• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      小麥籽粒游離多胺對(duì)土壤干旱的響應(yīng)及其與籽粒灌漿的關(guān)系

      2016-07-14 09:57:02張偉楊徐云姬錢希李銀銀王志琴楊建昌揚(yáng)州大學(xué)江蘇省作物遺傳生理重點(diǎn)實(shí)驗(yàn)室糧食作物現(xiàn)代產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心江蘇揚(yáng)州225009
      作物學(xué)報(bào) 2016年6期
      關(guān)鍵詞:粒重小麥

      張偉楊 徐云姬  錢希 旸 李銀銀 王志琴 楊建昌揚(yáng)州大學(xué)江蘇省作物遺傳生理重點(diǎn)實(shí)驗(yàn)室 / 糧食作物現(xiàn)代產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心,江蘇揚(yáng)州 225009

      ?

      小麥籽粒游離多胺對(duì)土壤干旱的響應(yīng)及其與籽粒灌漿的關(guān)系

      張偉楊 徐云姬 錢希旸 李銀銀 王志琴 楊建昌*
      揚(yáng)州大學(xué)江蘇省作物遺傳生理重點(diǎn)實(shí)驗(yàn)室 / 糧食作物現(xiàn)代產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心,江蘇揚(yáng)州 225009

      摘 要:為探明干旱脅迫下小麥內(nèi)源游離多胺在籽粒灌漿過(guò)程中的作用,2013—2014和2014—2015年度選用高產(chǎn)品種揚(yáng)麥16和寧麥13進(jìn)行不同水分條件的盆栽試驗(yàn)。自分蘗末期至成熟期設(shè)置正常供水(WW)、土壤輕度干旱(MD)和土壤重度干旱(SD) 3種處理,觀察不同土壤水分對(duì)籽粒中游離多胺和籽粒灌漿的影響。2個(gè)品種的結(jié)果一致表明,與WW相比,MD處理對(duì)葉片水勢(shì)及光合作用沒(méi)有顯著影響,顯著增加弱勢(shì)粒灌漿速率(12.5%)和粒重(11.8%),對(duì)強(qiáng)勢(shì)粒灌漿無(wú)顯著影響;SD處理則嚴(yán)重抑制葉片光合作用,顯著降低葉片水勢(shì),強(qiáng)勢(shì)粒的灌漿速率和粒重分別下降10.1%和9.5%,弱勢(shì)粒的灌漿速率和粒重分別下降14.5%和11.7%。MD處理顯著提高了灌漿期弱勢(shì)粒中游離亞精胺(Spd)和精胺(Spm)含量及其與腐胺(Put)的比值,而SD處理的結(jié)果則相反。籽粒灌漿速率、粒重與籽粒中Spd和Spm含量及Spd/Put和Spm/Put值呈極顯著正相關(guān),與Put含量呈極顯著負(fù)相關(guān)。噴施Spd和Spm,顯著增加3個(gè)處理弱勢(shì)粒及SD處理強(qiáng)勢(shì)粒的灌漿速率(11.2%~25.9%)和粒重(9.9%~17.7%),但對(duì)WW和MD處理的強(qiáng)勢(shì)粒無(wú)顯著影響;噴施Spd和Spm合成抑制劑[甲基乙二醛-雙脒基腙(MGBG)]后,3個(gè)處理強(qiáng)、弱勢(shì)粒的灌漿速率和粒重均顯著降低,分別下降 20.5%~28.8%和 16.9%~28.5%。表明小麥籽粒中多胺對(duì)土壤水分的響應(yīng)因土壤干旱程度而異,通過(guò)輕度土壤干旱處理增加籽粒中Spd和Spm含量以及Spd/Put和Spm/Put值,可以促進(jìn)籽粒灌漿,增加粒重。

      關(guān)鍵詞:小麥;土壤干旱;多胺;籽粒灌漿;粒重

      本研究由國(guó)家自然科學(xué)基金項(xiàng)目(31271641,31471438),中央級(jí)科研院所基本科研業(yè)務(wù)費(fèi)(農(nóng)業(yè))專項(xiàng)(201103003,201203079),國(guó)家科技支撐計(jì)劃項(xiàng)目(2011BAD16B14,2012BAD04B08,2013BAD07B09,2014AA10AS605),江蘇省農(nóng)業(yè)三新工程項(xiàng)目(SXG2014313)和江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程專項(xiàng)資助。

      This study was supported by the National Natural Science Foundation of China (31271641,31471438),China National Public Welfare Industry (Agriculture) Plan (201103003,201203079),the National Key Technologies R&D Program of China (2011BAD16B14,2012BAD04B08,2013BAD07B09,2014AA10AS605),Jiangsu “Three-innovation” Agricultural Project (SXG2014313),and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

      第一作者聯(lián)系方式∶ E-mail∶ wyzhangyzu1990@163.com

      URL∶ http∶//www.cnki.net/kcms/detail/11.1809.S.20160328.1116.006.html

      小麥等禾谷類作物的生長(zhǎng)發(fā)育極易遭受極端溫度、干旱以及營(yíng)養(yǎng)缺乏等不良環(huán)境因素的影響,其中土壤干旱是限制作物產(chǎn)量的最主要逆境因子之一[1-2]。小麥生長(zhǎng)發(fā)育過(guò)程中土壤水分不足會(huì)引起小麥植株體內(nèi)生理代謝的紊亂、光合性能降低,抑制小麥的正常發(fā)育,使小麥產(chǎn)量低而不穩(wěn),從而限制其產(chǎn)量潛力的發(fā)揮[3-5]。因此,研究不同灌水量及灌溉方式對(duì)小麥生理特性及產(chǎn)量的影響,對(duì)制定科學(xué)合理的灌溉制度,提高小麥水分生產(chǎn)效率具有重要意義。關(guān)于土壤干旱對(duì)小麥產(chǎn)量影響的報(bào)道較多,有學(xué)者指出,灌漿期適度的土壤落干或輕度土壤干旱處理能顯著加快光合產(chǎn)物向籽粒的轉(zhuǎn)移,提高灌漿速率和最終粒重[6-9]。然而,對(duì)于這種適度土壤干旱處理促進(jìn)籽粒灌漿的生理基礎(chǔ),目前仍不清楚。

