• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Application of THz Spectroscopy and GA-BP in Methanol Concentration Detection

    2016-07-12 12:49:52TANHongyingZHENGDezhongLIXueXUZhengxia
    光譜學與光譜分析 2016年11期
    關(guān)鍵詞:光譜法赫茲時域

    TAN Hong-ying,ZHENG De-zhong,LI Xue,XU Zheng-xia

    Hebei Provincial Key Laboratory on Measurement Technology and Instrumentation, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China

    The Application of THz Spectroscopy and GA-BP in Methanol Concentration Detection

    TAN Hong-ying,ZHENG De-zhong,LI Xue,XU Zheng-xia

    Hebei Provincial Key Laboratory on Measurement Technology and Instrumentation, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China

    At ambient temperature and atmospheric pressure, making use of a photoconductive-antenna terahertz time-domain spectrograph and a self-designed air chamber, the terahertz time-domain spectroscopy (THz-TDS) technique test of methanol gas in the range of 0.1~3.0 THz shows that the methanol gas has no obvious absorption peaks in the range of 0.1~3.0 THz and has obvious absorption peaks in the range of 0.1~1.0 THz. In order to improve the determination accuracy of the concentration of the methanol gas, the author detected 15 groups of methanol gas with different concentrations on the basis of the relationship between the strengths of 15 characteristic absorption peaks of different locations and the concentration of the methanol gas, and obtained the difference curve of the of the characteristic absorption peaks. Based on the function approximation of BP neural network, the author optimized the initial weights and biases of the BP neural network by using the GA the genetic algorithm, which has higher rate of convergence to prevent from getting into local optimum easily, and constructed the mathematical model with the purpose of predicting the methanol gas concentration. The test results show that the neural network is applicable to predict methanol gas in the volume concentration range of 0.028 3~0.424 6 m3·L-1, the average relative standard deviation of the 2 sets of samples is 1.7%, the average recovery rate is 98%, the error precision of the neural network is 10-1, and correlation coefficient of the measured values and the predicted values is 0.996 77. The test basically achieved ideal predicted results. The research results obtained experimental data of methanol gas in the terahertz frequency band and found that the method of combining terahertz time-domain spectroscopy with GA-BP neural network can effectively detect the volume concentration of methanol gas, and provided a new method for the detection of concentration of methanol gas.

    Spectroscopy; Terahertz time-domain spectroscopy; Genetic algorithm; BP neural network; Methanol

    Introduction

    Terahertz ray is in the far-infrared band, and it can realize nondestructive recognition for its little damage when it penetrates samples. Furthermore, because terahertz ray locates between infrared spectrum and microwave, both the electromagnetic wave amplitude and phase can be acquired when the broadband terahertz pulses are used to irradiate samples. Therefore, in recent years there are many researches scholars home and abroad used terahertz waves to detect organic molecules because the electromagnetic waves of this wave band can obtain the absorption spectrums of pure rotational transitions and vibration-rotation transitions of molecules. For example, John C. Pearson[1]et al. analyzed rotation spectrum in ground-state methanol, J. P. Laib[2]et al. conducted the experiment of terahertz absorption curve on alkanes such as pentane; and in China, for instance, Zhao Hui[3]et al. analyzed characteristics of 1,3-dinitrobenzene in terahertz band, Hou Dibo[4]et al. analyzed the absorption coefficient and refractive index of endosulfan in the range of 0.1~3.0 THz. The research results demonstrate that the terahertz time-domain spectroscopy can be applied to detect organic substances. In terahertz-spectroscopy tests on organic gases, however, owing to the interference by gases such as H2O and CO2, the experimental cannot provide obvious results and relatively big errors[5-6]of predicted gas concentration were existing. Furthermore, based on the literature[7-8], a C—H…O of methanol has a hydrogen bond, and the vibration of the intermolecular hydrogen bonds can easily leads to characteristic absorptions in terahertz band. Based on the reason above, regarding methanol, which is a kind of organic gases, as the experimental subject, this thesis obtains the characteristic absorption spectrum of methanol gas in the range of 0.1~3.0 THz through experiments by using photoconductive-antenna terahertz spectrograph that is produced by the BATOP Company and employs the improved GA-BP neural network to give predictions of methanol gas concentration.

