• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Application of THz Spectroscopy and GA-BP in Methanol Concentration Detection

    2016-07-12 12:49:52TANHongyingZHENGDezhongLIXueXUZhengxia
    光譜學與光譜分析 2016年11期
    關(guān)鍵詞:光譜法赫茲時域

    TAN Hong-ying,ZHENG De-zhong,LI Xue,XU Zheng-xia

    Hebei Provincial Key Laboratory on Measurement Technology and Instrumentation, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China

    The Application of THz Spectroscopy and GA-BP in Methanol Concentration Detection

    TAN Hong-ying,ZHENG De-zhong,LI Xue,XU Zheng-xia

    Hebei Provincial Key Laboratory on Measurement Technology and Instrumentation, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China

    At ambient temperature and atmospheric pressure, making use of a photoconductive-antenna terahertz time-domain spectrograph and a self-designed air chamber, the terahertz time-domain spectroscopy (THz-TDS) technique test of methanol gas in the range of 0.1~3.0 THz shows that the methanol gas has no obvious absorption peaks in the range of 0.1~3.0 THz and has obvious absorption peaks in the range of 0.1~1.0 THz. In order to improve the determination accuracy of the concentration of the methanol gas, the author detected 15 groups of methanol gas with different concentrations on the basis of the relationship between the strengths of 15 characteristic absorption peaks of different locations and the concentration of the methanol gas, and obtained the difference curve of the of the characteristic absorption peaks. Based on the function approximation of BP neural network, the author optimized the initial weights and biases of the BP neural network by using the GA the genetic algorithm, which has higher rate of convergence to prevent from getting into local optimum easily, and constructed the mathematical model with the purpose of predicting the methanol gas concentration. The test results show that the neural network is applicable to predict methanol gas in the volume concentration range of 0.028 3~0.424 6 m3·L-1, the average relative standard deviation of the 2 sets of samples is 1.7%, the average recovery rate is 98%, the error precision of the neural network is 10-1, and correlation coefficient of the measured values and the predicted values is 0.996 77. The test basically achieved ideal predicted results. The research results obtained experimental data of methanol gas in the terahertz frequency band and found that the method of combining terahertz time-domain spectroscopy with GA-BP neural network can effectively detect the volume concentration of methanol gas, and provided a new method for the detection of concentration of methanol gas.

    Spectroscopy; Terahertz time-domain spectroscopy; Genetic algorithm; BP neural network; Methanol

    Introduction

    Terahertz ray is in the far-infrared band, and it can realize nondestructive recognition for its little damage when it penetrates samples. Furthermore, because terahertz ray locates between infrared spectrum and microwave, both the electromagnetic wave amplitude and phase can be acquired when the broadband terahertz pulses are used to irradiate samples. Therefore, in recent years there are many researches scholars home and abroad used terahertz waves to detect organic molecules because the electromagnetic waves of this wave band can obtain the absorption spectrums of pure rotational transitions and vibration-rotation transitions of molecules. For example, John C. Pearson[1]et al. analyzed rotation spectrum in ground-state methanol, J. P. Laib[2]et al. conducted the experiment of terahertz absorption curve on alkanes such as pentane; and in China, for instance, Zhao Hui[3]et al. analyzed characteristics of 1,3-dinitrobenzene in terahertz band, Hou Dibo[4]et al. analyzed the absorption coefficient and refractive index of endosulfan in the range of 0.1~3.0 THz. The research results demonstrate that the terahertz time-domain spectroscopy can be applied to detect organic substances. In terahertz-spectroscopy tests on organic gases, however, owing to the interference by gases such as H2O and CO2, the experimental cannot provide obvious results and relatively big errors[5-6]of predicted gas concentration were existing. Furthermore, based on the literature[7-8], a C—H…O of methanol has a hydrogen bond, and the vibration of the intermolecular hydrogen bonds can easily leads to characteristic absorptions in terahertz band. Based on the reason above, regarding methanol, which is a kind of organic gases, as the experimental subject, this thesis obtains the characteristic absorption spectrum of methanol gas in the range of 0.1~3.0 THz through experiments by using photoconductive-antenna terahertz spectrograph that is produced by the BATOP Company and employs the improved GA-BP neural network to give predictions of methanol gas concentration.

    1 The Experiment Principle and the Modeling Theory

    1.1 The Experiment Principle

    Figure 1 shows the schematic light path diagram of the test system. The femtosecond laser pulse that is emitted by a photoconductive antenna is divided into two beams of light by a beam splitter. One of the beams goes through a chopper of 33 kHz with its repetition frequency being reset to 33kHz, and the beam of light forms a pump beam after reflected by a retroreflector of one-dimensional translation platform. Then the beam passes through a specimen chamber. The other beam of light is called the probe beam, which passes through a light path of the same length as the former beams passes through without moving through the air chamber, and converges together with the pump beam in the detector. The detector can simultaneously acquire the terahertz reflected light that passed through the gas which needs to be measured and the terahertz pulse that did not pass through the chamber, and that causes a difference signal. The relationship of strength and time of the terahertz electric field can be output after disposed by a postpositional signal current amplifier and a lock-in amplifier. After transformed with Fourier, the relationship can provide the relationship of amplitude and phase, and a signal of terahertz time-domain spectroscopy of the sample to be tested can be obtained in the end.