      植物內(nèi)源激素調(diào)控許多生理過(guò)程,如細(xì)胞分裂、形態(tài)發(fā)生、胚胎發(fā)生、生長(zhǎng)發(fā)育、種子形成、衰老以及對(duì)環(huán)境壓力的響應(yīng)等[10-12]。小麥籽粒的形態(tài)建成、灌漿充實(shí)及最終產(chǎn)量都受到內(nèi)源激素的調(diào)控。多胺作為一種新型植物激素,是一種具有強(qiáng)烈生物活性的物質(zhì),廣泛存在于植物體內(nèi),在植物的生長(zhǎng)發(fā)育、形態(tài)建成以及對(duì)環(huán)境脅迫的響應(yīng)過(guò)程中發(fā)揮重要的調(diào)控作用,其中最常見的類型是腐胺(Put)、亞精胺(Spd)和精胺(Spm)[13-16]。多胺能夠調(diào)節(jié)細(xì)胞膜的穩(wěn)定性,在干旱脅迫條件下,使細(xì)胞受到的傷害最小化[17-18]。研究表明,高含量的 Spd和Spm 與玉米籽粒的形成和發(fā)育呈極顯著正相關(guān)[19],能夠極顯著地促進(jìn)水稻籽粒的灌漿[20];小麥體內(nèi)的多胺含量與其抗旱性密切相關(guān),較高的 Spd和Spm含量能夠拮抗干旱對(duì)小麥生長(zhǎng)的抑制作用[21-22];噴施Spm或Spd顯著促進(jìn)冬小麥籽粒灌漿,而噴施Put對(duì)冬小麥籽粒灌漿無(wú)顯著影響[23]。然而,在不同土壤干旱處理下,小麥籽粒中游離多胺的變化特點(diǎn)及其與籽粒灌漿的關(guān)系少有研究。本試驗(yàn)比較了 3種土壤水分條件下,小麥分蘗末期至成熟籽粒中游離多胺含量的變化及其與籽粒灌漿的關(guān)系,進(jìn)一步明確小麥產(chǎn)量形成對(duì)土壤水分的響應(yīng)規(guī)律,為小麥節(jié)水高產(chǎn)栽培提供理論依據(jù)。

      1 材料與方法

      1.1 試驗(yàn)概況

      2013—2014和2014—2015小麥生長(zhǎng)季,選用當(dāng)?shù)卮竺娣e應(yīng)用的高產(chǎn)小麥品種揚(yáng)麥16和寧麥13,在揚(yáng)州大學(xué)江蘇省作物遺傳生理重點(diǎn)實(shí)驗(yàn)室試驗(yàn)農(nóng)牧場(chǎng)進(jìn)行盆栽試驗(yàn)。盆缽容積14.72 L (高30 cm,直徑25 cm),填裝過(guò)篩沙壤土13 kg。填裝土取自大田表層,含有機(jī)質(zhì)2.02%、有效氮為105.0 mg kg-1、速效磷34.2 mg kg-1、速效鉀68.0 mg kg-1。按照高產(chǎn)栽培進(jìn)行肥料運(yùn)籌,全生育期施用尿素折合純氮 180 kg hm-2(折合純氮0.84 g pot-1),基肥(播種前1 d)、壯蘗肥(5葉時(shí))、拔節(jié)肥(葉齡余數(shù)2.5)、孕穗肥(葉齡余數(shù)1.2)的比例為5∶1∶2∶2。播種前一次性施過(guò)磷酸鈣(含P2O513.5%),折合純磷90 kg hm-2(折合純磷0.42 g pot-1)和氯化鉀(含K2O 52%),折合純鉀90 kg hm-2(折合純鉀0.42 g pot-1)。全生育期嚴(yán)格控制病蟲草害。

      兩年度播種期均為10月29日,每品種270盆,每盆播25粒,三葉期定苗,每盆留8苗。揚(yáng)麥16和寧麥13的開花日期分別為2014年4月9日和4月11日以及2015年4月10日和4月13日。

      1.2 水分脅迫處理

      自分蘗末期至成熟,設(shè)置供水充足(WW,土壤水勢(shì)-20 ~ -30 kPa)、輕度土壤干旱(MD,土壤水勢(shì)為-40 ~ -50 kPa)和重度土壤干旱(SD,土壤水勢(shì)為-60 ~ -70 kPa),每處理90盆;3個(gè)處理的含水量分別相當(dāng)于 0~20 cm 土層田間最大持水量的 80%~85%、60%~65%和45%~50%。下雨時(shí)用可移動(dòng)式塑料大棚擋雨。每天6∶00—7∶00、12∶00—13∶00、17∶00—18∶00時(shí)記錄負(fù)壓計(jì)讀數(shù),當(dāng)讀數(shù)達(dá)到設(shè)計(jì)閾值時(shí),WW、MD和SD處理每盆分別澆水0.4、0.3和0.2 L。

      根據(jù)在預(yù)備試驗(yàn)中土壤干旱對(duì)小麥產(chǎn)量有無(wú)顯著影響作為劃分輕度和重度干旱的標(biāo)準(zhǔn)。與供水充足相比,如果土壤干旱對(duì)產(chǎn)量無(wú)顯著影響甚至還有所提高,這種干旱定義為輕度干旱或適度干旱;如果土壤干旱顯著降低了產(chǎn)量,這種干旱定義為重度干旱。在盆缽內(nèi)安裝真空表式負(fù)壓計(jì)(中國(guó)科學(xué)院南京土壤研究所生產(chǎn))監(jiān)測(cè)土壤水勢(shì),負(fù)壓計(jì)陶土頭埋設(shè)離土表15~20 cm。用土壤水勢(shì)作為指標(biāo)可以克服土壤類型的差異。

