Hydrobiologica Sinca,2015, 39(3): 498—506 [石西, 羅智, 黃超,等. 小球藻替代魚粉對鯽生長、體組成、肝臟脂肪代謝及其組織學(xué)的影響. 水生生物學(xué)報, 2015, 39(3): 498—506]

      [30]Qin C J, Shao T, Yang J P, et al. The effect of starvation on lipid metabolism of darkbarbel catfish, Pelteobagrus vachelli [J]. Acta Hydrobiologica Sinca, 2015, 39(1):58—65 [覃川杰, 邵婷, 楊潔萍,等. 饑餓脅迫對瓦氏黃顙魚脂肪代謝的影響. 水生生物學(xué)報, 2015, 39(1):58—65]

      [31]Brown M S, Goldstein J L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J]. Cell, 1997, 89(3):331—340

      [32]Shimano H. Sterol regulatory element-binding protein-1 as a dominant transcription factor for gene regulation of lipogenic enzymes in the liver [J]. Trends in Cardiovascular Medicine, 2000, 10(7): 275—278

      [33]Lansard M, Panserat S, Plagnes J E, et al. L-leucine, L-methionine, and L-lysine are involved in the regulation of intermediary metabolism-related gene expression in rainbow trout hepatocytes [J]. The Journal of Nutrition, 2011,141(1): 75—80

      [34]Plaisance E P, Van N, Orgeron M, et al. Role of general control nonderepressible 2 (GCN2) kinase in mediating responses to dietary methionine restriction [J]. The Faseb Journal, 2012, 26 (1_MeetingAbstracts): 255. 251

      [35]Ana LDS C, Pedro F M, Diego H. Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation [J]. Biochemical Journal, 2012, 443(1):165—171

      [36]De Sousa-Coelho A L, Relat J, Hondares E, et al. FGF21 mediates the lipid metabolism response to amino acid starvation [J]. Journal of Lipid Research, 2013, 54(7):1786—1797

      [37]Plaisance E P, Henagan T M, Echlin H, et al. Role of β-adrenergic receptors in the hyperphagic and hypermetabolic responses to dietary methionine restriction [J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2010, 299(3): R740-R750

      [38]Wang Z, Mai K, Xu W, et al. Dietary methionine level influences growth and lipid metabolism via GCN2 pathway in cobia (Rachycentron canadum) [J]. Aquaculture, 2016,454: 148—156

      THE EFFECTS OF VALINE LEVEL ON PLASMA BIOCHEMICAL INDEXES,LIPID CONTENT AND GENE EXPRESSION INVOLVED IN LIPID METABOLISM IN COBIA (RACHYCENTRON CANADUM)

      WANG Zhen, XU Wei, MAI Kang-Sen, LU Kai, LIU Ying-Long and AI Qing-Hui
      (The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China)

      The present study was conducted to investigate the effects of dietary valine on plasma biochemical indexes,lipid content and gene expression involved in lipid metabolism in cobia (Rachycentron canadum). Fish [mean initial weight, (40.9±0.8) g] were fed with soybean meal based on diets with graded levels of valine (1.26%, 2.21% and 2.62%) for 10 weeks. Results showed that lipid content of the whole body and muscle of fish fed the diet with deficient valine (1.26%) was significantly lower than that fish fed the moderate (2.21%) and excess (3.23%) valine treatment groups (P<0.05). Plasma total protein (TP) fish increased significantly as dietary valine increased from 1.26% to 2.21% (P<0.05), and kept relatively constant when dietary valine level was above 2.21% (P>0.05). Plasma total cholesterol (TC) and the lipid content of liver increased with dietary valine increasing from 1.26 % to 2.21% (P<0.05), but decreased with higher levels of dietary valine (2.21% to 2.62%) (P>0.05). Hepatic mRNA levels of lipid synthesis related genes (SREBP-1, and FAS) were significantly up-regulated in fish fed the diet with moderate level of valine (2.21%)(P<0.05), while hepatic mRNA transcriptional levels PPARα were significantly elevated in fish fed the diet with high level of valine (P<0.05). Overall, results of this study suggested that valine deficiency could decrease lipid content and inhibit expressions of some lipid synthesis related genes of cobia. This may contribute to understanding the mechanisms related to the physiological effects of dietary valine in cobia.

      Cobia; Valine; Lipid content; Plasma biochemical indexes; Lipid metabolism

      S965.1

      A

      1000-3207(2016)04-0744-08

      10.7541/2016.98

      2016-03-31;

      2016-04-30

      國家公益性行業(yè)(農(nóng)業(yè))科研專項(201003020, 200903029)資助 [Supported by the Ministry of Agriculture of the People's Republic of China (No. 201003020, 200903029)]

      王震(1988—), 男, 山東即墨人; 博士研究生; 研究方向為水產(chǎn)動物營養(yǎng)與飼料。E-mail: sunderw@163.com

      艾慶輝(1972—), 教授, 博士生導(dǎo)師; E-mail: qhai@ouc.edu.cn

      猜你喜歡
      纈氨酸魚體轉(zhuǎn)氨酶
      獻血體檢時的“轉(zhuǎn)氨酶”究竟是啥?
      人人健康(2022年17期)2022-11-26 09:18:36
      軸流泵內(nèi)魚體的運動行為與撞擊損傷分析
      淡水魚水平往復(fù)振動頭尾定向輸送方法
      飲食因素對谷丙轉(zhuǎn)氨酶測值的影響
      肝博士(2020年5期)2021-01-18 02:50:22
      無償獻血采血點初篩丙氨酸轉(zhuǎn)氨酶升高的預(yù)防及糾正措施研究
      淡水魚腹背定向裝置設(shè)計及試驗
      日糧中添加纈氨酸和亮氨酸對斷奶仔豬的影響
      纈氨酸在養(yǎng)豬生產(chǎn)中的應(yīng)用
      瘤胃可降解纈氨酸對泌乳后期奶牛產(chǎn)奶量的影響
      飼料博覽(2016年3期)2016-04-05 16:07:52
      豬和雞纈氨酸需要量的最新研究進展
      遂昌县| 金昌市| 永吉县| 衢州市| 山阳县| 明光市| 西乌| 泗阳县| 射洪县| 越西县| 河西区| 分宜县| 美姑县| 吉木萨尔县| 万宁市| 阿合奇县| 文水县| 上虞市| 达州市| 秦安县| 禄劝| 社会| 兰坪| 荃湾区| 泊头市| 呼和浩特市| 常州市| 锦州市| 江阴市| 通城县| 绥中县| 新民市| 荃湾区| 康平县| 淄博市| 霍山县| 博兴县| 林芝县| 保康县| 波密县| 新丰县|