    1 The Experiment Principle and the Modeling Theory

    1.1 The Experiment Principle

    Figure 1 shows the schematic light path diagram of the test system. The femtosecond laser pulse that is emitted by a photoconductive antenna is divided into two beams of light by a beam splitter. One of the beams goes through a chopper of 33 kHz with its repetition frequency being reset to 33kHz, and the beam of light forms a pump beam after reflected by a retroreflector of one-dimensional translation platform. Then the beam passes through a specimen chamber. The other beam of light is called the probe beam, which passes through a light path of the same length as the former beams passes through without moving through the air chamber, and converges together with the pump beam in the detector. The detector can simultaneously acquire the terahertz reflected light that passed through the gas which needs to be measured and the terahertz pulse that did not pass through the chamber, and that causes a difference signal. The relationship of strength and time of the terahertz electric field can be output after disposed by a postpositional signal current amplifier and a lock-in amplifier. After transformed with Fourier, the relationship can provide the relationship of amplitude and phase, and a signal of terahertz time-domain spectroscopy of the sample to be tested can be obtained in the end.

    Fig.1 Principle picture of experimental optical path

    A photoconductive-antenna terahertz spectrograph with its spectral range between 0.1~3.0 THz is chosen as an experimental device. An organic glass cylinder works as an air chamber, which has air guide pipelines on both ends, and the material of the windows on its two sides is polytetrafluoroethylene with the thickness of 2 mm. The air chamber possesses good transparency and low absorption rate[9]to terahertz waves. The appearance of the chamber is shown as Figure 2. In the experiment, the spectrum resolution is equal or lesser than 10 GHz, and the scan times are less than 50.

    Fig.2 Air chamber

    Methanol gas is chosen as the sample while N2is chosen as the reference gas. Introduce methanol gases of 100~1 500 mL respectively into the air chamber with its volume of 3.532 5×10-3m3, and conduct the experiment 15 times in the same conditions. The experiment is conducted at ambient temperature and atmospheric pressure, and uses N2to flush the chamber at the speed of 10 m3·s-1for 5 minutes before every beginning of the experiment.

    2.2 The Modeling Theory

    The BP neural network, which comprises the forward propagation process and the back propagation process[9], has strong abilities of fault-tolerance, adaptive and self-learning[10]. The three-layer BP neural network comprises the input layer, the single hidden layer and the output layer[11]. The structure of the neural network is shown in Figure 3.

    Fig.3 The single hidden layer BP neural network

    In the input layer,

    qk=f(netk)k=1,2,…,l

    (1)

    (2)

    Intheoutputlayer,

    yj=f(netk)j=1,2,…,m

    (3)

    (4)

    Theformulasabovejointlyconstitutethemathematicalmodelofthethree-layerBPperceptron.Nevertheless,theBPneuralnetworkisonlyappropriateforgradientdescentoflocalareas.Therefore,thenetworklacksofcomprehensiveandgetsintoalocaloptimumextremumeasily[12-13].ButtheGAisaglobaloptionalalgorithmthatisbasedontherandomsearchofthetheoryofbiologicalevolution,anditcanoptimizetheinitialweightvaluesandthresholdvaluesoftheBPnetworkintraining.Sothealgorithmcanpreventthenetworkfromgettingintolocalminimumsandensurethenetworktopossessreasonableconvergencespeed[14].

