• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      毛烏素沙地青貯玉米和紫花苜蓿作物系數(shù)研究①

      2016-07-19 07:33:02屈忠義郭克貞鄔佳賓姜夢(mèng)琪
      土壤 2016年2期
      關(guān)鍵詞:青貯玉米紫花苜蓿

      張 娜,屈忠義*,郭克貞,鄔佳賓,徐 冰,姜夢(mèng)琪

      (1 內(nèi)蒙古農(nóng)業(yè)大學(xué)水利與土木建筑工程學(xué)院,呼和浩特 010018;2 水利部牧區(qū)水利科學(xué)研究所,呼和浩特 010020)

      ?

      毛烏素沙地青貯玉米和紫花苜蓿作物系數(shù)研究①

      張娜1,屈忠義1*,郭克貞2,鄔佳賓2,徐冰2,姜夢(mèng)琪1

      (1 內(nèi)蒙古農(nóng)業(yè)大學(xué)水利與土木建筑工程學(xué)院,呼和浩特010018;2 水利部牧區(qū)水利科學(xué)研究所,呼和浩特010020)

      摘要:作物系數(shù)是估算作物需水量的一個(gè)重要參數(shù),科學(xué)地確定作物系數(shù)對(duì)準(zhǔn)確計(jì)算農(nóng)田作物耗水量、制定科學(xué)合理的灌溉制度及水利工程規(guī)劃設(shè)計(jì)等具有重要的意義和實(shí)際應(yīng)用價(jià)值。通過(guò) Penmman-Monteith公式、ENVIdata-DT草地蒸騰自動(dòng)測(cè)量系統(tǒng)確定充分灌溉條件下毛烏素沙地青貯玉米及紫花苜蓿的逐日參考作物蒸散ET0與實(shí)際蒸散ETc,計(jì)算青貯玉米及紫花苜蓿的逐日作物系數(shù),得出青貯玉米在整個(gè)生育期的作物系數(shù)均值為0.91,且在各生長(zhǎng)階段相差較小。苜蓿第一茬及第二茬作物系數(shù)隨著時(shí)間的推進(jìn)呈現(xiàn)遞增的規(guī)律,且在6月27日第一茬收割之后,作物系數(shù)大幅減小,第一茬的作物系數(shù)均值為0.87,第二茬為0.85。并通過(guò)播后天數(shù)、累積積溫逐日模擬苜蓿及青貯玉米生育期內(nèi)的作物系數(shù),結(jié)果顯示,在以播種后天數(shù)、生育期累積積溫為自變量的擬合模型中,決定系數(shù) R2介于0.59 ~ 0.72,擬合效果較好。

      關(guān)鍵詞:作物系數(shù);紫花苜蓿;青貯玉米;播后天數(shù);累積積溫

      參考作物需水量法是確定作物需水量(KcET0)最常用的方法之一[1],作物系數(shù)可反映作物和參考作物之間需水量的差異,是確定作物需水量的重要參數(shù)。目前,作物系數(shù)普遍通過(guò)田間實(shí)驗(yàn)的方法確定,需要投入大量人力物力且試驗(yàn)周期較長(zhǎng),所以探討作物系數(shù)的非實(shí)驗(yàn)性方法具有重要的生產(chǎn)意義[2]。建立作物系數(shù)與各影響因子的推導(dǎo)模型成為研究作物系數(shù)的重要非實(shí)驗(yàn)手段,如作物種類、種植品種、種植區(qū)域、生育期、葉面積指數(shù)、氣象資料等[1]。許多研究人員對(duì)作物系數(shù)進(jìn)行時(shí)間上的推導(dǎo)研究,如將作物的生育期進(jìn)行分段研究,或以播種后天數(shù)為自變量進(jìn)行建模,如:Wright 和 Jensen[3]采用 3 次多項(xiàng)式,將作物系數(shù)曲線分成播種至完全覆蓋和完全覆蓋至收獲兩個(gè)大的時(shí)段進(jìn)行了詳細(xì)的研究。Steele 等[4]以播后天數(shù)為變量,采用 5 次多項(xiàng)式進(jìn)行回歸,分析確定了玉米的作物系數(shù)曲線。累積積溫作為重要的溫度指標(biāo)被廣泛用于作物系數(shù)的推導(dǎo);孫景生等[5]建立了春小麥作物系數(shù)與播后天數(shù)、生育期累積積溫關(guān)系的函數(shù)曲線。