    Fig.1 Principle picture of experimental optical path

    A photoconductive-antenna terahertz spectrograph with its spectral range between 0.1~3.0 THz is chosen as an experimental device. An organic glass cylinder works as an air chamber, which has air guide pipelines on both ends, and the material of the windows on its two sides is polytetrafluoroethylene with the thickness of 2 mm. The air chamber possesses good transparency and low absorption rate[9]to terahertz waves. The appearance of the chamber is shown as Figure 2. In the experiment, the spectrum resolution is equal or lesser than 10 GHz, and the scan times are less than 50.

    Fig.2 Air chamber

    Methanol gas is chosen as the sample while N2is chosen as the reference gas. Introduce methanol gases of 100~1 500 mL respectively into the air chamber with its volume of 3.532 5×10-3m3, and conduct the experiment 15 times in the same conditions. The experiment is conducted at ambient temperature and atmospheric pressure, and uses N2to flush the chamber at the speed of 10 m3·s-1for 5 minutes before every beginning of the experiment.

    2.2 The Modeling Theory

    The BP neural network, which comprises the forward propagation process and the back propagation process[9], has strong abilities of fault-tolerance, adaptive and self-learning[10]. The three-layer BP neural network comprises the input layer, the single hidden layer and the output layer[11]. The structure of the neural network is shown in Figure 3.

    Fig.3 The single hidden layer BP neural network

    In the input layer,

    qk=f(netk)k=1,2,…,l

    (1)

    (2)

    Intheoutputlayer,

    yj=f(netk)j=1,2,…,m

    (3)

    (4)

    Theformulasabovejointlyconstitutethemathematicalmodelofthethree-layerBPperceptron.Nevertheless,theBPneuralnetworkisonlyappropriateforgradientdescentoflocalareas.Therefore,thenetworklacksofcomprehensiveandgetsintoalocaloptimumextremumeasily[12-13].ButtheGAisaglobaloptionalalgorithmthatisbasedontherandomsearchofthetheoryofbiologicalevolution,anditcanoptimizetheinitialweightvaluesandthresholdvaluesoftheBPnetworkintraining.Sothealgorithmcanpreventthenetworkfromgettingintolocalminimumsandensurethenetworktopossessreasonableconvergencespeed[14].

    TheindividualselectionprobabilityoftheGAisshowninthefollowingformula,

    (5)

    Thefiindicates the match value of the individuali, andfiis measured by squared error andE. The expression is,

    E(i)=∑p∑k(Vk-Tk)2

    (6)

    Intheexpression,theiis the chromosome number; thekis the input node number; thepis the learning sample number; theTkis the output signal. Then use the cross operation and the mutation operation to insert a new individual into the species group and calculate the evaluation function. It ends if it find the satisfactory individual otherwise, it is proceed with the cross operation and the mutation operation until find the optimal individual decoding in the species group.

    2 The Experiment Results and the Analysis

    2.1 The Experiment Results

    The experimental curve of methanol gas of 0.028 3 mL·m-3is shown in Figure 4. From Figure 4, the terahertz spectrogram of the methanol in the range of 0~1.0 THz has 15 absorption peaks, the number of which is close to the 17 terahertz peaks that reported in the literature[15]. Substract the reference spectrum of N2and the spectrum of the methanol sample, remove baselines and background noises, and use Lorentz fit to obtain the fitting curve the methanol gas that is shown in Figure 5. Under same experimental conditions, successively input methanol gases in the range of 0.028 3~0.424 6 m3·L-1, observe the results, which show that the locations of the absorption peaks are accordant while the peak heights and the absorption intensities are different. To facilitate comparison, put the fitting curves of absorption peaks in the location 0.245 4 THz of 5 kinds of methanol gases with different concentrations in one diagram. As shown in Figure 6, peak heights are correlative with volume concentrations, and higher concentration of methanol gas has, the higher peak height is, namely absorption efficiency is higher.

    Fig.4 Experimental curve of CH3OH(0.028 3 mL·m-3)

    Fig.5 Experimental fitting of CH3OH(0.028 3 mL·m-3)

    2.2 Analysis and the Identification of the GA-BP Neural Network

    In the BP network, the height of peaks is the input and the concentration data is the output. The first 3 groups of samples are training sets, and the last 2 groups of samples are test sets. In the process of network training, input is the absorption intensities that correspond to 15 characteristic peaks, and the output is a predicted concentration of the sample. Set the number of hidden-layer nodes to 13, the number of maximum training times to 5 000, the learning efficiency to 0.05, the noiseless training error to 10-1.

