南 鋒,朱洪芬,畢如田
(山西農(nóng)業(yè)大學資源環(huán)境學院,山西太谷030801)
?
黃土高原煤礦區(qū)復(fù)墾農(nóng)田土壤有機質(zhì)含量的高光譜預(yù)測
南鋒,朱洪芬,畢如田
(山西農(nóng)業(yè)大學資源環(huán)境學院,山西太谷030801)
摘要:【目的】針對黃土高原丘陵地多、地形復(fù)雜、有機質(zhì)含量低、采樣困難以及因采煤活動引起大面積土地損毀等問題,在土地復(fù)墾與綜合整治過程中,為快速定量監(jiān)測與評估復(fù)墾農(nóng)田土壤質(zhì)量提供一種新的方法?!痉椒ā恳陨轿魇∠逶h復(fù)墾農(nóng)田土壤為研究對象,選取由北向南土地損毀中間條帶狀區(qū)域采集樣品152個,進行室內(nèi)土壤農(nóng)化分析、光譜測定,運用 ParLes 3.1軟件對光譜曲線進行多元散射校正(multipication scatter correction,MSC)、基線偏移(baseline offset correction,BOC)和Savitzky-Golay filter平滑去噪預(yù)處理。對土壤原始光譜反射率(raw spectral reflectance,R)作一階微分(first order differential reflectance,D(R))和倒數(shù)的對數(shù)變換(inverse-lg reflectance ,lg(1/R)),分析3種不同變換形式的光譜數(shù)據(jù)與土壤有機質(zhì)含量的相關(guān)性,相關(guān)系數(shù)通過P=0.01水平顯著性檢驗來確定顯著性波段的范圍?;谌ǘ危?00—2400 nm)和顯著性波段利用偏最小二乘回歸(partial least squares regression,PLSR)分析方法建立該區(qū)域土壤有機質(zhì)含量高光譜預(yù)測模型,通過模型精度評價指標:決定系數(shù)(coefficient of determination,R2)、均方根誤差(root mean square error,RMSE)和相對預(yù)測偏差(residual prediction deviation,PRD)確定最優(yōu)模型?!窘Y(jié)果】通過P=0.01水平顯著性檢驗的波段范圍為:R的400—1 800、1880—2 400 nm;D(R)的420—790、1 020—1 040、2 150—2 200 nm;lg(1/R)的 400—1 830、1 860—2 400 nm。光譜與有機質(zhì)含量的相關(guān)系數(shù)絕對值最大的波段是R的800 nm;D(R)的600 nm;lg(1/R)的760 nm。進行D(R)變換,光譜曲線的吸收特征更加明顯,相關(guān)系數(shù)在可見光(400—800 nm)波段范圍內(nèi)有所增加,其最大值由0.72提高到了0.82;基于顯著性波段的PLSR建模效果優(yōu)于全波段,其中l(wèi)g(1/R)變換的預(yù)測精度為最佳,具有很好的預(yù)測能力,其校正模型的R2和RMSE分別為0.95、7.64,預(yù)測模型的R2、RMSE和RPD分別為0.85、3.00、2.56;基于全波段的R-PLSR 和lg(1/R)-PLSR模型具有較好的預(yù)測能力,其預(yù)測模型的R2、RMSE和RPD分別為0.79、3.64、2.10和0.79、3.53、2.17,而D(R)-PLSR模型只能進行粗略估測,其預(yù)測模型的R2、RMSE和RPD分別為0.61、5.43、1.41。綜合分析全波段和顯著性波段3種光譜數(shù)據(jù)的預(yù)測精度,發(fā)現(xiàn)基于顯著性波段的R-PLSR、D(R)-PLSR、lg(1/R)-PLSR模型均取得了顯著的預(yù)測效果?!窘Y(jié)論】研究區(qū)土壤光譜反射率與土壤有機質(zhì)含量具有高度的相關(guān)性,應(yīng)用偏最小二乘回歸分析方法可以很好地建立土壤有機質(zhì)含量反演模型。
關(guān)鍵詞:煤礦區(qū);復(fù)墾農(nóng)田;土壤有機質(zhì);高光譜;偏最小二乘回歸
聯(lián)系方式:南鋒,Tel:0354-6286586;E-mail:nanfeng24@126.com。通信作者畢如田,Tel:0354-6288912;E-mail:birutian@163.com
【研究意義】土壤有機質(zhì)是土壤中各種營養(yǎng)元素的重要來源,為植物提供所需養(yǎng)分,對土壤結(jié)構(gòu)的形成、物理性狀的改善具有重要作用,被稱為植物的“養(yǎng)分銀行”[1],其含量多少是土壤肥力的一個重要指標。傳統(tǒng)的土壤化學分析方法,由于耗時、費力等問題已不能滿足現(xiàn)代農(nóng)業(yè)發(fā)展的需求,而高光譜遙感具有波段多、分辨率高等特點,可以快速、無損、低成本地定量反演土壤養(yǎng)分含量[2-4]。通過對煤礦區(qū)復(fù)墾農(nóng)田土壤有機質(zhì)高光譜遙感分析,可以動態(tài)監(jiān)測與評估治理區(qū)域土壤質(zhì)量的變化,為區(qū)域土地復(fù)墾、塌陷區(qū)治理提供依據(jù)?!厩叭搜芯窟M展】自20世紀60年代以來,國外針對土壤參數(shù)與土壤光譜特征關(guān)系及預(yù)測模型已有大量卓有成效的研究,肯定了利用土壤可見光-近紅外光譜預(yù)測土壤有機質(zhì)、黏土礦物、質(zhì)地、水分、重金屬含量等特性的能力[5-7]。