      由于目前確定作物實(shí)際蒸散量的常用方法均較難獲取蒸散值的逐日數(shù)據(jù),如土壤水量平衡法,而本文通過(guò)引進(jìn)美國(guó)產(chǎn)的 ENVIdata-DT 草地蒸騰自動(dòng)測(cè)量系統(tǒng),可直接獲取作物半小時(shí)為步長(zhǎng)的蒸散值。即目前較多研究以作物的生育階段或旬周期來(lái)進(jìn)行研究[6-9],而在作物的整個(gè)生育期以日作物系數(shù)為研究目標(biāo)的成果較少。本文利用 Penman-Monteith 公式計(jì)算參考作物蒸散量 ET0,ENVIdata-DT 草地蒸騰自動(dòng)測(cè)量系統(tǒng)測(cè)定作物的實(shí)際蒸散值 ETc,得出作物在整個(gè)生育期的日作物系數(shù)變化規(guī)律,并通過(guò)多項(xiàng)式構(gòu)建充分灌溉條件下青貯玉米及紫花苜蓿作物系數(shù)的擬合模型。青貯玉米及紫花苜蓿作為我國(guó)北方牧區(qū)重要的牧草,其需水量的研究一直以來(lái)被廣泛重視,本研究結(jié)果可為當(dāng)?shù)剀俎<扒噘A玉米需水量的計(jì)算提供依據(jù),進(jìn)一步探討非實(shí)驗(yàn)方式模擬計(jì)算作物系數(shù)的可行性。

      1 材料與方法

      1.1試驗(yàn)區(qū)概況

      試驗(yàn)地位于 37°38′ ~ 39°23′N,108°17′ ~ 109°40′E,海拔高度 1 200 ~ 1 350 m 的伊克昭盟烏審旗圖克蘇木境內(nèi)的毛烏素沙地開(kāi)發(fā)整治研究中心。該區(qū)屬于典型的溫帶大陸性季風(fēng)氣候,四季分明,春季多風(fēng)少雨,夏季降雨量相對(duì)較多且比較集中,主要以暴雨或陣雨的形式降落,秋冬季干燥且冬季相對(duì)寒冷。年蒸發(fā)量為 2 100 ~ 2 600 mm,年日照時(shí)數(shù) 2 700 ~ 3 100 h,≥10℃ 積溫 2 500 ~ 3 200℃,年均氣溫 6 ~ 8℃,極端情況下最高氣溫 36.5℃,最低氣溫零下 29℃,無(wú)霜期 130 ~ 160 天。年均風(fēng)速 3.3 m/s,大風(fēng)揚(yáng)沙日數(shù) 40 ~50 天,沙暴日數(shù) 16 天,以西北風(fēng)為主,大風(fēng)多集中于 4—5 月。試驗(yàn)區(qū)的土壤除灘地上的沙地草甸土外,絕大部分以風(fēng)沙土為主,其中流動(dòng)風(fēng)沙土占65%,固定、半固定風(fēng)沙土占 10%,灘地土壤(丘間低地) 占 25%。土壤性質(zhì)見(jiàn)表 1。

      1.2試驗(yàn)設(shè)計(jì)

      研究作物為苜蓿及青貯玉米兩種,根據(jù) FAO-56推薦的作物生育階段劃分方法,結(jié)合作物的實(shí)際生長(zhǎng)情況,分為生長(zhǎng)初期、快速生長(zhǎng)期、生長(zhǎng)中期和生長(zhǎng)后期 4 個(gè)階段。其中,苜蓿的研究周期為2013 年 4 月 27 日至 8 月 24 日,共分為兩茬,在 6 月 27 日進(jìn)行第一茬的收割;青貯玉米的生育期為 2013 年 5 月 20 日 至 9 月 2 日,試驗(yàn)為大田試驗(yàn),監(jiān)測(cè)的玉米地及苜蓿地相鄰,分別在苜蓿地及玉米地中央位置各安置 2 套草地蒸騰自動(dòng)測(cè)定系統(tǒng)。