    Fig.6 THz spectra of methanol at different concentrations

    In the GA, set the number of species groups to 50, the hereditary algebra to 100, and the crossover rate and the mutation rate are 0.95 and 0.005 respectively. After computation, we can get the changing curve of fitness that is shown as Figure 7 and the optimal fitness that is 2.505×10-3.

    Fig.7 Relationship curve of fitness and genetic generation

    After the training, we can obtain the mean square error curve that is shown as Figure 8. The result of linear regression analysis of the network output value and expected value is shown as Figure 9, and the correlation coefficient is 0.996 77, which demonstrates!the degree of fitting of network output value and expected value is high. The two values are basically concord, and the results prove that the network is competent to predict methanol concentrations accurately.

    From Figure 9, the more sample points a location has, the better the approximation effect is. Although the terahertz spectrum test on methanol gases is affected by numerous interfering factors, the GA-BP algorithm can utilize the ability of fast searching in the negative gradient direction of the BP algorithm and the global-optimization characteristic of the GA algorithm, and the GA-BP algorithm is a timesaving and reliable prediction technique with excellent abilities of adaptive, fault-tolerance and self-learning. The algorithm is qualified to deal with multi-factor conditions and data processing with imprecise information in predicting methanol concentrations. Based on GA-BP neural network, the author acquired data results of predicted sample concentrations. The results are shown in Table 1.

    Fig.8 Neural network training mean variance curve

    Fig.9 Linear regression analysis of neural network

    Table 1 Neural network forecast results

    SampleRealconcentration/(L·m-3)EstimatingconcentrationRecovery/%Averagerecovery/%RelativestandarderrorAveragerelativestandarderror10.11320.109897981.881.7020.14150.140099981.521.70

    From Table 1, prediction of test samples by using a well-trained neural network can provide us results that are shown in Table 1. The actual concentrations of the 2 groups are 0.113 2 and 0.141 5 L·m-3. The recoveries are 97% and 99% and the relative standard deviations are 88% and 1.52%. The recovery of 2 groups of forecast samples is 98%, and the average relative standard deviation is 1.70%.

    3 Conclusion

    The thesis acquires the absorption spectrum of methanol gases in spectral range between 0.1~3.0 THz with the experimental methods and 15 apparent absorption peaks. The thesis establishes the GA-BP neural network model according to the pertinence of absorption intensities and concentrations of 5 groups of methanol gases with different concentrations at the same location. The results of predicting are: the average relative standard deviation of the 2 groups of test samples is 1.70%, and the average relative standard deviation is 1.70%. The results of neural network training are: the error precision of measured value and expected value reaches 10-1, and the correlation coefficient is 0.996 77. The test basically achieved ideal predicted results. The method can be used to detect methanol gases in the range of 0.028 3~0.141 5 m3·L-1, and it can provide with new ideas in detecting concentrations of volatile organic contaminants in the environment.

    [1] Pearson J C, Yu S, Drouin B J. Journal of Molecular Spectroscopy, 2012, 280(4): 119.

    [2] Laib J P, Mittleman D M. Journal of Infrared Millimeter & Terahertz Waves, 2010, 31(9): 1015.

    [3] Zhao Hui, Wang Gao, Ma Tiehua. Spectroscopy and Spectral Analysis, 2012, 32(4): 902.

    [4] Hou Dibo, Yue Feiheng, Kang Xusheng, et al. Spectroscopy and Spectral Analysis, 2012, 32(5): 1170.

    [5] Andersen J. Journal of Chemical Physics, 2014, 140(9): 1964.

    [6] Ohno K, Shimoaka T, Akai N, et al. Journal of Chemical Physics, 2008, 112: 7342.

    [7] Laurette S, Treizebre A, Bocquet B. 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Groningen, The Netherlands, 2010. 1964.

    [8] Gan Tingting, Zhang Yujun, Zhao Nanjing, et al. Spectroscopy and Spectral Analysis, 2015, 35(1).

    [9] Xiao Wei Li, Sung Jin Cho, Seok Tae Kim, Journal of Optics Communications, 2014, 315: 147.

    [10] Lei Meng, Li Ming, Wu Nan, et al. Spectroscopy and Spectral Analysis, 2013, 33(1): 65.

    [11] Atlas Khan, Jie Yang, Wei Wu. Journal of Neurocomputing, 2014,128: 113.

    [12] Luo Yong, Chen Shu-wei, He Xiao-juan, et al. International Journal of Computational Intelligence Systems, 2013, 6(6): 1108.

    [13] Wang Jing, Jing Yuanshu, Huang Wenjiang, et al. Spectroscopy and Spectral Analysis, 2015, 35(6): 1649.

    [14] Duan Qianqian, Yang Genke, Pan Changchun, et al. The Scientific World Journal, 2014.

    [15] Ma Chunqian, Xu Xiangdong, Ding Lian, et al. Spectroscopy and Spectral Analysis, 2014, 34(4): 952.