國內(nèi)研究始于20世紀80年代,利用可見光-近紅外光譜在預(yù)測黑土、鹽漬化土、荒漠土、紅壤、潮土等有機質(zhì)含量時取得了很好的效果,反演精度較高,但土壤有機質(zhì)含量與土壤反射光譜之間存在的響應(yīng)特性有所差異[8-13],這主要是由土壤類型[14]、數(shù)據(jù)來源、校準方法、測試環(huán)境、土壤發(fā)色團以及儀器本身所引起的[15-18]??梢姽?近紅外預(yù)測土壤有機質(zhì)含量的機理是由于發(fā)色團和黑暗色胡敏酸的作用,在可見光區(qū)域具有大量吸收,在近紅外區(qū)域很多吸收帶都是O-H、C-H、N-H伸縮振動所產(chǎn)生的倍頻或它們相互作用的合頻吸收[17,19]。盡管可見光-近紅外在預(yù)測土壤有機質(zhì)含量研究取得了一定的進展,但是土壤受氣候、母質(zhì)、地形、生物等因素以及人類活動的影響,其土壤理化性質(zhì)具有明顯差異,不同土壤類型高光譜特性和反演模型的差異也很大,通常認為模型的建立依賴于研究區(qū)域和特有的數(shù)據(jù)[17,20-21],一個區(qū)域的反演模型很難應(yīng)用到其他區(qū)域或不同尺度上。近年來,許多研究圍繞全球[22]、國家[23-24]、區(qū)域[25]和局部[24]尺度,利用土壤光譜庫預(yù)測土壤光譜特性開展了一些工作,截至目前,中國不同區(qū)域、不同土壤類型以及使用大樣本的數(shù)據(jù)來解釋土壤光譜預(yù)測能力尚需進一步探討[26]。山西屬于煤炭資源型省份,改革開放以來,為國家經(jīng)濟發(fā)展提供了重要的能源保障。然而,煤炭開采給生態(tài)環(huán)境本就脆弱的山西省留下了大面積的采煤塌陷區(qū)。所以,在區(qū)域土壤光譜庫不可用或土壤在很大程度上受人類活動影響時,研究建立區(qū)域土壤光譜反演模型仍是積極的研究課題?!颈狙芯壳腥朦c】土地復(fù)墾與生態(tài)重建過程中了解土壤肥力特征及其變化,對于評估退化土壤修復(fù)重建的質(zhì)量非常重要。本文目標研究區(qū)域地處黃土高原生態(tài)脆弱帶,區(qū)內(nèi)煤礦分布眾多,受煤礦開采等人為活動擾動下,引起了大面積土地損毀和破壞,對耕地土壤理化性質(zhì)有直接影響[27-28],同時也會影響光譜的反射特性[29]。在土地復(fù)墾與綜合整治過程中,嘗試利用高光譜技術(shù)開展煤礦區(qū)農(nóng)田土壤質(zhì)量的定量監(jiān)測與評估?!緮M解決的關(guān)鍵問題】以山西省襄垣縣煤礦區(qū)復(fù)墾土壤為研究對象,通過野外采集復(fù)墾農(nóng)田土壤樣本,室內(nèi)測定土壤有機質(zhì)含量和樣品的高光譜測定,對不同變換形式的光譜數(shù)據(jù)與土壤有機質(zhì)含量進行相關(guān)性分析,確定光譜響應(yīng)敏感波段,基于全波段和顯著性波段利用PLSR分析方法建立土壤有機質(zhì)高光譜預(yù)測模型,以期對區(qū)域尺度土地復(fù)墾、塌陷區(qū)治理土壤肥力快速監(jiān)測提供參考。
1.1 研究區(qū)概況
襄垣縣位于山西省東南部,太行山西麓,上黨盆地之北,地形西北高東南低,地貌屬于半山丘陵區(qū),其中,丘陵占57.5%,山區(qū)占31.9%,平川占10.6%,其行政區(qū)范圍為東經(jīng) 112°42′—113°14′,北緯 36°23′—36°44′,轄11個鄉(xiāng)鎮(zhèn),328個行政村,1 088個自然村,海拔800—1 725 m,平均海拔1 000 m左右,全縣東西長48 km,南北寬40 km,總面積為1 160 km2。該區(qū)屬于大陸性溫帶季風氣候,四季分明。土壤類型有褐土、潮土和石質(zhì)土,主要以褐土為主,占89.88%。全縣礦產(chǎn)資源豐富,已探明煤炭儲量75.8億t,可開采22億t,受長期煤炭開采活動的影響,大量土地存在沉陷,水土流失嚴重(圖1)。
圖1 研究區(qū)地理位置及采樣點分布Fig. 1 Geographical position and sample points distribution of study area
1.2 樣本的采集與處理
研究區(qū)域土壤主要為原狀表層土,土壤類型為褐土,質(zhì)地類別為壤土,土壤pH范圍為7.1—8.6,平均值為7.9;土壤有機質(zhì)含量范圍為5.04—50.90 g·kg-1,平均值為 14.47 g·kg-1;土壤容重范圍為 0.90—1.32 g·cm-3,平均值為 1.09 g·cm-3。土壤孔隙度為 45%—60%,土壤疏密適中,通氣好。土壤氧化鐵含量為1.20 —9.90 mg·kg-1,平均為6.54 mg·kg-1,屬3級水平。
已開采煤礦主要分布在西營、下良、善福、夏店、古韓、王橋和侯堡7個鄉(xiāng)鎮(zhèn),通過近幾十年煤礦開采等強人為因素擾動,呈現(xiàn)了由北向南中間條帶狀的土地損毀區(qū)域,2006—2013年通過土地平整、裂縫填充等土地整治工程對該區(qū)域受損農(nóng)田進行全面治理。本研究在野外調(diào)研和相關(guān)資料分析基礎(chǔ)上,采用隨機和判斷布點相結(jié)合的方式,對上述受損嚴重且通過復(fù)墾治理區(qū)域進行布點采樣,對部分受損程度不同或復(fù)墾措施不同的復(fù)雜區(qū)域進行了加密采樣。
樣品采集于2014年4月,樣品具體采集時采用“S”形布點法,使用螺旋取土鉆取 5個點的土樣混合作為一個樣品。采集 0—20 cm耕層土壤樣品 152個,每個樣品約1 kg。采集好的土樣混合均勻后,經(jīng)過風干、磨碎,過2 mm孔篩,將每份土樣分為兩份,一份用于土壤光譜數(shù)據(jù)的采集,一份用于土壤農(nóng)化分析測試。土壤有機質(zhì)含量用重鉻酸鉀-外加熱法測定[30]。
1.3 光譜測定