      苜蓿及青貯玉米均為充分灌溉,土壤水分下限控制指標(biāo)為田間持水量的 75%,土壤含水率通過(guò) TRIME-3 型 TDR 每 7 天觀測(cè)一次,灌溉和降雨前后加測(cè)一次,并結(jié)合土鉆取土樣,采用烘干法校核。灌溉水源為地下水,采用機(jī)井灌溉,通過(guò)水表計(jì)量水量。

      表1 試驗(yàn)區(qū)土壤性質(zhì)Table 1 The soil properties of the experimental site

      1.3作物系數(shù)與蒸散量計(jì)算

      1.3.1作物系數(shù)計(jì)算分別對(duì)無(wú)水分脅迫下的青貯玉米及紫花苜蓿在整個(gè)生育期的作物系數(shù)進(jìn)行逐日計(jì)算,公式如下:

      其中,參考蒸散量通過(guò)Penman-Monteith公式計(jì)算得出,實(shí)際蒸散量通過(guò) ENVIdata-DT草地蒸騰自動(dòng)測(cè)量系統(tǒng)直接測(cè)定。

      1.3.2作物蒸散量計(jì)算采用聯(lián)合國(guó)糧農(nóng)組織(FAO)推薦的Penman-Monteith公式計(jì)算參考作物蒸散量,PM-ET0法是固定高度(12 cm)的假想?yún)⒖甲魑锏恼羯⑺俾?,該參考作物的表面阻力?0 sm-1,反照率為0.23,近似地模擬沒(méi)有病害感染且長(zhǎng)勢(shì)一致、生長(zhǎng)旺盛、完全覆蓋土壤表面、有充足的水分和養(yǎng)分供給、廣闊表面的作物蒸散過(guò)程[2-4]。具體計(jì)算公式如下:

      式中:ET0:草類參考騰發(fā)量 (mm/d);Rn:作物表面凈輻射量(MJ/(m2·d));G:土壤熱通量(MJ/(m2·d));T:2 m高度處的日平均氣溫(℃);u2:2 m高度處的風(fēng)速(m/s);ea:飽和水汽壓(kPa);es:實(shí)際水汽壓(kPa);es-ea:水汽壓缺失值(kPa);Δ:水汽壓曲線斜率 (kPa/℃);γ:測(cè)量學(xué)常數(shù) (kPa/℃)。

      1.4數(shù)據(jù)測(cè)定與收集

      作物的蒸散由“草地潛在蒸散力自動(dòng)測(cè)試系統(tǒng)”直接測(cè)定,該系統(tǒng)由 3710E 型草地潛在蒸散自動(dòng)測(cè)試儀、SI-111-L20 型紅外葉溫儀、Trime-PICO32/110mm 型 TDR 土壤水分儀、RHT2v-02 型溫濕度自動(dòng)測(cè)定儀及 3525 型自記雨量計(jì)組成。ENVIdata-DT 草地蒸騰自動(dòng)測(cè)量系統(tǒng)是一款可直接自動(dòng)測(cè)定蒸散的儀器,可以估算出草皮、農(nóng)作物等綠色覆蓋物的ETc值。儀器隱蔽在頂部的陶瓷蒸發(fā)器可以模擬太陽(yáng)能吸收和作物灌溉的蒸散阻力。紅外葉表溫度傳感器可實(shí)時(shí)監(jiān)測(cè)植物葉表溫度,同時(shí)配備空氣溫度濕度傳感器用來(lái)監(jiān)測(cè)田間小氣候即空氣溫濕度,土壤溫濕度傳感器用來(lái)監(jiān)測(cè)土壤墑情。

      數(shù)據(jù)通過(guò)遠(yuǎn)程傳送模式直接將記錄的數(shù)據(jù)從野外傳送到服務(wù)器上。記錄的數(shù)據(jù)包括蒸騰蒸散量、葉溫、土壤溫濕度、含水率及降雨量,數(shù)據(jù)每半小時(shí)存儲(chǔ)一次。氣象數(shù)據(jù)由當(dāng)?shù)貧庀笳咎峁?/p>