    O433

    A

    太赫茲光譜法和GA-BP在甲醇濃度檢測的應用

    談宏瑩,鄭德忠,李 雪,徐正俠

    燕山大學電氣工程學院河北省測試計量技術(shù)及儀器重點實驗室,河北 秦皇島 066004

    在常溫常壓下,利用光電導天線式太赫茲時域光譜儀和自行設(shè)計的氣室,在0.1~3.0 THz范圍內(nèi)對甲醇氣體進行太赫茲時域光譜測試,測試結(jié)果表明,甲醇氣體在1.0~3.0 THz沒有明顯的吸收峰,但是在0.1~1.0 THz波段存在明顯的吸收峰。為了準確測定甲醇氣體的濃度,根據(jù)甲醇氣體在0.1~1.0 THz范圍內(nèi)的15處不同的位置處的特征吸收峰強度和甲醇氣體濃度的關(guān)系,對十五組不同濃度的甲醇氣體進行檢測,獲得了在特征吸收峰處的差異曲線?;谡`差反向傳播(BP)神經(jīng)網(wǎng)絡的函數(shù)逼近特點,并利用遺傳算法(GA)收斂速度較快,不宜陷入局部極值的優(yōu)點,采用GA優(yōu)化BP神經(jīng)網(wǎng)絡的初始的權(quán)值和閾值,構(gòu)建了以預測甲醇濃度為目的的數(shù)學模型。結(jié)果表明,該網(wǎng)絡模型適用于體積濃度范圍為0.028 3~0.424 6 m3·L-1的甲醇的濃度預測,兩組樣本的平均相對標準誤差為1.7%,平均回收率為98%,神經(jīng)網(wǎng)絡誤差精度10-1,實測值與期望值的相關(guān)系數(shù)為0.996 77,基本達到理想預測結(jié)果。本成果不僅獲得了甲醇氣體在太赫茲頻段的實驗數(shù)據(jù),而且發(fā)現(xiàn)太赫茲時域光譜法和GA-BP神經(jīng)網(wǎng)絡相結(jié)合的方法能有效地檢測甲醇氣體的體積濃度,為檢測甲醇氣體濃度提供新的方法。

    光譜學: 太赫茲時域光譜: 遺傳算法: 誤差反向傳播神經(jīng)網(wǎng)絡: 甲醇

    2015-09-08,

    2016-01-20)

    Foundation item: Young Scientistis Fund of the National Natural Science Foundation of China (51408528)

    10.3964/j.issn.1000-0593(2016)11-3752-06

    Received: 2015-09-08; accepted: 2016-01-20

    Biography: TAN Hong-ying, (1979—), female, PhD, Yanshan University e-mail: sumeertree@163.com

