孫繼龍,王榮合
(1.清華大學(xué) 環(huán)境學(xué)院,北京100084;2.清華大學(xué)深圳研究生院 能源與環(huán)境學(xué)部,廣東 深圳 518055)
?
頻域響應(yīng)函數(shù)評(píng)估管道壁厚
孫繼龍1,2,王榮合2
(1.清華大學(xué) 環(huán)境學(xué)院,北京100084;2.清華大學(xué)深圳研究生院 能源與環(huán)境學(xué)部,廣東 深圳 518055)
摘要:管道的腐蝕和阻塞直接影響管道壁厚變化,為此,推導(dǎo)頻域響應(yīng)函數(shù)評(píng)估管道壁厚變化.通過連續(xù)方程和動(dòng)量方程推導(dǎo)系統(tǒng)場(chǎng)矩陣,提出基于頻域響應(yīng)函數(shù)管道壁厚評(píng)估模型.通過頻域響應(yīng)壓力函數(shù)(h)和峰值數(shù)目(m)對(duì)管道壁厚變化位置和壁厚變化長(zhǎng)度進(jìn)行精確評(píng)估,并且通過實(shí)驗(yàn)對(duì)理論方程進(jìn)行驗(yàn)證,定位誤差小于4%.由于壁厚改變程度直接影響共振峰偏移,最終通過建立頻域響應(yīng)模型評(píng)估管道當(dāng)前狀態(tài).
關(guān)鍵詞:頻域響應(yīng)函數(shù);場(chǎng)矩陣;峰值數(shù)目;壁厚評(píng)估;共振峰偏移
供水管網(wǎng)是城市地下的隱形資產(chǎn),在管道故障診斷過程中,由于管網(wǎng)周圍布滿基礎(chǔ)設(shè)施,通過大規(guī)模管道開挖技術(shù)對(duì)管道故障診斷已經(jīng)不現(xiàn)實(shí),在非開挖技術(shù)的引領(lǐng)下,瞬變流故障診斷技術(shù)應(yīng)運(yùn)而生[1-4].管道腐蝕和阻塞直接體現(xiàn)在管道壁厚改變,管道腐蝕導(dǎo)致管道壁厚變薄,管道阻塞導(dǎo)致管道壁厚變厚.管道阻塞將降低管道輸水能力,同時(shí)增加輸水能量成本[5].檢測(cè)管道故障的方法有基于流量和化學(xué)屬性方法[6]、穩(wěn)態(tài)水力學(xué)方法[7-8]和在線設(shè)施方法[9],但是這些方法對(duì)管道壁厚變化定位效率很低.Mphapatra等[10]首次明確提出頻域分析在供水管網(wǎng)故障診斷的可行性,對(duì)方法進(jìn)行驗(yàn)證,同時(shí)激發(fā)更多學(xué)者研究頻域分析在故障診斷中應(yīng)用.
Ferrante等[11]通過瞬變流方法對(duì)管道淤積進(jìn)行定位.Duan[12-14]和Stephens等[15]通過瞬變流頻域分析,數(shù)值模擬管道故障位置.本文建立管道壁厚評(píng)估頻域響應(yīng)方程,通過理論和實(shí)驗(yàn)的方式對(duì)頻域響應(yīng)方程進(jìn)行驗(yàn)證,對(duì)管道壁厚變化進(jìn)行系統(tǒng)評(píng)估.
1頻域響應(yīng)函數(shù)理論推導(dǎo)
1.1系統(tǒng)場(chǎng)矩陣方程推導(dǎo)
通過連續(xù)方程和動(dòng)量方程在頻域范圍內(nèi)變換可以得到管段場(chǎng)矩陣,瞬變流量q和瞬變壓力h是關(guān)于頻域ω的函數(shù),i+1和i分別代表管段L下游和上游(圖1).
(1)
圖1 管道系統(tǒng)模型
Fn為單管場(chǎng)矩陣,系統(tǒng)的場(chǎng)矩陣為系統(tǒng)所有元素矩陣相乘,即
(2)
A和B代表系統(tǒng)管道起始端和末端.通過式(1)和(2)推導(dǎo)得
(3)
(4)
Uij為系統(tǒng)場(chǎng)矩陣U中元素.