光譜測定采用美國ASD FieldSpec3地物光譜儀。光譜范圍為350—2 500 nm,其中350—1 000 nm采樣間隔為1.4 nm,1 000—2 500 nm采樣間隔為2 nm,數(shù)據(jù)重采樣間隔為1 nm。光譜測量在暗室內(nèi)進行,光源功率為50 W的鹵素燈,距土壤樣品表面50 cm,光源天頂角15°,采用5°視場角探頭,探頭位于土壤樣本表面垂直上方30 cm處。每次測試前進行白板標定,每個土樣采集10條光譜曲線,進行拼接校正后,取其平均曲線作為土樣實際反射光譜數(shù)據(jù)。
1.4 光譜數(shù)據(jù)預(yù)處理
去除噪聲較大的350—399和2 451—2 500 nm邊緣波段。在光譜采集時,不可避免地受到周圍環(huán)境、儀器、樣品及光的散射等因素的影響,導(dǎo)致原始光譜細節(jié)特征不明顯,需要對光譜進行變換來增強特征。本文運用ParLes 3.1軟件的Data Manipulations模塊對光譜曲線進行多元散射校正(multipication scatter correction,MSC)、基線偏移(baseline offset correction, BOC)預(yù)處理,選用Savitzky-Golay filter進行平滑去噪[31]。
在土壤光譜反射率(raw spectral reflectance,R)基礎(chǔ)上,進行一階微分(first order differential reflectance,D(R))和倒數(shù)的對數(shù)(inverse-lg reflectance,lg(1/R))數(shù)學形式變換,可以有效減少光照、背景噪聲的干擾,提高光譜靈敏度,更加容易分解混合特征信息。3種光譜指標數(shù)據(jù)直接由ViewSpec Pro軟件計算獲得。
1.5 數(shù)據(jù)分析方法
偏最小二乘回歸法(partial least squares regression,PLSR)集主成分、典型相關(guān)分析和多元線性回歸3種分析方法的優(yōu)點,能夠?qū)?shù)據(jù)降維,簡化數(shù)據(jù)結(jié)構(gòu),綜合篩選特征,提取反映數(shù)據(jù)變異的最大信息,具有很好的預(yù)測能力[32],特別是在處理各變量內(nèi)部信息高度線性相關(guān)的數(shù)據(jù),建模效果尤為顯著[33]。本研究對有機質(zhì)含量分別基于全波段和顯著性波段建立預(yù)測模型。在對顯著性波段建立模型時,先進行相關(guān)分析(correlation analysis,CA),通過P=0.01水平上顯著性檢驗,對光譜數(shù)據(jù)降維,減少冗余信息,這樣可以簡化方程,保留大部分有用信息的同時提高了運算速度。建模過程采用留一法交叉驗證(leave-one-out cross validation,LOO)來確定最佳因子的個數(shù),模型的預(yù)測精度用預(yù)測值與實測值的決定系數(shù)(coefficient of determination,R2)、均方根誤差(root mean square error,RMSE)和相對預(yù)測偏差(residual prediction deviation,RPD)來評價。建模及評價指標計算借助ParLes 3.1、Unscramber 9.7軟件完成。
R2反映模型建立和預(yù)測的穩(wěn)健性,R2越大,說明模型的穩(wěn)健性越好、估算模型擬合程度越高。RMSE越小,模型預(yù)測能力越好。RPD是樣本標準差與均方根誤差RMSE的比值,用來解釋模型的預(yù)測能力,RPD <1.4表明模型的預(yù)測能力很差,不能用于樣本的預(yù)測;1.4<RPD<2.0表明模型是可以被接受的,可用來對樣本進行粗略的預(yù)測;RPD>2.0表明模型是穩(wěn)健的、準確的,模型具有很好的預(yù)測能力。因此,一個好的預(yù)測模型應(yīng)該具有大的R2和RPD,小的RMSE,反之則模型預(yù)測能力較差。
2.1 土壤樣本描述性統(tǒng)計分析
研究區(qū)土壤有機質(zhì)含量變化范圍為 5.04—50.90 g·kg-1,標準差為7.60 g·kg-1,平均值為16.47 g·kg-1,變異系數(shù)為46.13%,土壤有機質(zhì)含量總體偏低(表1)。有機質(zhì)的建模集和驗證集的土壤樣本的統(tǒng)計指標與總體樣本比較一致。建模集和預(yù)測集的劃分選用 K-S(Kennard-Stone)算法[34],在Matlab R2013a軟件中編程計算出各個樣本光譜空間的歐氏距離,92個樣本用于建模,60個樣本用于預(yù)測。
表1 土壤有機質(zhì)含量統(tǒng)計特征Table 1 Statistical characteristics of soil organic matter content
2.2 土壤光譜曲線特征分析
按照全國第二次土壤普查養(yǎng)分分級標準,選取土壤有機質(zhì)含量 6個等級的反射率平均值對應(yīng)的光譜曲線,從圖2[35]可以看出,具有以下特征:(1)不同有機質(zhì)含量的土壤光譜曲線形態(tài)相似,總體呈現(xiàn)遞增趨勢;(2)土壤有機質(zhì)含量與光譜反射率呈負相關(guān),隨著有機質(zhì)含量的增加,土壤光譜反射率減??;(3)在可見光(400—800 nm)波段范圍內(nèi),隨著波長的增加,土壤光譜反射率呈明顯上升趨勢,在近紅外(800—2 500 nm)波段范圍內(nèi),光譜反射率的變化趨于平緩,光譜曲線差異較大,隨著有機質(zhì)含量的增加,光譜曲線的差異減小;(4)在1 400、1 900和2 200 nm波段附近存在明顯的水分吸收谷,曲線的吸收深度、吸收寬度以及吸收面積均存在差異,1900 nm處吸收面積最為明顯,一般認為1 400、1900 nm附近是因為水分吸收了該波段附近的電磁波,土壤樣品中水分子的 O-H官能基在1 400 nm附近發(fā)生一級倍頻處伸縮震動在1 900 nm附近發(fā)生一級倍頻伸縮震動和轉(zhuǎn)角震動,其吸收率反映了土壤水分的變化,2 200 nm附近是因為有機質(zhì)中 O-H官能基的伸縮震動和轉(zhuǎn)角震動的合頻躍遷[7]。