      1.3 籽粒灌漿動(dòng)態(tài)測(cè)定

      于開花期選擇同一日開花、長(zhǎng)勢(shì)一致的穗子掛牌,標(biāo)記開花日期,每處理標(biāo)記400穗。根據(jù)小穗在花序軸上著生次序不同,把同一穗上的籽粒分為強(qiáng)勢(shì)粒和弱勢(shì)粒。從穗基部向上數(shù)第4至第12小穗(中部小穗),取其第 1、第 2位籽粒為強(qiáng)勢(shì)粒。上部和下部小穗上若第 3、第 4位籽粒能正常形成則取其作為弱勢(shì)粒,若無(wú)3、4位籽粒則取第1、第2位籽粒作為弱勢(shì)粒。開花后的第6、第12、第18、第24、第30、第36、第42天分7次取樣,每次取掛牌單穗 20~30個(gè),按強(qiáng)、弱勢(shì)粒分樣品。同類籽粒樣品一部分用于測(cè)定多胺,一部分烘干后稱重。參照朱慶森等[24]描述的方法分析強(qiáng)、弱勢(shì)粒的灌漿動(dòng)態(tài),用Richards方程[25]擬合。

      式中,W為籽粒重量(mg),A為最大粒重,t為開花后的時(shí)間(d),B、k和N為回歸方程所確定的參數(shù)。對(duì)方程(1)求導(dǎo),得灌漿速率F。

      定義活躍灌漿期D (d)為籽粒粒重(W)由最終粒重A的5% (t1)增加到95% (t2)所經(jīng)歷的時(shí)間(t2- t1),這段時(shí)間內(nèi)麥粒增加的重量除以灌漿活躍期(t2- t1)為平均籽粒灌漿速率Fmean。

      1.4 旗葉水勢(shì)及光合速率的測(cè)定

      花后第 21天和第 23天(灌漿中期),于6∶00—18∶00采用壓力室法(Model 3000,Soil Moisture Equipment Corp,Santa Barbara,CA,USA)每隔2 h測(cè)定一次旗葉水勢(shì),取2次測(cè)定的平均值作為一個(gè)觀測(cè)值。

      開花后第 6、12、18、24、30、36、42天,于晴天 9∶00,采用 LI-6400光合測(cè)定儀(Li-Cor,USA)測(cè)定旗葉的光合速率,每處理重復(fù)10次。

      1.5 多胺含量的測(cè)定

      預(yù)備試驗(yàn)發(fā)現(xiàn)小麥灌漿期籽粒中結(jié)合型多胺含量很低,且在干旱與供水處理間無(wú)顯著差異,其中結(jié)合型Put含量為180~230 nmol g-1DW,結(jié)合型Spd和結(jié)合型Spm含量?jī)H為61~66 nmol g-1DW和35~42 nmol g-1DW。因此,本研究參照Flores和Galston[26]的方法提取游離多胺,苯甲?;?7]后用高效液相色譜儀測(cè)定游離多胺含量。用10 μL甲醇(60%,v/v)溶解樣品,色譜柱為C18反相柱(4.6 mm × 250.0 mm,5 μm,流速0.6 mL min-1),進(jìn)樣體積為20 μL,柱溫為25℃,檢測(cè)器為Perkin-Elmer LC-95,吸收峰波長(zhǎng)為254 nm。以1,6-已二胺為內(nèi)標(biāo),重復(fù)測(cè)定4次,取平均值,多胺含量單位為nmol g-1DW。

      1.6 化學(xué)調(diào)控處理

      從開花結(jié)束后的第 2天開始連續(xù) 4 d,每天16∶00—17∶00時(shí),對(duì)麥穗分別噴施2 mmol L-1Put、1 mmol L-1Spd、1 mmol L-1Spm和5 mmol L-1MGBG,每盆噴施20 mL。MGBG即甲基已二醛-雙(脒基腙),是Spd和Spm合成抑制劑。噴施液中含0.1%乙醇和0.01% (v/v) Tween-20作為展開劑,對(duì)照為噴施等量清水(含有相同濃度的展開劑)。3個(gè)處理每品種每種激素噴施5盆,重復(fù)3次。在噴施調(diào)控劑之前,用塑料膜遮蓋葉片,以防止激素噴在葉片上。于花后第18、21、24天(灌漿中期)取樣,測(cè)定籽粒中游離多胺含量,取 3次重復(fù)平均值。籽粒內(nèi)源多胺含量和籽粒灌漿速率測(cè)定同上述。

      1.7 數(shù)據(jù)處理

      采用Microsoft Excel 2003、SPSS 16.0和SAS (Version 6.12;SAS Institute,Cary,NC,USA)軟件處理和分析數(shù)據(jù),用SigmaPlot 10.0繪圖。

      2 結(jié)果與分析

      2.1 不同土壤水分處理的葉片水勢(shì)和光合速率

      不論何種處理的葉片水勢(shì)在中午 12∶00時(shí)之前都不斷下降,12∶00—14∶00期間處在最低狀態(tài),此后又逐漸回升,2個(gè)品種的結(jié)果趨勢(shì)表現(xiàn)一致(圖1)。與WW相比,MD和SD處理都顯著加快了中午旗葉水勢(shì)的下降,MD處理的葉片水勢(shì)最低值大于-1.5 MPa,SD處理下的葉片水勢(shì)顯著小于-1.5 MPa。中午葉片水勢(shì)在-1.5 MPa被認(rèn)為是植物在灌漿期遭受干旱脅迫的臨界值[28]。早晨(6∶00時(shí)),SD處理下的葉片水勢(shì)顯著低于對(duì)照WW,MD處理則與WW無(wú)顯著差異。表明 MD處理未對(duì)植株造成傷害,其水分狀況在夜間可以恢復(fù)到正常水平,而 SD處理的葉片水勢(shì)則不能恢復(fù)。

      圖1 不同干旱處理下小麥旗葉水勢(shì)變化Fig. 1 Changes in water potential of wheat flag leaf under different drought treatments

      隨生育進(jìn)程,葉片光合速率不斷降低。MD處理的光合速率與WW處理無(wú)顯著差異,而SD處理極顯著地降低光合速率(圖2)。表明MD處理葉片光合作用未受到明顯抑制,SD處理則顯著抑制了葉片光合作用。