    猜你喜歡
    光譜法赫茲時域
    基于時域信號的三電平逆變器復合故障診斷
    基于雙頻聯(lián)合處理的太赫茲InISAR成像方法
    雷達學報(2018年1期)2018-04-04 01:56:56
    太赫茲低頻段隨機粗糙金屬板散射特性研究
    雷達學報(2018年1期)2018-04-04 01:56:48
    太赫茲信息超材料與超表面
    雷達學報(2018年1期)2018-04-04 01:56:44
    直讀光譜法測定熱作模具鋼中硫的不確定度評定
    基于極大似然準則與滾動時域估計的自適應UKF算法
    紅外光譜法研究TPU/SEBS的相容性
    中國塑料(2016年10期)2016-06-27 06:35:22
    原子熒光光譜法測定麥味地黃丸中砷和汞
    中成藥(2016年8期)2016-05-17 06:08:22
    基于時域逆濾波的寬帶脈沖聲生成技術(shù)
    原子熒光光譜法測定銅精礦中鉍的不確定度
    久久精品久久久久久久性| 精品国产乱码久久久久久男人| 午夜免费成人在线视频| 成人国语在线视频| 亚洲精品自拍成人| 国产在线视频一区二区| 国产深夜福利视频在线观看| 自线自在国产av| 国产精品熟女久久久久浪| 午夜91福利影院| 久久热在线av| e午夜精品久久久久久久| 亚洲av成人精品一二三区| 久久性视频一级片| 91国产中文字幕| 1024视频免费在线观看| 国产成人影院久久av| 日本a在线网址| 天天操日日干夜夜撸| 最近中文字幕2019免费版| 免费高清在线观看日韩| 黄色视频不卡| 黑丝袜美女国产一区| 汤姆久久久久久久影院中文字幕| 欧美中文综合在线视频| 国产一卡二卡三卡精品| 丝袜美腿诱惑在线| 少妇人妻 视频| 91老司机精品| 精品国产超薄肉色丝袜足j| 久久狼人影院| 亚洲一码二码三码区别大吗| 日本vs欧美在线观看视频| 丰满迷人的少妇在线观看| 国产精品久久久久久精品电影小说| 亚洲少妇的诱惑av| 老汉色av国产亚洲站长工具| 汤姆久久久久久久影院中文字幕| 中国国产av一级| 亚洲欧美中文字幕日韩二区| 天天影视国产精品| 国产伦人伦偷精品视频| 国产精品亚洲av一区麻豆| 啦啦啦在线免费观看视频4| 国产老妇伦熟女老妇高清| 狠狠精品人妻久久久久久综合| 91麻豆精品激情在线观看国产 | 欧美日韩av久久| 精品人妻1区二区| 女性生殖器流出的白浆| 女警被强在线播放| 丝袜美足系列| 女人高潮潮喷娇喘18禁视频| 男女之事视频高清在线观看 | 国产日韩欧美视频二区| 亚洲av美国av| 日本色播在线视频| 午夜日韩欧美国产| videos熟女内射| avwww免费| 18禁国产床啪视频网站| 色精品久久人妻99蜜桃| 亚洲国产中文字幕在线视频| 欧美日韩国产mv在线观看视频| 精品久久久精品久久久| 不卡av一区二区三区| 亚洲精品中文字幕在线视频| 久久久国产欧美日韩av| 亚洲欧美日韩另类电影网站| 亚洲成国产人片在线观看| 日韩中文字幕视频在线看片| 成人影院久久| 777米奇影视久久| 婷婷色麻豆天堂久久| 国产成人精品久久久久久| 亚洲天堂av无毛| 国产精品一国产av| 婷婷色综合大香蕉| 少妇人妻久久综合中文| 性少妇av在线| 中文精品一卡2卡3卡4更新| 老司机午夜十八禁免费视频| 黑丝袜美女国产一区| 亚洲人成77777在线视频| 国产有黄有色有爽视频| 久久精品国产亚洲av高清一级| 国产成人精品无人区| 亚洲色图 男人天堂 中文字幕| 国产高清不卡午夜福利| 色精品久久人妻99蜜桃| 国产精品秋霞免费鲁丝片| 大码成人一级视频| 好男人视频免费观看在线| 男人爽女人下面视频在线观看| 亚洲国产欧美日韩在线播放| 精品少妇黑人巨大在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品国产一区二区精华液| 日日夜夜操网爽| 国产亚洲一区二区精品| 看免费成人av毛片| 在线av久久热| 777久久人妻少妇嫩草av网站| 国产精品香港三级国产av潘金莲 | 天天操日日干夜夜撸| 久久久久视频综合| 亚洲自偷自拍图片 自拍| 男人添女人高潮全过程视频| 亚洲中文av在线| 日韩伦理黄色片| 久久99热这里只频精品6学生| 热re99久久精品国产66热6| 赤兔流量卡办理| 亚洲av欧美aⅴ国产| 欧美中文综合在线视频| 婷婷色av中文字幕| 看免费成人av毛片| e午夜精品久久久久久久| 一级毛片我不卡| 丝袜喷水一区| a级毛片在线看网站| 多毛熟女@视频| 日韩一区二区三区影片| 人人妻人人爽人人添夜夜欢视频| 婷婷色综合大香蕉| 超碰成人久久| 