    TheindividualselectionprobabilityoftheGAisshowninthefollowingformula,

    (5)

    Thefiindicates the match value of the individuali, andfiis measured by squared error andE. The expression is,

    E(i)=∑p∑k(Vk-Tk)2

    (6)

    Intheexpression,theiis the chromosome number; thekis the input node number; thepis the learning sample number; theTkis the output signal. Then use the cross operation and the mutation operation to insert a new individual into the species group and calculate the evaluation function. It ends if it find the satisfactory individual otherwise, it is proceed with the cross operation and the mutation operation until find the optimal individual decoding in the species group.

    2 The Experiment Results and the Analysis

    2.1 The Experiment Results

    The experimental curve of methanol gas of 0.028 3 mL·m-3is shown in Figure 4. From Figure 4, the terahertz spectrogram of the methanol in the range of 0~1.0 THz has 15 absorption peaks, the number of which is close to the 17 terahertz peaks that reported in the literature[15]. Substract the reference spectrum of N2and the spectrum of the methanol sample, remove baselines and background noises, and use Lorentz fit to obtain the fitting curve the methanol gas that is shown in Figure 5. Under same experimental conditions, successively input methanol gases in the range of 0.028 3~0.424 6 m3·L-1, observe the results, which show that the locations of the absorption peaks are accordant while the peak heights and the absorption intensities are different. To facilitate comparison, put the fitting curves of absorption peaks in the location 0.245 4 THz of 5 kinds of methanol gases with different concentrations in one diagram. As shown in Figure 6, peak heights are correlative with volume concentrations, and higher concentration of methanol gas has, the higher peak height is, namely absorption efficiency is higher.

    Fig.4 Experimental curve of CH3OH(0.028 3 mL·m-3)

    Fig.5 Experimental fitting of CH3OH(0.028 3 mL·m-3)

    2.2 Analysis and the Identification of the GA-BP Neural Network

    In the BP network, the height of peaks is the input and the concentration data is the output. The first 3 groups of samples are training sets, and the last 2 groups of samples are test sets. In the process of network training, input is the absorption intensities that correspond to 15 characteristic peaks, and the output is a predicted concentration of the sample. Set the number of hidden-layer nodes to 13, the number of maximum training times to 5 000, the learning efficiency to 0.05, the noiseless training error to 10-1.

    Fig.6 THz spectra of methanol at different concentrations

    In the GA, set the number of species groups to 50, the hereditary algebra to 100, and the crossover rate and the mutation rate are 0.95 and 0.005 respectively. After computation, we can get the changing curve of fitness that is shown as Figure 7 and the optimal fitness that is 2.505×10-3.

    Fig.7 Relationship curve of fitness and genetic generation

    After the training, we can obtain the mean square error curve that is shown as Figure 8. The result of linear regression analysis of the network output value and expected value is shown as Figure 9, and the correlation coefficient is 0.996 77, which demonstrates!the degree of fitting of network output value and expected value is high. The two values are basically concord, and the results prove that the network is competent to predict methanol concentrations accurately.

    From Figure 9, the more sample points a location has, the better the approximation effect is. Although the terahertz spectrum test on methanol gases is affected by numerous interfering factors, the GA-BP algorithm can utilize the ability of fast searching in the negative gradient direction of the BP algorithm and the global-optimization characteristic of the GA algorithm, and the GA-BP algorithm is a timesaving and reliable prediction technique with excellent abilities of adaptive, fault-tolerance and self-learning. The algorithm is qualified to deal with multi-factor conditions and data processing with imprecise information in predicting methanol concentrations. Based on GA-BP neural network, the author acquired data results of predicted sample concentrations. The results are shown in Table 1.

    Fig.8 Neural network training mean variance curve

    Fig.9 Linear regression analysis of neural network

    Table 1 Neural network forecast results

    SampleRealconcentration/(L·m-3)EstimatingconcentrationRecovery/%Averagerecovery/%RelativestandarderrorAveragerelativestandarderror10.11320.109897981.881.7020.14150.140099981.521.70

    From Table 1, prediction of test samples by using a well-trained neural network can provide us results that are shown in Table 1. The actual concentrations of the 2 groups are 0.113 2 and 0.141 5 L·m-3. The recoveries are 97% and 99% and the relative standard deviations are 88% and 1.52%. The recovery of 2 groups of forecast samples is 98%, and the average relative standard deviation is 1.70%.