      2.2 不同土壤水分處理的粒重及籽粒灌漿速率

      籽粒灌漿速率隨灌漿進(jìn)程呈先增大后降低的單峰變化趨勢(shì),強(qiáng)勢(shì)粒在花后18 d左右達(dá)到峰值,弱勢(shì)粒在花后24 d左右達(dá)到峰值,此后急劇下降。強(qiáng)勢(shì)粒粒重及灌漿速率MD與WW間沒(méi)有差異,SD處理顯著降低了強(qiáng)、弱勢(shì)粒粒重、最大灌漿速率和平均灌漿速率。2個(gè)小麥品種結(jié)果趨勢(shì)一致(表1和圖3)。

      2.3 不同土壤水分處理的籽粒游離多胺含量

      與籽粒灌漿速率變化類似,游離 Put、Spd和Spm含量以及 Spd/Put和Spm/Put比值在灌漿前期不斷增加,強(qiáng)勢(shì)粒在花后第18天前后達(dá)到峰值,弱勢(shì)粒在花后第24天前后達(dá)到峰值,此后急劇下降。在灌漿前期,強(qiáng)勢(shì)粒游離多胺含量大于弱勢(shì)粒,在灌漿后期則相反,弱勢(shì)粒的 Put峰值顯著高于強(qiáng)勢(shì)粒,而強(qiáng)勢(shì)粒的Spd、Spm含量及Spd/Put和Spm/Put比值的峰值明顯高于弱勢(shì)粒(圖4和圖5)。與WW處理相比,MD處理顯著增加了弱勢(shì)粒中Spd和Spm含量以及Spd/Put和Spm/Put比值,而對(duì)強(qiáng)勢(shì)粒中這4項(xiàng)指標(biāo)沒(méi)有顯著影響;但SD處理卻造成強(qiáng)、弱勢(shì)粒中Spd、Spm含量及Spd/Put和Spm/Put比值的顯著降低(圖4和圖5)。

      在籽粒灌漿過(guò)程中,無(wú)論MD或SD處理,均顯著增加弱勢(shì)粒中游離Put的積累,且SD處理比MD的增幅大。SD處理下亦顯著增加了強(qiáng)勢(shì)粒的游離Put含量,MD處理對(duì)強(qiáng)勢(shì)粒的Put含量無(wú)顯著影響(圖4-A-D)。

      2.4 籽粒多胺含量與籽粒灌漿的關(guān)系

      相關(guān)分析表明,2個(gè)供試小麥品種在活躍灌漿期內(nèi)籽粒中游離多胺含量與其平均灌漿速率、最大灌漿速率以及最終粒重密切相關(guān)。籽粒中游離Spd、Spm含量以及Spd/Put和Spm/Put值與平均灌漿速率、最大灌漿速率以及最終粒重呈極顯著正相關(guān)(r = 0.769~0.878,P < 0.01);游離Put含量與平均灌漿速率、最大灌漿速率以及最終粒重呈極顯著負(fù)相關(guān)(r = -0.673~-0.714,P < 0.01)??梢姡鮿?shì)粒中較低的游離Spd、Spm含量以及Spd/Put和Spm/Put值是導(dǎo)致其灌漿差、粒重低的重要生理原因(表2)。

      圖2 不同干旱處理下小麥品種旗葉光合速率變化Fig. 2 Changes in photosynthetic rate of wheat flag leaf under different drought treatments

      表1 土壤水分對(duì)小麥強(qiáng)、弱勢(shì)粒平均灌漿速率和最大灌漿速率的影響Table 1 Effects of soil moisture on mean and maximum grain-filling rates of superior and inferior grains of wheat (mg grain-1d-1)

      圖3 不同干旱處理小麥籽粒增重與灌漿速率的變化Fig. 3 Changes in grain weight and grain-filling rate of wheat under different drought treatments

      表2 活躍灌漿期籽粒多胺含量與灌漿速率和粒重的相關(guān)性Table 2 Correlations between polyamines concentrations in grains and the filling rate and final weight of grains during active filling period

      圖4 不同干旱處理下小麥強(qiáng)、弱勢(shì)粒的游離多胺含量的變化Fig. 4 Changes in free-polyamine concentrations in superior and inferior grains of wheat under different drought treatments

      2.5 化學(xué)調(diào)控對(duì)內(nèi)源多胺和籽粒灌漿速率的影響

      2個(gè)小麥品種的測(cè)定結(jié)果一致顯示,噴施Put、Spd和Spm顯著增加了3個(gè)處理弱勢(shì)粒中相對(duì)應(yīng)的內(nèi)源多胺含量;WW和MD處理相比,強(qiáng)勢(shì)粒中的游離多胺含量沒(méi)有顯著影響;而SD較WW處理顯著提高了強(qiáng)勢(shì)粒中相對(duì)應(yīng)的游離多胺含量(表 3和表4)。噴施外源Put顯著降低3個(gè)處理弱勢(shì)粒以及SD處理強(qiáng)勢(shì)粒中的 Spd/Put和 Spm/Put值;噴施外源Spd或Spm則顯著提高3個(gè)理弱勢(shì)粒以及SD處理強(qiáng)勢(shì)粒中的Spd/Put和Spm/Put值。外源多胺對(duì)WW 和MD處理強(qiáng)勢(shì)粒中的游離多胺比例影響不顯著。

      噴施Spd和Spm抑制劑MGBG后,3個(gè)處理2種類型籽粒中的Put含量均顯著升高,而Spd和Spm含量及Spd/Put和Spm/Put值顯著降低,兩品種結(jié)果趨勢(shì)一致(表3和表4)。

      噴施Put顯著降低了3個(gè)處理弱勢(shì)粒及SD處理強(qiáng)勢(shì)粒的平均灌漿速率、最大灌漿速率和粒重,噴施Spd和Spm的結(jié)果則相反。噴施MGBG后,3個(gè)處理強(qiáng)、弱勢(shì)粒的平均灌漿速率、最大灌漿速率和粒重均比對(duì)照顯著降低。噴施 Put、Spd、Spm對(duì) WW和MD處理下強(qiáng)勢(shì)粒平均灌漿速率、最大灌漿速率和粒重影響很小,與未噴施多胺的對(duì)照差異不顯著(表5)。2個(gè)小麥品種結(jié)果趨勢(shì)一致。