欧美黑人精品巨大| 国产精品 国内视频| 国产激情久久老熟女| 九色亚洲精品在线播放| 精品视频人人做人人爽| 男女边摸边吃奶| 亚洲精品国产色婷婷电影| 侵犯人妻中文字幕一二三四区| 久久久欧美国产精品| 超色免费av| 色视频在线一区二区三区| 777久久人妻少妇嫩草av网站| 91成人精品电影| 看免费成人av毛片| 大码成人一级视频| 久久99热这里只频精品6学生| 夜夜骑夜夜射夜夜干| 欧美成人精品欧美一级黄| av欧美777| 中文字幕另类日韩欧美亚洲嫩草| 久9热在线精品视频| 视频区图区小说| 777米奇影视久久| 一区二区三区四区激情视频| 午夜91福利影院| 一边摸一边做爽爽视频免费| 成人国产一区最新在线观看 | e午夜精品久久久久久久| 久久热在线av| 美女国产高潮福利片在线看| 国产高清视频在线播放一区 | 亚洲国产看品久久| 19禁男女啪啪无遮挡网站| 国产成人精品久久久久久| 大码成人一级视频| 中文字幕亚洲精品专区| 你懂的网址亚洲精品在线观看| 首页视频小说图片口味搜索 | 99国产精品一区二区蜜桃av | 夜夜骑夜夜射夜夜干| 亚洲 国产 在线| 免费看不卡的av| 大话2 男鬼变身卡| av天堂久久9| 亚洲欧美日韩另类电影网站| 久久国产精品大桥未久av| 可以免费在线观看a视频的电影网站| 97精品久久久久久久久久精品| 亚洲久久久国产精品| 免费在线观看黄色视频的| 亚洲国产欧美网| 婷婷色av中文字幕| 国产午夜精品一二区理论片| 男人添女人高潮全过程视频| 亚洲国产精品999| 久久女婷五月综合色啪小说| 1024视频免费在线观看| 成人国语在线视频| 青春草亚洲视频在线观看| 亚洲情色 制服丝袜| 王馨瑶露胸无遮挡在线观看| 天堂俺去俺来也www色官网| 亚洲成人免费av在线播放| 岛国毛片在线播放| 久久精品成人免费网站| av片东京热男人的天堂| 国产一区二区 视频在线| 曰老女人黄片| 亚洲国产毛片av蜜桃av| 精品久久久久久久毛片微露脸 | 成年人免费黄色播放视频| 国产有黄有色有爽视频| 久久久久精品国产欧美久久久 | 好男人电影高清在线观看| 夫妻性生交免费视频一级片| 激情五月婷婷亚洲| 91九色精品人成在线观看| 一边摸一边做爽爽视频免费| 搡老岳熟女国产| 免费观看人在逋| 大片电影免费在线观看免费| 亚洲欧美激情在线| 欧美日韩综合久久久久久| 成人国产av品久久久| 女人高潮潮喷娇喘18禁视频| 亚洲黑人精品在线| 亚洲少妇的诱惑av| 国产不卡av网站在线观看| 欧美少妇被猛烈插入视频| 一级a爱视频在线免费观看| av在线app专区| 国产成人精品在线电影| 在线观看国产h片| 日韩制服丝袜自拍偷拍| 一级,二级,三级黄色视频| av一本久久久久| 婷婷色av中文字幕| 久久久亚洲精品成人影院| av在线播放精品| 天天躁夜夜躁狠狠躁躁| 又大又爽又粗| 亚洲欧美日韩高清在线视频 | 中文字幕色久视频| 超碰成人久久| av有码第一页| 在线观看国产h片| 精品人妻1区二区| 男女边摸边吃奶| 黄色毛片三级朝国网站| 国产av一区二区精品久久| 欧美亚洲 丝袜 人妻 在线| 亚洲情色 制服丝袜| 精品人妻1区二区| 日韩av不卡免费在线播放| 中文字幕av电影在线播放| 欧美黑人精品巨大| 免费不卡黄色视频| 精品国产超薄肉色丝袜足j| 黄频高清免费视频| 91精品国产国语对白视频| 精品一区二区三卡| 欧美日韩福利视频一区二区| 国产av国产精品国产| 中文字幕制服av| 国产在线免费精品| 国产精品欧美亚洲77777| 欧美+亚洲+日韩+国产| 欧美在线一区亚洲| 免费在线观看日本一区| 国产xxxxx性猛交| 亚洲天堂av无毛| 老司机影院成人| 久久精品熟女亚洲av麻豆精品| 日韩伦理黄色片| 免费在线观看视频国产中文字幕亚洲 | 国产精品熟女久久久久浪| 精品一区二区三卡| a级毛片在线看网站| 一本色道久久久久久精品综合| 咕卡用的链子| 丁香六月天网| 狠狠婷婷综合久久久久久88av| 国产一区亚洲一区在线观看| 欧美成人精品欧美一级黄| 亚洲黑人精品在线| 婷婷色综合www| 美女中出高潮动态图| 99香蕉大伊视频| 丝袜脚勾引网站| 岛国毛片在线播放| 2018国产大陆天天弄谢| 一边摸一边做爽爽视频免费| 男女之事视频高清在线观看 | 秋霞在线观看毛片| 看免费成人av毛片| 成年女人毛片免费观看观看9 | 亚洲av欧美aⅴ国产| 国产成人精品久久二区二区免费| 亚洲,欧美,日韩| 亚洲国产中文字幕在线视频| 精品亚洲成国产av| 久久九九热精品免费| 夜夜骑夜夜射夜夜干| 日韩精品免费视频一区二区三区| 国产欧美日韩综合在线一区二区| 国产无遮挡羞羞视频在线观看| 纵有疾风起免费观看全集完整版| 最近手机中文字幕大全| 99精国产麻豆久久婷婷| 国产成人免费观看mmmm| 精品福利观看| 人体艺术视频欧美日本| 免费在线观看日本一区| 中文字幕人妻丝袜一区二区| 久久综合国产亚洲精品| 蜜桃在线观看..