假設(shè)上游壓力恒定(qA=0),下游水箱壓力波動(dòng)函數(shù)為hB=U21qB/U21.當(dāng)管段N=3,分母為零,獲得共振函數(shù)表達(dá)式
(Z1+Z2)(Z1+Z2)cos(μ1L1+μ2L2+μ3L3)+
(Z1-Z2)(-Z2-Z3)cos(μ1L1-μ2L2-μ3L3)-
(Z1+Z2)(Z2-Z3)cos(μ1L1+μ2L2-μ3L3)-
(Z1-Z2)(-Z2+Z3)cos(μ1L1-μ2L2+μ3L3)=0.
(5)
1.2壁厚改變位置對(duì)峰值函數(shù)影響
管段壁厚改變位置點(diǎn)矩陣表達(dá)形式為
(6)
式中:ΔHB0為穩(wěn)態(tài)水頭損失(m),QB0為穩(wěn)態(tài)流量(L/s).
將U11=cos(μL),U21=-Zsin(μL),式(6)帶入式(2)(4)中得式(7),頻域壓力(h)關(guān)于峰值數(shù)目(m)和故障位置(xB*)的表達(dá)式為
(7)
實(shí)際計(jì)算過程中,2ΔHB0/QB0相對(duì)于a/gA較小,可以忽略不計(jì),將式(7)進(jìn)一步簡(jiǎn)化為
(8)
1.3壁厚改變長(zhǎng)度對(duì)共振峰偏移影響
管道壁厚改變長(zhǎng)度致使管道水力條件改變,所以,根據(jù)管道特性參數(shù)定義管道壁厚改變長(zhǎng)度對(duì)管道特性參數(shù)影響,通過評(píng)估特性參數(shù)改變求解壁厚變化長(zhǎng)度.當(dāng)管段壁厚變化時(shí),系統(tǒng)參數(shù)將發(fā)生改變,例如管道波速(a)、特性阻抗(Z)等參數(shù).定義管道L1和L3完整管道,L2為壁厚改變管道.管道特性阻抗變化定義為δZ=Z2-Z1.管道傳播阻抗變化定義為λ1+λ2+λ3-λ0,其中λ=L/a.兩個(gè)參數(shù)的擾動(dòng)如式(9)和(10),下標(biāo)“0”表示完整管道(L1和L3).
(9)
(10)
εA=δA/A0、εL=L2/L0和εa=δa/a0分別代表管道截面積、壁厚改變長(zhǎng)度和管道波速變化.通過這3個(gè)參數(shù)定量描述管道壁厚改變長(zhǎng)度引起頻域峰位置變化,以上3個(gè)參數(shù)的改變直接影響εZ和ε兩個(gè)參數(shù)的變化.
將式(9)和(10)帶入到式(5)得
(11)
壁厚改變管道和完整管道相比較,共振峰頻率會(huì)發(fā)生偏移.定義完整管道固有頻率為ωrf0,壁厚改變管道頻率發(fā)生偏移Δωrf.
(12)
為了計(jì)算方便,共振峰頻率進(jìn)行泰勒展開,便于對(duì)管段共振峰頻率近似求解計(jì)算.
(13)
共振峰頻域偏移定義如下
(14)
式中:
Cu=εA(2-εA)sin(2λ1ωrf0)-εA(2-εA)·
εA(2-εA)[λ0-2λ3]cos(2λ3ωrf0)-
sin[(4m-2)λ3ωth0]-…-
(15)
式(15)描述了管道壁厚改變對(duì)共振峰偏移程度,共振峰偏移是關(guān)于正弦的周期函數(shù),共振峰的偏移程度依賴于壁厚改變長(zhǎng)度εL和管道橫截面積εA.當(dāng)壁厚變化長(zhǎng)度很小,即L2接近于零,εL等于零,Δωrf/ωrf0等于零,滿足完整管道共振峰不發(fā)生偏移情況,相對(duì)于式(5)計(jì)算效率會(huì)大幅度提高.
2實(shí)驗(yàn)設(shè)置
2.1實(shí)驗(yàn)參數(shù)設(shè)計(jì)
實(shí)驗(yàn)裝置:傳感器位置、閥門等附屬設(shè)施設(shè)計(jì)如圖1所示,實(shí)驗(yàn)管道采用DN 40鍍鋅鋼管管材進(jìn)行實(shí)驗(yàn),下游水箱接口處安裝閥門,通過閥門迅速開關(guān)產(chǎn)生瞬變流.實(shí)驗(yàn)管段總長(zhǎng)L=60 m,初始條件如表1.通過管段異徑變化來模擬管段壁厚改變對(duì)共振峰影響.