      3 討論

      對(duì)內(nèi)源多胺調(diào)節(jié)植物生長(zhǎng)發(fā)育、形態(tài)建成和對(duì)環(huán)境逆境響應(yīng)已有不少報(bào)道[29-31],但小麥內(nèi)源游離多胺含量對(duì)土壤水分的響應(yīng)及其與強(qiáng)、弱勢(shì)粒籽粒灌漿及粒重關(guān)系卻很少研究。本試驗(yàn)設(shè)計(jì) 3種水分條件,發(fā)現(xiàn)與WW處理相比,MD處理顯著增加籽粒灌漿速率和粒重,SD處理則相反。在不同土壤水分條件下籽粒灌漿速率和粒重的增加或降低與籽粒中Spd及Spm含量的增加或降低密切相關(guān);在灌漿初期噴施Spd或Spm可以顯著增加3個(gè)處理下弱勢(shì)粒中Spd或Spm含量,弱勢(shì)粒灌漿速率和粒重則顯著增加,而對(duì)WW和MD處理的強(qiáng)勢(shì)粒沒(méi)有顯著影響;對(duì)SD處理噴施Spd或Spm后,其強(qiáng)勢(shì)粒和弱勢(shì)粒中Spd或Spm含量、灌漿速率和粒重均顯著增加。噴施Spd和Spm合成抑制物質(zhì)MGBG,顯著降低了3個(gè)處理籽粒中Spd或Spm含量,強(qiáng)、弱勢(shì)粒灌漿速率和粒重則均顯著降低。說(shuō)明游離多胺,特別是Spd和Spm,對(duì)小麥籽粒灌漿有重要調(diào)控作用。MD處理或SD處理通過(guò)調(diào)控籽粒中 Spd 和Spm合成,實(shí)現(xiàn)對(duì)籽粒灌漿和粒重的調(diào)控,同時(shí)也驗(yàn)證了小麥體內(nèi)的多胺含量水平與其抗旱性密切相關(guān),較高的Spd和Spm含量能夠拮抗干旱對(duì)小麥生長(zhǎng)的抑制作用[22]。

      圖5 不同干旱處理下小麥強(qiáng)、弱勢(shì)粒的Spd/Put和Spm/Put比值的變化Fig. 5 Changes in ratios of Spd/Put and Spm/Put in superior and inferior grains of wheat under different drought treatments

      表3 外源多胺及其抑制劑對(duì)揚(yáng)麥16強(qiáng)、弱勢(shì)粒中Put、Spd和Spm含量的影響Table 3 Effects of exogenous PAs and MGBG on Put,Spd,and Spm concentrations in superior and inferior grains of Yangmai 16(nmol g-1DW)

      表4 外源多胺及其抑制劑對(duì)寧麥13強(qiáng)、弱勢(shì)粒中Put、Spd和Spm含量的影響Table 4 Effect of exogenous PAs and MGBG on Put,Spd,and Spm concentrations in superior and inferior grains of Ningmai 13

      表5 外源多胺及多胺抑制劑對(duì)小麥強(qiáng)、弱勢(shì)粒灌漿速率和粒重的影響Table 5 Effects of exogenous Put,Spd,Spm,and MGBG on grain-filling rate and grain weight in superior and inferior grains of wheat

      目前尚不清楚小麥灌漿過(guò)程中籽粒中游離多胺的作用機(jī)制。本課題組研究發(fā)現(xiàn),在灌漿初期外源Spd 或Spm顯著增強(qiáng)了水稻弱勢(shì)粒中蔗糖-淀粉代謝途徑的關(guān)鍵酶活性,而外源 Put的作用則相反[32-33]。另外,多胺能直接參與植株活性氧清除,植株體內(nèi)較高的Spd和Spm含量能夠顯著提高抗氧化酶(SOD、POD 和CAT)活性,降低MDA含量[23,34-36]。由此推測(cè),不同土壤水分通過(guò)改變內(nèi)源多胺的含量,進(jìn)而調(diào)節(jié)籽粒蔗糖-淀粉代謝途徑關(guān)鍵酶及抗氧化酶活性,實(shí)現(xiàn)對(duì)籽粒灌漿的調(diào)節(jié)。

      從多胺的生物合成途徑分析,Spd和 Spm的合成分別通過(guò)亞精胺合成酶和精胺合成酶在腐胺上按一定順序加上由 S-腺苷-L-甲硫氨酸脫羧酶(SAMDC)催化S-腺苷-L-甲硫氨酸(SAM)生成的氨丙基單位[37]。S-腺苷-L-甲硫氨酸(SAM)同時(shí)也是乙烯合成的前體,SAM在ACC合成酶和ACC氧化酶催化作用下合成1-氨基環(huán)丙烷-1-羧酸(ACC)進(jìn)而合成乙烯。研究表明,乙烯可以增強(qiáng)細(xì)胞分裂素的分解,而細(xì)胞分裂素在保持胚乳的細(xì)胞分裂方面起著重要作用[38-39]。籽粒中較高的乙烯水平能抑制胚乳細(xì)胞分裂,導(dǎo)致較低的籽粒灌漿速率和粒重,水稻灌漿期土壤輕度落干處理能促進(jìn)籽粒中Spd和Spm的合成并能顯著抑制乙烯的生物合成[40]。這些結(jié)果表明,MD處理通過(guò)增強(qiáng)Spd和Spm的合成,抑制乙烯的產(chǎn)生,進(jìn)而促進(jìn)籽粒灌漿,增加粒重。有關(guān)多胺調(diào)控小麥籽粒灌漿的機(jī)制有待深入研究。