      2 結(jié)果與分析

      2.1作物系數(shù)分析

      2.1.1青貯玉米作物系數(shù)研究通過(guò)公式(1)計(jì)算得出青貯玉米在整個(gè)生育期的逐日作物系數(shù)(圖1),其中平均值為0.91,最大值為1.41,最小值為0.4,標(biāo)準(zhǔn)差為0.20,方差為0.042。方差和標(biāo)準(zhǔn)差較小,說(shuō)明數(shù)據(jù)較穩(wěn)定。青貯玉米在整個(gè)生育期內(nèi)的日作物系數(shù)出現(xiàn)較多個(gè)峰值,波動(dòng)較大,已有研究成果表明表層土壤的干濕變化是導(dǎo)致作物系數(shù)過(guò)程線波動(dòng)的關(guān)鍵影響因子,灌水或雨后土壤表層變濕將引起作物系數(shù)的波動(dòng),在生育初期影響很大,隨著葉面積覆蓋增大影響減?。?]??芍噘A玉米作物系數(shù)在整個(gè)生育期的多個(gè)局部最小值多伴隨著降雨或灌水,即Kc與生育期內(nèi)降雨或灌溉引起的土壤濕潤(rùn)程度及氣象因素的變化具有較密切的關(guān)系[10]。

      圖1 青貯玉米作物系數(shù)生育期內(nèi)逐日變化過(guò)程Fig. 1 The daily change of crop coefficient of silage maize during growth period

      由青貯玉米在各生長(zhǎng)階段的作物系數(shù)均值(表 2)可知,青貯玉米在整個(gè)生育期的各個(gè)階段作物系數(shù)相差較小,首先由于青貯玉米是保鮮收割,生長(zhǎng)后期很短,Kc值只從中期階段的 1.02減少到 0.86 的時(shí)候就收割了,其次,生長(zhǎng)初期持續(xù)的時(shí)間較長(zhǎng),使其作物系數(shù)較大。

      表2 玉米各生育階段的作物系數(shù)Table 2 The maize crop coefficients of various growth stages

      2.1.2紫花苜蓿作物系數(shù)苜蓿分為兩茬,具體刈割時(shí)間及生育期如表 3。由苜蓿在整個(gè)生育期作物系數(shù)的逐日變化可知(圖 2),整體而言,規(guī)律較為明顯,第一茬及第二茬作物系數(shù)隨著時(shí)間的推進(jìn)基本呈現(xiàn)遞增的規(guī)律,且在 6 月 27 日第一茬收割之后,作物系數(shù)大幅減小,趙淑銀[11]指出苜蓿作物系數(shù)在相同氣候和土壤條件下,隨著刈割次數(shù)的增加,生長(zhǎng)階段內(nèi) Kc值出現(xiàn)多次急劇變化,在收獲前為最大,而在剛剛收割后為最小。

      表3 苜蓿各生育階段作物系數(shù)Table 3 The alfalfa crop coefficients of various growth stages

      苜蓿在第一茬的作物系數(shù)均值為 0.87,第二茬為0.85,Doorenbos 等[12-13]推薦苜蓿全生長(zhǎng)季作物系數(shù)為 0.85 ~ 1.05,本試驗(yàn)結(jié)果處于該范圍內(nèi);但略高于趙淑銀[11]在內(nèi)蒙古呼和浩特的研究結(jié)果(0.81);與郭克貞等[14]在毛烏素沙地的研究結(jié)果(0.85)較為接近,且本試驗(yàn)的結(jié)果除了生長(zhǎng)初期明顯較大,其他階段均與之較為接近,對(duì)于本文生長(zhǎng)初期的作物系數(shù)較高,可能是由于郭克貞等研究中紫花苜蓿共刈割 3次,而本試驗(yàn)苜蓿共分兩茬收割,減少刈割次數(shù),勢(shì)必導(dǎo)致其作物系數(shù)升高[15]。