    3 Conclusion

    The thesis acquires the absorption spectrum of methanol gases in spectral range between 0.1~3.0 THz with the experimental methods and 15 apparent absorption peaks. The thesis establishes the GA-BP neural network model according to the pertinence of absorption intensities and concentrations of 5 groups of methanol gases with different concentrations at the same location. The results of predicting are: the average relative standard deviation of the 2 groups of test samples is 1.70%, and the average relative standard deviation is 1.70%. The results of neural network training are: the error precision of measured value and expected value reaches 10-1, and the correlation coefficient is 0.996 77. The test basically achieved ideal predicted results. The method can be used to detect methanol gases in the range of 0.028 3~0.141 5 m3·L-1, and it can provide with new ideas in detecting concentrations of volatile organic contaminants in the environment.

    [1] Pearson J C, Yu S, Drouin B J. Journal of Molecular Spectroscopy, 2012, 280(4): 119.

    [2] Laib J P, Mittleman D M. Journal of Infrared Millimeter & Terahertz Waves, 2010, 31(9): 1015.

    [3] Zhao Hui, Wang Gao, Ma Tiehua. Spectroscopy and Spectral Analysis, 2012, 32(4): 902.

    [4] Hou Dibo, Yue Feiheng, Kang Xusheng, et al. Spectroscopy and Spectral Analysis, 2012, 32(5): 1170.

    [5] Andersen J. Journal of Chemical Physics, 2014, 140(9): 1964.

    [6] Ohno K, Shimoaka T, Akai N, et al. Journal of Chemical Physics, 2008, 112: 7342.

    [7] Laurette S, Treizebre A, Bocquet B. 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Groningen, The Netherlands, 2010. 1964.

    [8] Gan Tingting, Zhang Yujun, Zhao Nanjing, et al. Spectroscopy and Spectral Analysis, 2015, 35(1).

    [9] Xiao Wei Li, Sung Jin Cho, Seok Tae Kim, Journal of Optics Communications, 2014, 315: 147.

    [10] Lei Meng, Li Ming, Wu Nan, et al. Spectroscopy and Spectral Analysis, 2013, 33(1): 65.

    [11] Atlas Khan, Jie Yang, Wei Wu. Journal of Neurocomputing, 2014,128: 113.

    [12] Luo Yong, Chen Shu-wei, He Xiao-juan, et al. International Journal of Computational Intelligence Systems, 2013, 6(6): 1108.

    [13] Wang Jing, Jing Yuanshu, Huang Wenjiang, et al. Spectroscopy and Spectral Analysis, 2015, 35(6): 1649.

    [14] Duan Qianqian, Yang Genke, Pan Changchun, et al. The Scientific World Journal, 2014.

    [15] Ma Chunqian, Xu Xiangdong, Ding Lian, et al. Spectroscopy and Spectral Analysis, 2014, 34(4): 952.