      國(guó)內(nèi)外關(guān)于游離 Put在植物體內(nèi)的生理作用的報(bào)道有很多,結(jié)論尚不統(tǒng)一[15,41-42]。在正常生長(zhǎng)條件下,Put作為Spd和Spm合成的供體,籽粒中較高的Put有利于 Spd和Spm的合成,進(jìn)而促進(jìn)籽粒生長(zhǎng)發(fā)育,但過(guò)多的游離 Put在器官中的累積會(huì)產(chǎn)生毒害作用[40,43]。本試驗(yàn)也觀察到,SD處理顯著提高了籽粒中游離 Put的含量,籽粒灌漿速率和粒重顯著降低;活躍灌漿期內(nèi)源游離 Put含量與灌漿速率及粒重呈極顯著的負(fù)相關(guān);通過(guò)噴施Put或MGBG增大籽粒Put含量,灌漿速率和粒重顯著降低。再次表明游離 Put在籽粒中的過(guò)度積累,會(huì)對(duì)籽粒產(chǎn)生毒害作用,從而不利于籽粒灌漿。

      Davies[44]指出,激素往往不是單一地發(fā)揮作用,而是通過(guò)與其他激素相互作用、平衡最終共同決定植物的生長(zhǎng)發(fā)育,即所謂的協(xié)同或拮抗作用。本試驗(yàn)觀察到,小麥的籽粒灌漿速率和粒重不僅與灌漿過(guò)程中籽粒中游離多胺的含量密切相關(guān),同時(shí)還與Spd/Put及Spm/Put值呈極顯著正相關(guān);在MD處理下弱勢(shì)粒中Spd/Put和Spm/Put值增大,籽粒灌漿速率和粒重也增加。相反,SD處理顯著降低了Spd/Put 和Spm/Put值,籽粒灌漿速率和粒重也隨之降低。這一結(jié)果說(shuō)明,小麥籽粒內(nèi)源游離Put、Spd和Spm間的平衡對(duì)籽粒灌漿有重要調(diào)控作用,較高的 Spd或Spm與Put的比值,有利于小麥籽粒灌漿。

      4 結(jié)論

      與WW相比,MD處理能顯著提高小麥弱勢(shì)粒灌漿速率和粒重,SD處理則顯著降低籽粒灌漿速率和粒重,這與籽粒中游離Spd和Spm含量有密切關(guān)系。小麥弱籽粒中較低的游離Spd和Spm含量以及較低的Spd/Put和Spm/Put比值是導(dǎo)致籽粒灌漿差、粒重低的重要生理原因。MD處理通過(guò)增加籽粒中Spd和Spm含量以及Spd/Put和Spm/Put值,進(jìn)而促進(jìn)籽粒灌漿,增加粒重。

      References

      [1] Yang W B,Yin Y P,Li,Cai T,Ni Y L,Peng D L,Wang Z L. Interactions between polyamines and ethylene during grain filling in wheat grown under water deficit conditions. Plant Growth Regul,2014,72∶ 189-201

      [2] Shao H B,Chu L Y,Jaleel C A,Manivannan P,Panneerselvam R,Shao M A. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the eco-environment in arid regions of the globe. Crit Rev Biotechnol,2009,29∶ 131-151

      [3] Kobata T,Palta J A,Turner T C. Rate of development of post anthesis water deficits and grain filling of spring wheat. Crop Sci,1992,32∶ 1238-1242

      [4] 楊桂霞,趙廣才,許軻,常旭虹,楊玉雙,馬少康. 灌水及化控對(duì)不同粒色小麥籽粒灌漿及葉綠素含量的影響. 華北農(nóng)學(xué)報(bào),2010,25(4)∶ 152-157 Yang G X,Zhao G C,Xu K,Chang X H,Yang Y S,Ma S K. Effect of irrigation and chemical control on grain filling and chlorophyll content in wheat with different grain colors. Acta Agric Boreali-Sin,2010,25(4)∶ 152-157 (in Chinese with English abstract)

      [5] Yang J C,Zhang J H,Ye Y X,Wang Z Q,Zhu Q S,Liu L J. Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling. Plant Cell Environ,2004,27∶ 1055-1064

      [6] Yang J C,Zhang J H Wang Z Q,Zhu Q S,Liu L J. Water deficit-induced senescence and its relationship to remobilization of prestored carbon in wheat during grain filling. Agron J,2001,93∶ 196-206

      [7] Yang J C,Zhang J C. Grain filling of cereals under soil drying. New Phytol,2006,169∶ 223-236

      [8] 王維,張建華,楊建昌,朱慶森. 適度土壤干旱對(duì)貪青小麥莖鞘貯藏性糖運(yùn)轉(zhuǎn)及籽粒充實(shí)的影響. 作物學(xué)報(bào),2004,30∶1019-1025 Wang W,Zhang J H,Yang J C,Zhu Q S. Effects of controlled soildrought on remobilization of stem-stored carbohydrate and grain filling of wheat with unfavorably-delayed senescence. Acta Agron Sin,2004,30∶ 1019-1025 (in Chinese with English abstract)

      [9] 呂麗華,胡玉昆,李雁鳴,王璞. 灌水方式對(duì)不同小麥品種水分利用效率和產(chǎn)量的影響. 麥類作物學(xué)報(bào). 2007,27∶88-92 Lü L H,Hu Y K,Li Y M,Wang P. Effect of irrigating treatments on water use efficiency and yield of different wheat cultivars. J Triticeae Crops,2007,27∶ 88-92 (in Chinese with English abstract)

      [10] Duan H G,Yuan S,Liu W J,Xi D H,Qing D H,Liang H G,Lin H H. Effects of exogenous spermidine on photosystem II of wheat seedlings under water stress. J Integr Plant Biol,2006,48∶ 920-927

      [11] Yang J C,Zhang J H,Liu K,Wang Z Q,Liu L J. Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytol,2006,171∶ 293-303

      [12] Liu Y E,Liu P. Hormonal changes caused by the Xenia effect during grain filling of normal corn and high-oil corn crosses. Crop Sci,2010,50∶ 215-221

      [13] Tomosugi M,Ichihara K,Saito K. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor. Planta,2006,223∶ 349-358

      [14] Kasukabe Y,He L,Nada K,Misawa S,Ihara I,Tachibana S. Overexpression of spermidine synthase enhances tolerance to multiple environmental stress and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol,2004,45∶ 712-722