表1 實(shí)驗(yàn)初始條件
2.2壁厚改變位置實(shí)驗(yàn)驗(yàn)證
圖2 壁厚變化位置示意圖
2.3壁厚改變長(zhǎng)度對(duì)共振峰函數(shù)影響試驗(yàn)
壁厚改變管道L2仍然采用DN32管道,通過變換管道L2長(zhǎng)度驗(yàn)證共振峰偏移方程,L2在6~30 m變換,管道布置詳細(xì)信息如表2,表3為計(jì)算系統(tǒng)管段的特性參數(shù).
表2 管段改變長(zhǎng)度詳細(xì)信息
表3管段壁厚改變長(zhǎng)度特性參數(shù)計(jì)算
Tab.3Characteristic parameter calculation of the length of pipe wall thickness change
案例λ0λ1λ3εLεAωrf010.0050.010.0350.10.3631.420.0050.010.0300.20.3631.430.0050.010.0250.30.3631.440.0050.010.0200.40.3631.450.0050.010.0150.50.3631.4
3結(jié)果討論
3.1壁厚變換位置結(jié)果驗(yàn)證
表4 管道故障位置實(shí)驗(yàn)驗(yàn)證
圖3 采集壓力信號(hào)關(guān)于峰值數(shù)目變換
3.2壁厚變換長(zhǎng)度評(píng)估
通過式(15)對(duì)每種情況共振峰偏移進(jìn)行定量分析,表5顯示了共振峰偏移函數(shù)預(yù)測(cè)結(jié)果和實(shí)際管段信息.所有管段定位誤差均在3%以內(nèi),最大誤差出現(xiàn)在案例5中,管段阻塞長(zhǎng)度L2=30 m,定位長(zhǎng)度為29.57 m.
3.3壁厚改變程度對(duì)共振峰極大值影響
根據(jù)式(15)中Δωrf/ωrf0是關(guān)于εA/(2-εA)的增函數(shù),為了驗(yàn)證壁厚改變程度對(duì)共振峰偏移的影響,將3.2實(shí)驗(yàn)中測(cè)試管段L2固定為6 m,管徑DN為10~32 mm,實(shí)驗(yàn)管段詳細(xì)信息見表6.管段壁厚改變程度計(jì)算信息見表7.通過變換管道直徑模擬壁厚改變程度對(duì)共振峰偏移的影響.在數(shù)值模擬過程中,管徑可以設(shè)置為任意數(shù)值,然而在實(shí)驗(yàn)中僅有5種管徑供選擇.在圖4中,實(shí)驗(yàn)得到共振峰最大偏移曲線和理論計(jì)算得到共振峰偏移曲線趨勢(shì)基本一致.當(dāng)完整管段εA=0時(shí),最大峰值偏移為0,即共振峰沒有發(fā)生偏移.當(dāng)εA=0.5時(shí),最大共振峰偏移接近0.5,接近半個(gè)周期的偏移.由于正弦和余弦函數(shù)最大值為1,對(duì)共振峰偏移影響不大,共振峰偏移函數(shù)系數(shù)εA/(2-εA)對(duì)共振峰偏移影響較大.
表5 管段壁厚變換長(zhǎng)度預(yù)測(cè)誤差
表6 管段壁厚改變程度詳細(xì)信息
表7管段壁厚改變程度特性參數(shù)計(jì)算
Tab.7Characteristic parameter calculation of the degree of pipeline wall thickness change
案例λ0λ1λ3εLεAωth010.0050.010.0350.10.3631.420.0050.010.0350.10.5131.430.0050.010.0350.10.6431.440.0050.010.0350.10.8631.450.0050.010.0350.10.9431.4
圖4 壁厚變化程度對(duì)共振峰最大偏移影響
Fig.4Wall thickness varying degree on maximum deviation of resonant peak
4結(jié)論
2)推導(dǎo)共振峰偏移函數(shù)和管道壁厚改變長(zhǎng)度之間的關(guān)系,對(duì)管道壁厚改變長(zhǎng)度進(jìn)行推導(dǎo).
3)通過監(jiān)測(cè)供水管網(wǎng)瞬變壓力在頻域范圍內(nèi)變化,根據(jù)式(8)和(15)可以計(jì)算供水管網(wǎng)壁厚變化位置和長(zhǎng)度,進(jìn)而對(duì)供水管網(wǎng)腐蝕和阻塞進(jìn)行系統(tǒng)評(píng)估.