圖2 不同有機質(zhì)含量反射率平均值光譜曲線Fig. 2 Mean reflectance of organic content for different levels
2.3 土壤有機質(zhì)與光譜反射率相關(guān)性分析
運用全波段(400—2 400 nm)和3種光譜指標數(shù)據(jù)作相關(guān)性分析,繪制相關(guān)關(guān)系曲線(圖 3),R與有機質(zhì)含量呈負相關(guān),整條曲線比較平滑,在可見光(400—800 nm)呈上升趨勢,800 nm處達到最大值0.72,1 400、1 900和2 200 nm處有微弱的吸收峰;D (R)與有機質(zhì)含量呈正負相關(guān),相關(guān)系數(shù)波動較大,呈現(xiàn)多個峰值,600 nm處達到最大值0.82,相比原始光譜反射率的相關(guān)關(guān)系,在可見光波段范圍相關(guān)性有所增強,一些隱含的特征信息被釋放出來,而在近紅外波段部分相關(guān)性明顯減弱;lg(1/R)與有機質(zhì)含量呈正相關(guān),與R的相關(guān)關(guān)系絕對值的變化趨勢基本一致,存在高度線性相關(guān),相關(guān)系數(shù)在0.5以上。這說明對于不同的土壤屬性,對光譜反射率進行不同的變換可以提高二者之間的相關(guān)關(guān)系。針對本研究區(qū)的土壤樣本,R、lg(1/R)和土壤有機質(zhì)含量在全波段都具有較高的相關(guān)性。
土壤有機質(zhì)含量與R、D(R)和lg(1/R)的進行相關(guān)性分析,通過P=0.01水平上顯著性檢驗的波段確定為顯著性波段。顯著波段為:R的400—1 800、1 880 — 2 400 nm;D(R)的420—790、1 020—1 040、2 150 —2 200 nm;lg(1/R)的400—1 830、1 860—2 400 nm。光譜與有機質(zhì)含量的相關(guān)系數(shù)絕對值最大的波段是R 的800 nm;D(R)的600 nm;lg(1/R)的760 nm。
圖3 土壤有機質(zhì)含量與光譜數(shù)據(jù)相關(guān)性曲線Fig. 3 Soil organic matter content and spectral data correlation curve
2.4 土壤有機質(zhì)PLSR預(yù)測模型的建立與評價
分別以土壤光譜全波段和顯著性波段作為自變量,有機質(zhì)含量作為因變量,建立R-PLSR、D(R)-PLSR、lg(1/R)-PLSR模型。由表2可以看出,對于全波段來說R-PLSR和lg(1/R)-PLSR模型具有較好的預(yù)測能力,可以對土壤有機質(zhì)含量較為精確的評估,特別是lg(1/R)-PLSR模型的建模集和預(yù)測集的決定系數(shù)R2分別達到了0.95和0.79,說明原始光譜反射率經(jīng)過倒數(shù)的對數(shù)變換處理后所得到模型具有很高的穩(wěn)健性,預(yù)測精度更高。對于顯著性波段來說,R、D(R)、lg(1/R)光譜構(gòu)建的校正集模型和預(yù)測集模型的決定系數(shù)R2、相對預(yù)測偏差RPD較全波段建立的模型有明顯的提高,均方根誤差RMSE明顯減小,說明在該研究區(qū)域顯著性波段建立的PLSR模型優(yōu)于全波段所建立的模型,而且lg(1/R)-PLSR模型優(yōu)于R-PLSR模型,D(R)-PLSR模型次之。
對比全波段D(R)-PLSR模型與顯著性波段D (R)-PLSR模型可以看出,盡管在可見光(400—800 nm)波段范圍內(nèi)一階微分變換提高了光譜反射率與有機質(zhì)含量的相關(guān)關(guān)系、在近紅外(800—2 400 nm)波段范圍光譜特征得到了增強,但是在近紅外區(qū)通過顯著性檢驗的波段較少,因此,顯著性波段D(R)-PLSR模型可以很好地預(yù)測有機質(zhì)含量,而全波段 D(R)-PLSR模型只可以粗略的估測。
表2 土壤有機質(zhì)含量的偏最小二乘回歸模型Table 2 Partial least squares regression model of soil organic content
由圖4可以看出,顯著性波段R、D(R)和lg (1/R)得到的回歸方程對預(yù)測樣本有機質(zhì)含量的預(yù)測效果較好,具有比較好的解釋能力。
圖4 土壤有機質(zhì)含量實測值與預(yù)測值散點圖Fig. 4 Scatter plot between measured and predicted soil organic matters
本研究表明,土壤光譜反射率與土壤有機質(zhì)含量之間有很好的相關(guān)性,最高達到0.72,校正集和預(yù)測集反演模型的決定系數(shù)最高分別達到 0.95、0.85,因此,利用土壤高光譜反演本研究區(qū)域的土壤有機質(zhì)含量是可行的。本研究中模型精度高可能是研究區(qū)域小,土壤類型單一,環(huán)境因子干擾少,土壤理化性質(zhì)差異小等原因。ROSSEL等[22]研究全球土壤光譜庫時發(fā)現(xiàn)土壤有機質(zhì)預(yù)測誤差會隨著研究區(qū)域尺度的擴大而增大,這與本研究結(jié)果一致。