      [15] Paschalidis K A,Roubelakis-Angelakis K A. Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age,cell division/expansion,and differentiation. Plant Physiol,2005,138∶ 142-152

      [16] Alcazar R,Marco F,Cuevas J C,Patron M,F(xiàn)errando A,Carrasco P,Tiburcio A F,Altabella T. Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett,2006,28∶ 1867-1876

      [17] Liu J H,Kitashiba H,Wang J,Ban Y,Moriguchi T. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol,2007,24∶ 117-126

      [18] Goyal M,Asthir B. Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress. Plant Growth Regul,2010,60∶ 13-25

      [19] Feng H Y,Wang Z M,Kong F N,Zhang M J,Zhou S L. Roles of carbohydrate supply and ethylene,polyamines in maize kernel set. J Integr Plant Biol,2011,53∶ 388-398

      [20] Yang J C,Cao Y Y,Zhang H,Liu L J,Zhang J H. Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta,2008,228∶ 137-149

      [21] 牛明功,胡炳義,張勝,朱自學(xué),劉懷攀. 小麥種子脫水過(guò)程中多胺水平的變化. 種子,2006,25(11)∶ 61-63 Niu M G,Hu B Y,Zhang S,Zhu Z X,Liu H P. Changes of polyamine during dewatering of wheat seed. Seed,2006,25(11)∶ 61-63 (in Chinese with English abstract)

      [22] Liu H P,Zhu Z X,Liu T X,Li C H. Effect of osmotic stress on the kinds,forms and levels of polyamines in wheat coleoptiles. J Plant Physiol Mol Biol,2006,32∶ 293-299

      [23] 劉楊,溫曉霞,顧丹丹,郭強(qiáng),曾愛,李長(zhǎng)江,廖允成. 多胺對(duì)冬小麥籽粒灌漿的影響及其生理機(jī)制. 作物學(xué)報(bào),2013,39∶ 712-719 Liu Y,Wen X X,Gu D D,Gu Q,Zeng A,Li C J,Liao Y C. Effect of polyamine on grain filling of winter wheat and its physiological mechanism. Acta Agron Sin,2013,39∶ 712-719 (in Chinese with English abstract)

      [24] 朱慶森,曹顯祖,駱亦奇. 水稻籽粒灌漿的生長(zhǎng)分析. 作物學(xué)報(bào),1988,14∶ 182-193 Zhu Q S,Cao X Z,Luo Y Q. Growth analysis on the progress of grain filling in rice. Acta Agron Sin,1988,14∶ 182-193 (in Chinese with English abstract)

      [25] Richards F J. A flexible growth functions for empirical use. J Exp Bot,1959,10∶ 290-300

      [26] Flores H E,Galston A W. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol,1982,69∶ 701-706

      [27] DiTomaso J M,Shaff J E,Kochian L V. Putrescine-induced wounding and its effects on membrane integrity and ion transport processes in roots of interaction seeding. Plant Physiol,1989,90∶ 988-995

      [28] Yang J C,Liu K,Wang Z Q,Du Y,Zhang J H. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. J Integr Plant Biol,2007,49∶ 1445-1454

      [29] Harsh Pal Bias,G A Ravishankar. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell,Tiss Organ Cult,2002,69∶ 1-34

      [30] Bueno M,Lendinez M L,Aparicio C,Cordovilla M P. Effect of salinity on polyamines and ethylene in Atriplex prostrate and Plantago coronopus. Biol Plant,2015,59∶ 596-600

      [31] Rossetto M R M,Vianello F,Saeki M J,Lima G P P. Polyamines in conventional and organic vegetables exposed to exogenous exposed to ethylene. Food Chem,2015,188∶ 218-224

      [32] 談桂露,張耗,付景,王志琴,劉立軍,楊建昌. 超級(jí)稻花后強(qiáng)、弱勢(shì)粒多胺含量變化及其與籽粒灌漿的關(guān)系. 作物學(xué)報(bào),2009,35∶ 2225-2233 Tan G L,Zhang H,F(xiàn)u J,Wang Z Q,Liu L J,Yang J C. Post-anthesis changes in concentrations of ployamines in superior and inferior splikelets and their relation with grain filling of super rice. Acta Agron Sin,2009,35∶ 2225-2233 (in Chinese with English abstract)

      [33] Yang J,Cao Y,Zhang H,Liu L,Zhang J. Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta,2008,228∶ 137-149

      [34] 張木清,陳如凱,余松烈. 多胺對(duì)滲透脅迫下甘蔗愈傷組織誘導(dǎo)和分化的作用. 植物生理學(xué)通訊,1996,32∶ 175-178 Zhang M Q,Chen R K,Yu S L. Effect of polyamines on induction and differentiation of calli from leaves of sugarcane under osmotic stress. Plant Physiol Commun,1996,32∶175-178 (in Chinese)

      [35] 徐仰倉(cāng),王靜,劉華,王根軒. 外源精胺對(duì)小麥幼苗抗氧化酶活性的促進(jìn)作用. 植物生理學(xué)報(bào),2001,27∶ 349-352 Xu Y C,Wang J,Liu H,Wang G X. Promoting effect of ex-ogenous spermine on anti-oxidative enzyme activity in wheat seedlings. Acta Phytophysiol Sin,2001,27∶ 349-352 (in Chinese with English abstract)

      [36] 璟李,胡曉輝,郭世榮,王素平,王鳴華. 外源亞精胺對(duì)根際低氧脅迫下黃瓜幼苗根系多胺含量和抗氧化酶活性的影響. 植物生態(tài)學(xué)報(bào),2006,30∶ 118-123 Li J,Hu X H,Guo S R,Wang S P,Wang M H. Effect of exogenous spermidine on polyamine content and antioxidant enzyme activities in roots of cucumber seedlings under root zone hypoxia stress. Chin J Plant Ecol,2006,30∶ 118-123 (in Chinese with English abstract)

      [37] Maiale S,Sánchez D H,Guirado A,Vidal A,Ruiz O A. Spermine accumulation under salt stress. J Plant Physiol,2004,161∶ 35-42