參考文獻(xiàn)
[1] 高金良,李娟娟,鄭志成,等.區(qū)域供水管網(wǎng)盲源分離漏失量研究 [J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2015, 47(6):33-37.
GAO Jinliang,LI Juanjuan,ZHENG Chengzhi,et al.Study on leakage of regional distribution network using blind source separation [J].Journal of Harbin Institute of Technology,2015,47(6):33-37.
[2] KHULIEF Y, KHALIFA A, MANSOUR R, et al. Acoustic detection of leaks in water pipelines using measurements inside pipe [J]. J PipelineSyst Eng Pract, 2012,10.1061/(ASCE)PS.1949-1204.0000089, 47-54.
[3] BROTHERS K J. Water leakage and sustainable supply-truth or consequences? [J].Journal of AWWA, 2001, 93 (4): 150-152.
[4] LEE P J, VITKOVSKY J P, LAMBERT M F, et al. Discrete blockage detection in pipelines using the frequency response diagram: numerical study [J]. J Hydraul Eng, 2008,134(5): 658-663.
[5] HUNT A. Fluid properties determine flow line blockage potential [J]. Oil Gas J, 1996, 94(29): 62-66.
[6] JIANG Y, CHEN H, LI J. Leakage and blockage detection in water network of district heating system [J]. ASHRAE Transactions, 1996,102(1): 291-296.
[7] SCOTT S L, YI J. Flow testing methods to detect and characterize partial blockages in looped subsea flow lines[J]. J Energy Res Technol, 1999,121(3): 154-160.
[8] ROGERS L M. Pipeline blockage location by strain measurement using an ROV[C]//Proc Offshore Technology Conf Richardson. TX, 1995:521-528.
[9] MPHAPATRA P K, CHAUDHRY M H, KASSEM A A,et al.Discussion of detection of partial blockage in single pipelines[J].J Hydraul Eng, 2006, 132(2): 200-206.
[10]FERRANTE M, BRUNONE B.Pressure waves as a tool for leak detection in closed conduits[J]. Urban Water Journal,2004, 1(2):145-156.
[11]DUAN H F, LEE P J, GHIDAOUI M S, et al. Essential system response information for transient-based leak detection methods [J]. J Hydraul Res, 2010,48(5):650-657.
[12]DUAN H F, LEE P J, GHIDAOUI M S, et al. System response function based leak detection in viscoelastic pipeline [J]. J Hydraul Eng, 2011,10:1061
[13]DUAN H F, LEE P J, GHIDAOUI M S,et al. Extended blockage detection in pipelines by using the system frequency response analysis[J].J Water Resour Plann Manage,2012, 138:55-62.
[14]STEPHENS M, LAMBERT M, SIMPSON A. Determining the internal wall condition of a water pipeline in the field using an inverse transient [J]. J Hydraul Eng, 2013,139 (3): 310-324.
(編輯劉彤)
doi:10.11918/j.issn.0367-6234.2016.08.012
收稿日期:2016-03-08
基金項(xiàng)目:國(guó)家自然科學(xué)基金(51578310);深圳市節(jié)能環(huán)保產(chǎn)業(yè)發(fā)展專項(xiàng)資金資助(JCYJ20150518162144944)
作者簡(jiǎn)介:孫繼龍(1986—),男,博士研究生; 王榮合(1965—),男,教授,博士生導(dǎo)師
通信作者:王榮合,wang.ronghe@sz.tsinghua.edu.cn
中圖分類號(hào):TU991
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0367-6234(2016)08-0073-05
Evaluation of pipe wall thickness through frequency response function
SUN Jilong1,2, WANG Ronghe2
(1.School of Environment, Tsinghua University, Beijing 100084, China;2.Division of Energy and Environment,Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China)
Abstract:The corrosion and blockage in pipes has influenced on pipe wall thickness variation. This paper proposes frequency domain response function to evaluate the pipe wall thickness. System field matrix by continuous and momentum equations is derived, and the evaluation model of the pipe wall thickness is based on frequency response function. The position of pipe wall thickness change and length of wall thickness varying are evaluated by pressure response function in frequency domain (h) and the number of peak (m). The theoretical equation is verified by the field experiment, and estimation error is less than 4%. Meanwhile, the degree of wall thickness change directly affects the resonant peak shift, and frequency response model can be used to evaluate current pipeline status.
Keywords:frequency-domain response function;matrix field;peak number;wall thickness assessment;resonant peak shift