土壤有機質(zhì)含量與土壤光譜反射率呈顯著負相關(guān),有機質(zhì)含量可以從土壤反射光譜中得到一定程度的反映,隨著有機質(zhì)含量的增加,土壤光譜反射率減小。在可見光區(qū)(400—800 nm),土壤各組分的分子產(chǎn)生電子吸收光譜,隨著區(qū)域波長的增加,其對應(yīng)的土壤吸收率降低,不同的土壤類型,因其所含礦物組分的差異,光譜變化的直線斜率也會有明顯差別。在近紅外區(qū)(800—2 500 nm),光譜反射率的變化趨于平緩,隨著有機質(zhì)含量的增加,光譜反射率的差異減小。進行不同的光譜變換處理,發(fā)現(xiàn) D(R)變換使得隱蔽的光譜信息得到了增強,呈現(xiàn)多個峰值,但由于有機質(zhì)含量與 D(R)光譜反射率的相關(guān)性在近紅外(800—2 400 nm)區(qū)域較弱,基于全波段建立D(R)-PLSR模型預(yù)測效果較差,而基于顯著性波段建立D (R)-PLSR模型取得了較好效果。這主要是因為有機質(zhì)含量與光譜反射率的相關(guān)系數(shù)決定了土壤有機質(zhì)對光譜波段響應(yīng)的靈敏性,相關(guān)性越高,響應(yīng)越靈敏,越容易確定敏感波段[11]。lg(1/R)與有機質(zhì)含量呈正相關(guān),與R的相關(guān)關(guān)系絕對值的變化趨勢基本一致。
顯著性波段的建模預(yù)測效果要優(yōu)于全波段。這主要是因為研究區(qū)域原始土壤光譜反射率在全波段范圍與有機質(zhì)含量具有高度線性相關(guān)性,大部分波段與土壤光譜反射率顯著相關(guān),相關(guān)系數(shù)均在0.5以上,只有少數(shù)波段不相關(guān)。這也證實了偏最小二乘回歸特別適用于自變量內(nèi)部高度線性相關(guān)、利用有效數(shù)據(jù)建立模型,具有顯著的預(yù)測能力[36]?;陲@著性波段建立PLSR反演模型具有模型簡單、變量少、運算快等特點,可以有效減少冗余信息的干擾,改善建模效果。
本文以黃土高原煤礦區(qū),受人類活動影響嚴重的山西省襄垣縣復(fù)墾農(nóng)田土壤為對象,建立了土壤有機質(zhì)PLSR反演模型,該模型是在土壤反射率與有機質(zhì)存在高度線性相關(guān)情況下建立的,模型對其他區(qū)域的適用性還有待進一步驗證。因此,在今后的工作中需進一步研究更大區(qū)域尺度光譜特性,建立區(qū)域土壤光譜庫,為豐富國家尺度土壤光譜庫提供數(shù)據(jù)支撐,也可嘗試利用航空、航天遙感影像建立區(qū)域或更大尺度定量反演模型,為土壤質(zhì)量的監(jiān)測與評估提供參考。
4.1 進行D(R)變換后,一些隱含的特征信息被釋放出來,呈現(xiàn)多個吸收峰,不同有機質(zhì)含量光譜曲線特征得到增強,可見光波段范圍內(nèi)土壤有機質(zhì)含量與光譜反射率相關(guān)性得到提高,相關(guān)系數(shù)最大值由0.72提高到了0.82。
4.2 基于顯著性波段建立的 PLSR模型總體上優(yōu)于全波段的PLSR模型。以lg(1/R)-PLSR模型預(yù)測精度最高,其RPD為2.56,R-PLSR和D(R)-PLSR模型次之。反演模型可以很好地估測該區(qū)域的土壤有機質(zhì)含量。
4.3 基于全波段建立R-PLSR和lg(1/R)-PLSR模型具有較好的預(yù)測能力,可以對土壤有機質(zhì)含量較為精確的評估,而 D(R)變換在近紅外波段范圍內(nèi)土壤有機質(zhì)含量與光譜反射率相關(guān)性明顯減弱,有效的光譜信息丟失,預(yù)測能力明顯下降,只能進行粗略估測。
References
[1] 程朋根, 吳劍, 李大軍, 何挺. 土壤有機質(zhì)高光譜遙感和地統(tǒng)計定量預(yù)測. 農(nóng)業(yè)工程學報, 2009, 25(3): 142-147. CHENG P G, WU J, LI D J, HE T. Quantitative prediction of soil organic matter content using hyper spectral remote sensing and geo-statistics. Transactions of the CSAE, 2009, 25(3): 142-147. (in Chinese)
[2] 張娟娟, 田永超, 姚霞, 曹衛(wèi)星, 馬新明, 朱艷. 基于高光譜的土壤全氮含量估測. 自然資源學報, 2011, 26(5): 881-890. ZHANG J J, TIAN Y C, YAO X, CAO W X, MA X M, ZHU Y. Estimating soil total nitrogen content based on hyperspectral analysis technology. Journal of Natural Resources, 2011, 26(5): 881-890. (in Chinese)
[3] XIE H T, YANG X M, DRURY C F, YANG J Y, ZHANG X D. Predicting soil organic carbon and total nitrogen using mid- and nearinfrared spectra for Brookston clay loam soil in Southwestern Ontario, Canada. Canadian Journal of Soil Science, 2011, 91(1): 53-63.