| 高清av免费在线| 亚洲图色成人| 日韩伦理黄色片| 日韩 亚洲 欧美在线| 十八禁网站网址无遮挡| 欧美成狂野欧美在线观看| 多毛熟女@视频| 少妇 在线观看| 国产主播在线观看一区二区 | av国产久精品久网站免费入址| 午夜精品国产一区二区电影| av有码第一页| 日韩一卡2卡3卡4卡2021年| 2021少妇久久久久久久久久久| 国产主播在线观看一区二区 | 久久久久国产精品人妻一区二区| 亚洲视频免费观看视频| 欧美日韩福利视频一区二区| 热re99久久国产66热| 欧美精品高潮呻吟av久久| av网站免费在线观看视频| 国产亚洲午夜精品一区二区久久| 少妇 在线观看| 赤兔流量卡办理| 麻豆av在线久日| 成人影院久久| 老司机靠b影院| 大陆偷拍与自拍| 成人国产av品久久久| 桃花免费在线播放| 好男人电影高清在线观看| 免费人妻精品一区二区三区视频| 久久精品久久精品一区二区三区| 在线观看一区二区三区激情| 日韩中文字幕视频在线看片| 巨乳人妻的诱惑在线观看| 国产成人91sexporn| 热re99久久精品国产66热6| 母亲3免费完整高清在线观看| 老司机深夜福利视频在线观看 | e午夜精品久久久久久久| 欧美成人精品欧美一级黄| 香蕉国产在线看| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲中文av在线| 我的亚洲天堂| 91精品三级在线观看| 久久热在线av| 国产伦理片在线播放av一区| 我的亚洲天堂| 亚洲精品美女久久av网站| 精品少妇久久久久久888优播| 蜜桃在线观看..| 久久这里只有精品19| a 毛片基地| 看十八女毛片水多多多| 欧美国产精品一级二级三级| www.自偷自拍.com| 久9热在线精品视频| 免费日韩欧美在线观看| 99re6热这里在线精品视频| 亚洲国产精品一区三区| 国产不卡av网站在线观看| 国产视频首页在线观看| 国产91精品成人一区二区三区 | 久久这里只有精品19| 女人被躁到高潮嗷嗷叫费观| 操出白浆在线播放| 欧美 日韩 精品 国产| 亚洲五月婷婷丁香| 高清欧美精品videossex| 午夜福利,免费看| 国产激情久久老熟女| avwww免费| 成人三级做爰电影| 亚洲欧美色中文字幕在线| 女人精品久久久久毛片| 欧美97在线视频| 啦啦啦在线观看免费高清www| 久久久国产欧美日韩av| av又黄又爽大尺度在线免费看| 午夜影院在线不卡| 欧美黄色淫秽网站| 天天影视国产精品| 亚洲精品国产一区二区精华液| 久久精品久久久久久久性| 一级,二级,三级黄色视频| 日韩 亚洲 欧美在线| 免费看十八禁软件| 久久久久久免费高清国产稀缺| 国产精品一国产av| 18禁观看日本| 欧美人与性动交α欧美精品济南到| 999精品在线视频| 91国产中文字幕| 亚洲五月色婷婷综合| 欧美xxⅹ黑人| 天天躁日日躁夜夜躁夜夜| 成人免费观看视频高清| 男女边摸边吃奶| 亚洲欧美一区二区三区久久| 免费观看av网站的网址| 欧美精品一区二区免费开放| 国产老妇伦熟女老妇高清| 交换朋友夫妻互换小说| 一区二区三区四区激情视频| 国产亚洲欧美在线一区二区| 欧美精品av麻豆av| 十八禁网站网址无遮挡| 丰满迷人的少妇在线观看| 精品一品国产午夜福利视频| 亚洲精品国产一区二区精华液| 日本五十路高清| 国产成人免费观看mmmm| 亚洲精品国产av蜜桃| 国产一区二区在线观看av| 天堂俺去俺来也www色官网| 久久鲁丝午夜福利片| av在线播放精品| 亚洲,欧美,日韩| 色综合欧美亚洲国产小说| 一区二区日韩欧美中文字幕| 国产一区二区在线观看av| 一个人免费看片子| 日韩人妻精品一区2区三区| 人人妻人人添人人爽欧美一区卜| 亚洲精品一区蜜桃| 国产97色在线日韩免费| 另类精品久久| 国产精品久久久久久精品古装| 国产日韩欧美亚洲二区| 母亲3免费完整高清在线观看| 亚洲欧美中文字幕日韩二区| 香蕉丝袜av| 天堂8中文在线网| 亚洲男人天堂网一区| www.