      圖2 苜蓿作物系數(shù)變化Fig. 2 The change of alfalfa crop coefficients with growth date

      由表3可知紫花苜蓿第一茬的快速生長(zhǎng)期、生長(zhǎng)中期及生長(zhǎng)后期的作物系數(shù)均高于第二茬,而生長(zhǎng)初期第二茬高于第一茬。而前人的研究結(jié)果則不盡相同,如馬令法等[16]的研究結(jié)果紫花苜蓿的第一茬作物系數(shù)明顯高于第二茬且基本接近其2倍;李品紅等[17]的研究結(jié)論為壩上地區(qū)2008年紫花苜蓿第二、三茬作物系數(shù)明顯高于第一茬,達(dá)其2倍以上;丁寧等[15]指出 2010年壩上地區(qū)紫花苜蓿全生長(zhǎng)季作物系數(shù)為第一茬最高 0.83,第二和第三茬較為相近分別為 0.74、0.75。本試驗(yàn)結(jié)果與丁寧的結(jié)論較為接近,第一茬略高于第二茬,這可能是研究區(qū)域不同的影響。

      2.2基于播后天數(shù)、累積積溫的作物系數(shù)回歸模型

      鑒于前人已通過(guò)多項(xiàng)式建立了播后天數(shù)及生育期累積積溫與作物系數(shù)的關(guān)系,且取得較好的效果[3-5]。本文通過(guò)多項(xiàng)式建立播后天數(shù)、生育期累積積溫與青貯玉米及苜蓿兩種作物系數(shù)的相關(guān)關(guān)系(表 4),其中 y 分別代表青貯玉米及紫花苜蓿作物系數(shù) kc,x 代表播后天數(shù)、生育期累積積溫,根據(jù)多項(xiàng)式曲線與數(shù)據(jù)點(diǎn)的擬合程度及相關(guān)系數(shù)的大小確定擬合模型,發(fā)現(xiàn)青貯玉米的作物系數(shù) kc與播種后天數(shù)呈現(xiàn)較好的 6 次多項(xiàng)式擬合效果,而與積溫則是 5 次多項(xiàng)式擬合效果最好。苜蓿作物系數(shù) kc與播后天數(shù)的關(guān)系可用 3 次多項(xiàng)式進(jìn)行良好地表達(dá),與生育期累積積溫的關(guān)系則呈現(xiàn)為 6 次多項(xiàng)式關(guān)系。較高的決定系數(shù) R2表明曲線與數(shù)據(jù)點(diǎn)可較好地?cái)M合,檢驗(yàn)結(jié)果說(shuō)明模型及相關(guān)系數(shù)均為顯著。

      表4 青貯玉米、紫花苜蓿作物系數(shù)kc與播后天數(shù)、生育期累積積溫回歸模型Table 4 The regression models of maize and alfalfa crop coefficient kcwith the number of days after sowing, accumulated temperature during growth period

      影響作物系數(shù)的因素比較多,但可歸納為3個(gè)方面:①土壤水分條件;②生物學(xué)因素;③氣象因素[18]。在水肥適宜條件下建立作物系數(shù)與播后天數(shù)的相關(guān)關(guān)系是由作物品種的生物學(xué)特性決定的。由于不同地點(diǎn)、不同年份的作物發(fā)育速率有所不同,因此生育期累積積溫作為熱量指標(biāo),可將作物系數(shù)曲線與作物形態(tài)發(fā)育更為直接地聯(lián)系起來(lái)。而氣象因子作為作物生長(zhǎng)的環(huán)境因素,ET0及ETc值已充分體現(xiàn)。

      3 結(jié)論

      1) 青貯玉米呈現(xiàn)出在整個(gè)生育期的各生育階段不穩(wěn)定性與階段內(nèi)的作物系數(shù)相對(duì)穩(wěn)定性,在整個(gè)生育期內(nèi)的日作物系數(shù)出現(xiàn)較多個(gè)峰值,日作物系數(shù)波動(dòng)較大。各生育階段為中期階段作物系數(shù)最大,其次是發(fā)育階段,再次是后期階段,而初期階段作物系數(shù)最小。在整個(gè)生育期的作物系數(shù)均值為0.91。

      2) 苜蓿作物系數(shù)第一茬均值為 0.87,第二茬為0.85。第一茬的快速生長(zhǎng)期、生長(zhǎng)中期及生長(zhǎng)后期作物系數(shù)均高于第二茬,而初期第二茬高于第一茬。第一茬及第二茬作物系數(shù)隨著時(shí)間的推進(jìn)呈現(xiàn)遞增的規(guī)律,且在6月27日第一茬收割之后,作物系數(shù)大幅減小。