[4] YANG H, KUANG B, MOUAZEN A M. Quantitative analysis of soil nitrogen and carbon at a farm scale using visible and near infrared spectroscopy coupled with wavelength reduction. European Journal of Soil Science, 2011, 63(3): 410-420.
[5] BO S, ROSSEL R A V, MOUAZEN A M, WETTERLIND J. Visible and near infrared spectroscopy in soil science. Advances in Agronomy,2010, 107: 163-215.
[6] ROSSEL R A V, WEBSTER R. Discrimination of Australian soil horizons and classes from their visible-near infrared spectra. European Journal of Soil Science, 2011, 62(4): 637-647.
[7] NOCITA M, STEVENS A, WESEMAEL B V, AITKENHEAD M,BACHMANN M, BARTHèS B, BEN DOR E, BROWN D J,CLAIROTTE M A, CSORBA P, DARDENNE, DEMATTê J A M,GENOT V, GUERRERO C, KNADEL M, MONTANARELLA L,NOON C, RAMIREZ-LOPEZ L, ROBERTSON J, SAKAI H,SORIANO-DISLA J M, SHEPHERD K D, STENBERG B, TOWETT E K, VARGAS R, WETTERLIND J. Soil spectroscopy: an alternative to wet chemistry for soil monitoring. Advances in Agronomy, 2015,132: 139-159.
[8] LIU H J, ZHANG Y Z, ZHANG B. Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China. Environmental Monitoring & Assessment, 2009, 154(1/4): 147-154.
[9] 劉煥軍, 張新樂, 鄭樹峰, 湯娜, 胡言亮. 黑土有機質(zhì)含量野外高光譜預(yù)測模型. 光譜學與光譜分析, 2010, 30(12): 3355-3358. LIU H J, ZHANG X L, ZHENG S F, TANG N, HU Y L. Black soil organic matter predicting model based on field hyperspectral reflectance. Spectroscopy and Spectral Analysis, 2010, 30(12):3355-3358. (in Chinese)
[10] 賴寧, 李新國, 梁東. 開都河流域下游綠洲鹽漬化土壤高光譜特征.干旱區(qū)資源與環(huán)境, 2015, 29(2): 151-156. LAI N, LI X G, LIANG D. Spectral characteristics of salinized soil in the lower reaches of Kaidu river basin. Journal of Arid Land Resources and Environment, 2015, 29(2): 151-156. (in Chinese)
[11] 侯艷軍, 塔西甫拉提·特依拜, 買買提·沙吾提, 張飛. 荒漠土壤有機質(zhì)含量高光譜估算模型. 農(nóng)業(yè)工程學報, 2014, 30(16): 113-120. HOU Y J, TASHPOLAT T, MAMAT S, ZHANG F. Estimation model of desert soil organic matter content using hyperspectral data. Transactions of the CSAE, 2014, 30(16): 113-120. (in Chinese)
[12] 劉磊, 沈潤平, 丁國香. 基于高光譜的土壤有機質(zhì)含量估算研究.光譜學與光譜分析, 2011, 31(3): 762-766. LIU L, SHEN R P, DING G X. Studies on the estimation of soil organic matter content based on hyper-spectrum. Spectroscopy and Spectral Analysis, 2011, 31(3): 762-766. (in Chinese)
[13] 廖欽洪, 顧曉鶴, 李存軍, 陳立平, 黃文江, 杜世州, 付元元, 王紀華. 基于連續(xù)小波變換的潮土有機質(zhì)含量高光譜估算. 農(nóng)業(yè)工程學報, 2012, 28(23): 132-139. LIAO Q H, GU X H, LI C J, CHEN L P, HUANG W J, DU S Z, FU Y Y, WANG J H. Estimation of fluvo-aquic soil organic matter content from hyper-spectral reflectance based on continuous wavelet transformation. Transactions of the CSAE, 2012, 28(23): 132-139. (in Chinese)
[14] NOCITA M, STEVENS A, TOTH G, PANAGOS P, WESEMAEL B V,MONTANARELLA L. Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biology & Biochemistry, 2013, 68(1):337-347.