熟女人妻精品国产| 日韩欧美一区视频在线观看| 啦啦啦在线观看免费高清www| 成年动漫av网址| 日韩一卡2卡3卡4卡2021年| a 毛片基地| 国产精品久久久人人做人人爽| 亚洲天堂av无毛| 日韩免费高清中文字幕av| 波多野结衣av一区二区av| 国产色视频综合| 韩国高清视频一区二区三区| 亚洲国产欧美一区二区综合| 午夜两性在线视频| 国产午夜精品一二区理论片| 亚洲精品日韩在线中文字幕| 久久人人爽人人片av| 1024视频免费在线观看| 免费在线观看视频国产中文字幕亚洲 | 国产国语露脸激情在线看| 欧美日韩黄片免| 日本一区二区免费在线视频| 国产精品久久久久久精品古装| 99热国产这里只有精品6| 另类精品久久| 亚洲精品日韩在线中文字幕| 飞空精品影院首页| 最近最新中文字幕大全免费视频 | 在线观看一区二区三区激情| 国产精品一区二区在线观看99| 久久久久久亚洲精品国产蜜桃av| 咕卡用的链子| 国产在线视频一区二区| 日本wwww免费看| 青青草视频在线视频观看| 亚洲精品一卡2卡三卡4卡5卡 | 18禁黄网站禁片午夜丰满| 亚洲国产精品成人久久小说| 久久亚洲国产成人精品v| 久久久精品94久久精品| 久久久久久人人人人人| 亚洲色图 男人天堂 中文字幕| 一区二区三区四区激情视频| 91精品三级在线观看| 亚洲欧美成人综合另类久久久| 每晚都被弄得嗷嗷叫到高潮| 国产精品 国内视频| 国产成人免费无遮挡视频| 美国免费a级毛片| 亚洲av综合色区一区| 成人亚洲欧美一区二区av| 国产成人欧美在线观看 | 国产老妇伦熟女老妇高清| 精品一品国产午夜福利视频| 国产成人av教育| 男女午夜视频在线观看| 又大又爽又粗| 久久久久网色| 人人妻人人爽人人添夜夜欢视频| 中国国产av一级| 在线观看一区二区三区激情| 亚洲精品国产一区二区精华液| 国产精品一区二区精品视频观看| 老鸭窝网址在线观看| 制服人妻中文乱码| 国产精品麻豆人妻色哟哟久久| 日韩av在线免费看完整版不卡| 亚洲一区中文字幕在线| 九草在线视频观看| 亚洲伊人久久精品综合| av线在线观看网站| 最新的欧美精品一区二区| 热re99久久国产66热| 1024香蕉在线观看| 欧美精品av麻豆av| 极品少妇高潮喷水抽搐| 午夜av观看不卡| 美女视频免费永久观看网站| 老司机影院毛片| 亚洲国产精品一区三区| 国产无遮挡羞羞视频在线观看| 成年人黄色毛片网站| 男男h啪啪无遮挡| 人妻 亚洲 视频| 日韩大码丰满熟妇| a 毛片基地| 久久鲁丝午夜福利片| 国产亚洲欧美精品永久| 性色av一级| 嫁个100分男人电影在线观看 | 亚洲人成网站在线观看播放| 中国国产av一级| 亚洲国产毛片av蜜桃av| 一区二区三区精品91| a 毛片基地| 日韩av在线免费看完整版不卡| 免费在线观看视频国产中文字幕亚洲 | 国产三级黄色录像| 亚洲成国产人片在线观看| 水蜜桃什么品种好| 亚洲激情五月婷婷啪啪| 国产高清videossex| 久久久国产欧美日韩av| 精品国产乱码久久久久久小说| 国产在视频线精品| 久久精品国产亚洲av涩爱| 性少妇av在线| 999久久久国产精品视频| 日韩人妻精品一区2区三区| av国产久精品久网站免费入址| 成年动漫av网址| 激情五月婷婷亚洲| 午夜影院在线不卡| 亚洲国产av新网站| av线在线观看网站| 操出白浆在线播放| 色婷婷久久久亚洲欧美| 亚洲av日韩精品久久久久久密 | 久久九九热精品免费| 国精品久久久久久国模美| 人妻一区二区av| 中文精品一卡2卡3卡4更新| 成年av动漫网址| 1024视频免费在线观看| 午夜两性在线视频| 纵有疾风起免费观看全集完整版| 美女福利国产在线| 国产伦理片在线播放av一区| 亚洲精品久久午夜乱码| 国产真人三级小视频在线观看| 久9热在线精品视频| 国产在视频线精品| 国产一级毛片在线| 日韩av在线免费看完整版不卡| 在线 av 中文字幕| 肉色欧美久久久久久久蜜桃| 国产成人av教育| 国产精品免费视频内射| 黑丝袜美女国产一区| 黑人欧美特级aaaaaa片| 热99久久久久精品小说推荐| 制服人妻中文乱码| 久久狼人影院| 国产成人免费观看mmmm| 日韩视频在线欧美| 精品国产一区二区久久| 欧美日韩黄片免| 精品国产乱码久久久久久小说| 精品福利观看| 少妇被粗大的猛进出69影院| 高潮久久久久久久久久久不卡| 青春草视频在线免费观看| 国产精品秋霞免费鲁丝片| 国产精品免费视频内射| 欧美激情高清一区二区三区| 久久精品久久精品一区二区三区| 欧美黑人精品巨大| 中文字幕最新亚洲高清| 国产精品香港三级国产av潘金莲 | 超碰成人久久| 国产福利在线免费观看视频| 一级a爱视频在线免费观看| 成人手机av| 伊人久久大香线蕉亚洲五| 色婷婷av一区二区三区视频| tube8黄色片| 国产色视频综合| 每晚都被弄得嗷嗷叫到高潮| 国产成人91sexporn| tube8黄色片| 国产欧美日韩综合在线一区二区| 国产爽快片一区二区三区| 黄频高清免费视频| 国产精品熟女久久久久浪| 欧美97在线视频| 亚洲国产av影院在线观看| 精品少妇一区二区三区视频日本电影|