      3) 通過(guò)多項(xiàng)式分別建立播后天數(shù)、累積積溫與Kc的關(guān)系,玉米的決定系數(shù)分別為0.72、0.67;苜蓿的決定系數(shù)分別為0.59、0.65,從擬合模型的決定系數(shù)可知青貯玉米的擬合效果要優(yōu)于苜蓿。

      參考文獻(xiàn):

      [1]陳玉民. 關(guān)于作物系數(shù)的研究及新進(jìn)展[J]. 灌溉排水,1987, 6(2): 1-7

      [2] 雷志棟, 羅毅, 楊詩(shī)秀, 等. 利用常規(guī)氣象資料模擬計(jì)算作物系數(shù)的探討[J]. 農(nóng)業(yè)工程學(xué)報(bào), 1999, 15(3):119-122

      [3]Wright J L, Jensen M E. Development and evaluation of evapotranspiration models for irrigation scheduling[J]. Trans of the ASAE, 1978, 21(1): 88-96

      [4] Steel D D, Sajid A H, Pruuty L D. New corn evapotranspiration crop curves for southeastern North Dakota[J]. Trans of the ASAE, 1996, 39(3): 931-936

      [5] 孫景生, 劉祖貴, 張寄陽(yáng), 等. 風(fēng)沙區(qū)春小麥作物系數(shù)試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2002, 18(6): 55-58

      [6] 彭世彰, 李榮超. 覆膜旱作水稻作物系數(shù)試驗(yàn)研究[J].水科學(xué)進(jìn)展, 2001, 12(3): 312-317

      [7] 沈建根. 毛烏素沙地作物耗水規(guī)律及蒸散發(fā)過(guò)程模擬研究[D]. 北京: 中國(guó)地質(zhì)大學(xué), 2013

      [8] 趙娜娜, 劉鈺, 蔡甲冰. 夏玉米作物系數(shù)計(jì)算與耗水量研究[J]. 水力學(xué)報(bào), 2010, 41(8): 953-960

      [9] 劉海軍, 康躍虎. 冬小麥拔節(jié)抽穗期作物系數(shù)的研究[J].農(nóng)業(yè)工程學(xué)報(bào), 2006, 22(10): 52-56

      [10] 彭世彰, 丁加麗, 茆智, 等. 用FAO-56 作物系數(shù)法推求控制灌溉條件下晚稻作物系數(shù)及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007, 7(23): 30-34

      [11] 趙淑銀. 劉割對(duì)牧草作物系數(shù)的影響[J]. 內(nèi)蒙占農(nóng)牧學(xué)院學(xué)報(bào), 1996, 17(4): 58-61

      [12] Doorenbos J, Pruitt W O. Crop water requirements[M]. Rome, Italy: Food and Agriculture Organization of United Nations, 1997: 45

      [13] Doorenbos J, Kassam A H. Yield response to water[M]. Rome, Italy: Food and Agriculture Organization of United Nations, 1979: 25

      [14] 郭克貞, 李和平, 史海濱, 等. 毛烏素沙地飼草料作物耗水量與節(jié)水灌溉制度優(yōu)化研究[J]. 灌溉排水學(xué)報(bào),2005, 24(1): 24-27

      [15] 丁寧, 孫洪仁, 劉志波, 等. 壩上地區(qū)紫花苜蓿的需水量、需水強(qiáng)度和作物系數(shù)[J]. 草地學(xué)報(bào), 2011, 6(19): 933-938

      [16] 馬令法, 孫洪仁, 魏臻武, 等. 壩上地區(qū)紫花苜蓿的需水量、需水強(qiáng)度和作物系數(shù)[J]. 中國(guó)草地學(xué)報(bào), 2009,31(2): 116-120

      [17] 李品紅, 孫洪仁, 劉愛(ài)紅, 等.壩上地區(qū)紫花苜蓿的需水量、需水強(qiáng)度和作物系數(shù)(Ⅱ)[J]. 草業(yè)科學(xué), 2009, 26(9):124-128