[15] GE Y, MORGAN C L S, GRUNWALD S, BROWN D J, SARKHOT D V. Comparison of soil reflectance spectra and calibration models obtained using multiple spectrometers. Geoderma, 2011, 161(3/4):202-211.
[16] GOMEZ C, ROSSEL R A V, MCBRATNEY A B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study. Geoderma, 2008, 146(3/4):403-411.
[17] ROSSEL R A V, BEHRENS T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 2010, 158(1/2):46-54.
[18] ROSSEL R A V, WALVOORT D J J, MCBRATNEY A B, JANIK L J,SKJEMSTAD J O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 2006, 131(1/2): 59-75.
[19] CLARK R N, KING T V V, KLEJWA M, SWAYZE G A, VERGO N. High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research Solid Earth, 1990, 95(B8): 12653-12680.
[20] SANKEY J B, BROWN D J, BERNARD M L, LAWRENCE R L. Comparing local vs. global visible and near-infrared (visNIR) diffuse reflectance spectroscopy (DRS) calibrations for the prediction of soil clay, organic C and inorganic C. Geoderma, 2008, 148(2): 149-158.
[21] GUERRERO C, STENBERG B, WETTERLIND J, ROSSEL R A V,MAESTRE F T, MOUAZEN A M, ZORNOZA R., RUIZ-SINOGA J,KUANG B. Assessment of soil organic carbon at local scale with spiked NIR calibrations: effects of selection and extra-weighting on the spiking subset. European Journal of Soil Science, 2014, 65(2):248-263.
[22] ROSSEL R A V, BEHRENS T, BEN-DOR E, BROWN D J,DEMATTê J A M, SHEPHERD K D, SHI Z, STENBERG B,STEVENS A, ADAMCHUK V, AICHI H, BARTHêS B G,BARTHOLOMEUS H M, BAYER A D, BERNOUX M, BOTTCHER K, BRODSKY′ L, DU C W, CHAPPELL A, FOUAD Y, GENOT V,GOMEZ C, GRUNWALD S, GUBLER A, GUERRERO C, HEDLEY C B, KNADEL M, MORRAS H J M, NOCITA M, RAMIREZLOPEZ L, ROUDIER P, RUFASTO CAMPOS E M, SANBORN P,SELLITTO V M, SUDDUTH K A, RAWLINS B G, WALTER C,WINOWIECKI L A, HONG S Y, JI W. A global spectral library to characterize the world's soil. Earth-Science Reviews, doi: 10.1016/ j.earscirev.2016.01.012.
[23] WETTERLIND J, STENBERG B. Near-infrared spectroscopy forwithin-field soil characterization: small local calibrations compared with national libraries spiked with local samples. European Journal of Soil Science, 2011, 61(6): 823-843.
[24] GOGé F, GOMEZ C, JOLIVET C, JOFFRE R. Which strategy is best to predict soil properties of a local site from a national Vis-NIR database? Geoderma, 2014, 213: 1-9.
[25] GUERRERO C, ZORNOZA R, GóMEZ I, MATAIX-BENEYTO J. Spiking of NIR regional models using samples from target sites: effect of model size on prediction accuracy. Geoderma, 2010, 158(1/2):66-77.
[26] 史舟, 王乾龍, 彭杰, 紀文君, 劉煥軍, 李曦, ROSSEL R A V. 中國主要土壤高光譜反射特性分類與有機質(zhì)光譜預(yù)測模型. 中國科學: 地球科學, 2014, 44(5): 978-988. SHI Z, WANG Q L, PENG J, JI W J, LIU H J, LI X, ROSSEL R A V. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Science China: Earth Sciences, 2014, 44(5): 978-988. (in Chinese)
[27] 栗麗, 王曰鑫, 王衛(wèi)斌. 采煤塌陷對黃土丘陵區(qū)坡耕地土壤理化性質(zhì)的影響. 土壤通報, 2010, 41(5): 1237-1240. LI L, WANG Y X, WANG W B. Effects of mining subsidence on physical and chemical properties of soil in slope land in hilly-gully region of Loess Plateau. Chinese Journal of Soil Science, 2010, 41(5):1237-1240. (in Chinese)
[28] 焦曉燕, 王立革, 盧朝東, 郜春花, 董二偉, 劉鑫. 采煤塌陷地復(fù)墾方式對土壤理化特性影響研究. 水土保持學報, 2009, 23(4):123-125. JIAO X Y, WANG L G, LU C D, GAO C H, DONG E W, LIU X. Effects of two reclamation methodologies of coal mining subsidence on soil physical and chemical properties. Journal of Soil and Water Conservation, 2009, 23(4): 123-125. (in Chinese)
[29] 彭杰, 張楊珠, 周清, 龐新安, 伍維模. 土壤理化特性與土壤光譜特征關(guān)系的研究進展. 土壤通報, 2009, 40(5): 1204-1208. PENG J, ZHANG Y Z, ZHOU Q, PANG X A, WU W M. The progress on the relationship physics-chemistry properties with spectrum characteristic of the soil. Chinese Journal of Soil Science,2009, 40(5): 1204-1208. (in Chinese)
[30] 鮑士旦. 土壤農(nóng)化分析. 3版. 北京: 中國農(nóng)業(yè)出版社, 2013: 30-34. BAO S D. Soil Agricultural Chemistry Analysis. 3rd ed. Beijing:China Agriculture Press, 2013: 30-34. (in Chinese)
[31] BILGILI A V, ES H M V, AKBAS F, DURAK A, HIVELY W D. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. Journal of Arid Environments,2010, 74(2): 229-238.