      [38] Bollmark M,Eliasson L. Ethylene accelerates the breakdown of cytokinin and thereby stimulates rooting in Norway spruce hypocotyl cuttings. Physiol Plant,1990,80∶ 534-540

      [39] Yang J C,Zhang Z J,Wang Z Q,Zhu Q S,Liu L J. Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Ann Bot (London),2002,90∶ 369-377

      [40] Chen T T,Xu Y J,Wang J C,Wang Z Q,Yang J C,Zhang J H. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. J Exp Bot,2013,64∶ 2523-2538

      [41] Bouchereau A,Aziz A,Larher F,Tanguy J M. Polyamines and environmental challenges∶ recent development. Plant Sci,1999,140∶ 103-125

      [42] Capell T,Bassie L,Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA,2004,101∶ 9909-9914

      [43] Hummel I,Amrani A E,Gouesbet G,Hennion F,Couée I. Involvement of polyamines in the interacting effects of low temperature and mineral supply on Pringlea antiscorbutica (Kerguelen cabbage) seedlings. J Exp Bot,2004,55∶ 1125-1134

      [44] Davies P J. The plant hormones∶ their nature,occurrence and function. In∶ Davies P J ed. Plant Hormones,Biosynthesis,Signal Transduction,Action! Dordrecht∶ Kluwer Academic Publishers,2004. pp 1-15

      Free Polyamines in Grains in Response to Soil Drought and Their Relationship with Grain Filling of Wheat

      ZHANG Wei-Yang,XU Yun-Ji,QIAN Xi-Yang,LI Yin-Yin,WANG Zhi-Qin,and YANG Jian-Chang*
      Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology / Co-innovation Center of Modern Production Technology for Grain Crops,Yangzhou University,Yangzhou 225009,China

      Abstract:For understanding the role of endogenous free polyamines on grain filling of wheat under drought stress,we conducted a two-year pot experiment from September 2013 to June 2015 using high-yield wheat cultivars Yangmai 16 and Ningmai 13 grown in different soil moisture conditions. Three treatments,namely?well-watered (WW),moderate soil-drought (MD),and severe soil-drought (SD),were imposed from late-tillering to maturity stage. Grain filling rate and free polyamines levels in both superior and inferior grains were determined. The results showed the consistency between the two cultivars. Compared with WW,MD treatment had significantly increased grain-filling rate and grain weight in inferior grains by 12.5% and 11.8%,respectively;whereas no effect on grain filling in superior grains. In contrast,SD treatment showed negative influences on leaf water potential,photosynthetic rate,and grain filling. Under SD treatment,grain-filling rate and grain weight of superior grains reduced by 10.1% and 9.5% and those of inferior grains reduced by 14.5% and 11.7%,respectively. During grain filling,concentrations of freespermidine (Spd) and spermine (Spm) as well as their ratios to putrescine (Put) in inferior grains increased significantly under MD treatment and decreased significantly under SD treatment. Grain-filling rate and grain weight were positively correlated with concentrations of Spd and Spm,and the ratios of Spd/Put and Spm/Put (P < 0.01),whereas negatively correlated with Put concentration (P < 0.01). Exogenous Spd or Spm resulted in significant increases of grain-filling rate (11.2-25.9%) and grain weight (9.9-17.7%) in inferior grains under the three soil moistures and in superior grains under SD treatment,and had no significant difference in superior grains between WW and MD treatments. The positive effects of exogenous Spd and Spm were eliminated when their synthesis inhibitor,methylglyoxal-bis guanylhydrazone (MGBG),was applied together with Spd and Spm. Both superior and inferior grains showed great decreases of grain-filling rate (20.5-28.8%) and grain weight (16.9-28.5%) after spraying MGBG under the three soil moistures. These results indicate that the responses of polyamines in grain to soil moisture vary with drought strength,and moderate drought stress has a positive effect on grain filling through increasing concentrations of Spd and Spm and the ratios of Spd/Put and Spm/Put in grains.

      Keywords:Wheat;Soil drought;Polyamines;Grain filling;Grain weight

      DOI:10.3724/SP.J.1006.2016.00860

      *通訊作者(

      Corresponding author)∶ 楊建昌,E-mail∶ jcyang@yzu.edu.cn

      收稿日期Received()∶ 2015-09-21;Accepted(接受日期)∶ 2016-03-14;Published online(網(wǎng)絡(luò)出版日期)∶ 2016-03-28.

      猜你喜歡
      粒重小麥
      基于GBS測(cè)序和連鎖分析的藜麥單株粒重QTL定位
      種子(2023年9期)2023-11-22 13:10:56
      主產(chǎn)區(qū)小麥?zhǔn)召?gòu)進(jìn)度過(guò)七成
      小麥測(cè)產(chǎn)迎豐收
      小麥春季化控要掌握關(guān)鍵技術(shù)
      孔令讓的“小麥育種夢(mèng)”
      金橋(2021年10期)2021-11-05 07:23:28
      葉面施肥實(shí)現(xiàn)小麥畝增產(chǎn)83.8千克
      干熱風(fēng)對(duì)冬小麥不同穗粒位粒重的影響效應(yīng)*
      離體穗培養(yǎng)條件下C、N供給對(duì)小麥穗粒數(shù)、粒重及蛋白質(zhì)含量的影響
      哭娃小麥
      玉米自交系京92改良后代單穗粒重的雜種優(yōu)勢(shì)研究
      合山市| 增城市| 遂溪县| 七台河市| 仙游县| 丰原市| 青铜峡市| 金山区| 剑河县| 太康县| 西贡区| 蓬莱市| 剑川县| 巴彦淖尔市| 滦平县| 旌德县| 万宁市| 彩票| 南陵县| 遂溪县| 南和县| 兴隆县| 宁国市| 滕州市| 南丰县| 平度市| 汝阳县| 荆州市| 麻城市| 溆浦县| 汨罗市| 汕尾市| 郁南县| 仙桃市| 鲁甸县| 潼南县| 滨州市| 白城市| 千阳县| 楚雄市| 胶南市|