      [18] 陳玉民, 郭國(guó)雙, 王廣興. 中國(guó)主要作物需水量與灌溉[M].北京: 水利電力出版社, 1995: 73-80

      Study on Crop Coefficients for Silage Maize and Alfalfa on Maowusu Sandy Land

      ZHANG Na1, QU Zhongyi1*, GUO Kezhen2, WU Jiabin2, XU Bing2, JIANG Mengqi1
      (1 College of Water Resources and Civil Engineering, Inner Mongolia Agricultural University, Hohhot010018, China;2 Institute of Water Resource for Pastoral Area, Hohhot010020, China)

      Abstract:Crop coefficient is an important parameter to estimate water requirement of crops. It has an important practical significance for agricultural production. The daily evapotranspirations of the reference crops of the silage maize and the alfalfa were determined in Maowusu sandy land using automatic measuring system of ENVIdata-DT for grassland transpiration. Then the daily crop coefficients of the silage maize and the alfalfa were calculated with Penmman-Monteith formula. Results showed that the mean of crop coefficient of silage maize in the whole growth period was 0.91. The difference of crop coefficient among different growth stages was small. Crop coefficient of alfalfa was increased with the increasing time in the first and second crops,and the crop coefficient sharply decreased after the first crop harvest on June 27, and average crop coefficient of the first crop was 0.87, and 0.85 for the second crop. A model was used to fit the crop coefficients of the silage maize and the alfalfa during growth period day by day with the number of days after sowing and accumulative temperature as independent variables. The results showed the model fitted the data of the crop coefficients well with the determination coefficient of R2in the range from 0.59 to 0.72.

      Key words:Crop coefficient; Alfalfa; Silage maize; Days of after sowing; Accumulative temperature

      中圖分類號(hào):S 274.1

      DOI:10.13758/j.cnki.tr.2016.02.012

      基金項(xiàng)目:①國(guó)家自然科學(xué)基金項(xiàng)目(51069006、51309165)、引進(jìn)國(guó)際先進(jìn)農(nóng)業(yè)科學(xué)技術(shù)計(jì)劃(948計(jì)劃)項(xiàng)目 (201202) 和中國(guó)水科院科研專項(xiàng)項(xiàng)目(MK2014J06)資助。

      * 通訊作者(quzhongyi68@sohu.com)

      作者簡(jiǎn)介:張娜(1988—),女,內(nèi)蒙古呼和浩特人,博士研究生,主要從事非充分灌溉理論研究。E-mail: 710840895@qq.com

      猜你喜歡
      青貯玉米紫花苜蓿
      青貯玉米栽培技術(shù)措施與產(chǎn)量品質(zhì)的關(guān)系
      關(guān)于在大連地區(qū)推廣青貯玉米的幾點(diǎn)建議
      早酥梨園間作紫花苜蓿種植技術(shù)分析
      變溫與采后貯藏時(shí)間協(xié)同作用對(duì)紫花苜蓿種子萌發(fā)的影響
      復(fù)種青貯玉米不同播種期試驗(yàn)研究
      江漢平原“小麥+雙季青貯玉米”種植模式研究
      關(guān)于阿魯科爾沁旗傳統(tǒng)奶食品加工業(yè)發(fā)展基礎(chǔ)分析
      杜爾伯特縣紫花苜蓿高產(chǎn)栽培技術(shù)的研究
      短時(shí)鹽脅迫對(duì)紫花苜蓿葉片氣孔特征的影響
      紫花苜蓿在湖北省的適應(yīng)性研究
      历史| 焉耆| 邳州市| 汉源县| 米脂县| 民丰县| 吉木乃县| 上高县| 巴塘县| 莱西市| 师宗县| 昆明市| 玉田县| 马关县| 泾阳县| 娄底市| 正蓝旗| 农安县| 盐边县| 河曲县| 收藏| 南漳县| 南和县| 凤城市| 龙岩市| 巩义市| 扶风县| 澄江县| 安义县| 五寨县| 镇江市| 岢岚县| 浪卡子县| 达州市| 祥云县| 曲阜市| 苍溪县| 吉林省| 广汉市| 广西| 房产|