[32] SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 1964,36(8): 1627-1639.
[33] 唐啟義, 馮明光. DPS數(shù)據(jù)處理系統(tǒng). 北京: 科學出版社, 2007:553-558. TAO Q Y, FENG M G. DPS Data Processing System. Beijing:Science Press, 2007: 553-558. (in Chinese)
[34] 韓云霞, 李民贊, 李道亮. 基于光譜學與遙感技術(shù)的礦區(qū)廢棄地土壤特性參數(shù)分析. 吉林大學學報, 2009, 39(1): 254-257. HAN Y X, LI M Z, LI D L. Estimation of soil properties in mine wasteland based on spectroscopy and remote sensing. Journal of Jilin University, 2009, 39(1): 254-257. (in Chinese)
[35] LI S, JI W J, CHEN S C, PENG J, ZHOU Y, SHI Z. Potential of VIS-NIR-SWIR spectroscopy from the Chinese soil spectral library for assessment of nitrogen fertilization rates in the paddy-rice region,China. Remote Sensing, 2015, 7: 7029-7043.
[36] HU X Y. Application of visible/near-infrared spectra in modeling of soil total phosphorus. Pedosphere, 2013, 23(4): 417-421.
(責任編輯 楊鑫浩,岳梅)
Hyperspectral Prediction of Soil Organic Matter Content in the Reclamation Cropland of Coal Mining Areas in the Loess Plateau
NAN Feng, ZHU Hong-fen, BI Ru-tian
(College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, Shanxi)
Abstract:【Objective】 In terms of the problems in the Loess Plateau, such as many hills, complex topography, low soil organic matter content (SOMC), sampling difficulties, large areas of land damage caused by mining activities and so on, the object ofthis study is to provide an alternative method for the rapidly quantitative monitoring and evaluation of the SOMC in the process of land reclamation and comprehensive renovation. 【Method】 Taking the cropland soil in the coal mining areas in Xiangyuan County,Shanxi Province was picked as research object, 152 soil samples were collected from the intermediate strip area of land destruction region in a north to south direction. The physical and chemical properties of the soil samples were analyzed. At the same time, the raw hyperspectral reflectance (R) of the soil samples was measured by the standard procedure with an ASD FieldSpec 3 instrument equipped with a high intensity contact probe under the laboratory conditions. The raw spectral reflectance (R) were pretreated by the smoothing or denoising methods of multiplication scatter correction (MSC), baseline offset correction (BOC) and Savitzky-Golay filter in the ParLes 3.1 software. And the raw spectral reflectance (R) was transformed into two types of spectra, which were first order differential reflectance (D (R)) and inverse-log reflectance (lg (1/R)), to analyze the correlation coefficients between the three spectra and their SOMC. Then the significant bands were extracted by the significant correlation coefficients (P=0.01) of the three spectra with the SOMC. Finally, based on the full bands (400-2 400 nm) and significant bands of the three spectra, the hyperspectral predicting models of the SOMC were established by the method of partial least squares regression (PLSR). The optimal models were determined by the assessing indices of predicting accuracies, including coefficient of determination (R2), root mean square error (RMSE), and residual prediction deviation (RPD). 【Result】 The spectra in the bands of 400-1 800 and 1 880-2 400 nm for the raw spectral reflectance (R), 420-790, 1 020-1 040, and 2 150-2 200 nm for D (R), and 400-1 830 and 1 860-2 400 nm for lg (1/R), were significantly correlated with SOMC (P=0.01). And the maximum correction coefficients between the three spectra and their SOMC were 800 nm of the raw spectral reflectance (R), 600 nm of D (R), and 760 nm of lg (1/R). After the transformation of D (R), there were prominent differences among the absorption peaks of the spectral curves in different soil samples, and their correlation coefficients were improved from the value of 0.72 to that of 0.82 in the range of visible bands (400-800 nm). The models of significant bands could obtain better predicting accuracies compared with that of full bands by the method of PLSR. Among the three spectra, the predicting accuracy of lg (1/R) was the best, and R2, RMSE of the calibration dataset were 0.95 and 7.64, while R2,RMSE, and RPD of the validation dataset were 0.85, 3.00, and 2.56, respectively. For the models of R-PLSR and lg (1/R)-PLSR of full bands, the predicting abilities were good. The R2, RMSE, and RPD of R-PLSR were 0.79, 3.64, and 2.10, respectively. And the coefficient of R2, RMSE and RPD of lg (1/R)-PLSR were 0.79, 3.53, and 2.17, respectively. However, for the model of D (R)-PLSR,the predicting SOMC were only roughly estimated, and the indices of the predicting accuracies were not satisfying. R2, RMSE and PRD of the D (R)-PLSR were 0.61, 5.43, and 1.41, respectively. Finally, by analyzing the predicting accuracies of the three spectra in both full bands and significant bands, it was found that the models of R-PLSR, D (R)-PLSR and lg (1/R)-PLSR in significant bands achieved desirable predicting effect.【Conclusion】 In the study area, soil spectral reflectance has a high correlation with SOMC, and PLSR is a good method to establish the predicting model of SOMC.
Key words:coal mining areas; reclamation cropland; soil organic matter content (SOMC); hyperspectral; partial least squares regression (PLSR)
收稿日期:2016-01-28;接受日期:2016-03-30
基金項目:國土資源部公益性行業(yè)科研專項(201411007)、山西農(nóng)業(yè)大學科技創(chuàng)新基金項目(201307)