    O433

    A

    太赫茲光譜法和GA-BP在甲醇濃度檢測的應用

    談宏瑩,鄭德忠,李 雪,徐正俠

    燕山大學電氣工程學院河北省測試計量技術(shù)及儀器重點實驗室,河北 秦皇島 066004

    在常溫常壓下,利用光電導天線式太赫茲時域光譜儀和自行設(shè)計的氣室,在0.1~3.0 THz范圍內(nèi)對甲醇氣體進行太赫茲時域光譜測試,測試結(jié)果表明,甲醇氣體在1.0~3.0 THz沒有明顯的吸收峰,但是在0.1~1.0 THz波段存在明顯的吸收峰。為了準確測定甲醇氣體的濃度,根據(jù)甲醇氣體在0.1~1.0 THz范圍內(nèi)的15處不同的位置處的特征吸收峰強度和甲醇氣體濃度的關(guān)系,對十五組不同濃度的甲醇氣體進行檢測,獲得了在特征吸收峰處的差異曲線?;谡`差反向傳播(BP)神經(jīng)網(wǎng)絡的函數(shù)逼近特點,并利用遺傳算法(GA)收斂速度較快,不宜陷入局部極值的優(yōu)點,采用GA優(yōu)化BP神經(jīng)網(wǎng)絡的初始的權(quán)值和閾值,構(gòu)建了以預測甲醇濃度為目的的數(shù)學模型。結(jié)果表明,該網(wǎng)絡模型適用于體積濃度范圍為0.028 3~0.424 6 m3·L-1的甲醇的濃度預測,兩組樣本的平均相對標準誤差為1.7%,平均回收率為98%,神經(jīng)網(wǎng)絡誤差精度10-1,實測值與期望值的相關(guān)系數(shù)為0.996 77,基本達到理想預測結(jié)果。本成果不僅獲得了甲醇氣體在太赫茲頻段的實驗數(shù)據(jù),而且發(fā)現(xiàn)太赫茲時域光譜法和GA-BP神經(jīng)網(wǎng)絡相結(jié)合的方法能有效地檢測甲醇氣體的體積濃度,為檢測甲醇氣體濃度提供新的方法。

    光譜學: 太赫茲時域光譜: 遺傳算法: 誤差反向傳播神經(jīng)網(wǎng)絡: 甲醇

    2015-09-08,

    2016-01-20)

    Foundation item: Young Scientistis Fund of the National Natural Science Foundation of China (51408528)

    10.3964/j.issn.1000-0593(2016)11-3752-06

    Received: 2015-09-08; accepted: 2016-01-20

    Biography: TAN Hong-ying, (1979—), female, PhD, Yanshan University e-mail: sumeertree@163.com

    猜你喜歡
    光譜法赫茲時域
    基于時域信號的三電平逆變器復合故障診斷
    基于雙頻聯(lián)合處理的太赫茲InISAR成像方法
    雷達學報(2018年1期)2018-04-04 01:56:56
    太赫茲低頻段隨機粗糙金屬板散射特性研究
    雷達學報(2018年1期)2018-04-04 01:56:48
    太赫茲信息超材料與超表面
    雷達學報(2018年1期)2018-04-04 01:56:44
    直讀光譜法測定熱作模具鋼中硫的不確定度評定
    基于極大似然準則與滾動時域估計的自適應UKF算法
    紅外光譜法研究TPU/SEBS的相容性
    中國塑料(2016年10期)2016-06-27 06:35:22
    原子熒光光譜法測定麥味地黃丸中砷和汞
    中成藥(2016年8期)2016-05-17 06:08:22
    基于時域逆濾波的寬帶脈沖聲生成技術(shù)
    原子熒光光譜法測定銅精礦中鉍的不確定度
    国产不卡av网站在线观看| 国产1区2区3区精品| 汤姆久久久久久久影院中文字幕| 日韩成人伦理影院| 如何舔出高潮| 99九九在线精品视频| 桃花免费在线播放| 男女边摸边吃奶| 国产毛片在线视频| 婷婷色综合www| 国产精品无大码| 不卡视频在线观看欧美| 97在线人人人人妻| 国产亚洲一区二区精品| 性色avwww在线观看| 亚洲精品av麻豆狂野| 中文天堂在线官网| 飞空精品影院首页| 亚洲欧美清纯卡通| 搡老乐熟女国产| 精品一区二区免费观看| 波野结衣二区三区在线| 欧美+日韩+精品| 少妇的逼水好多| 久热这里只有精品99| 97在线人人人人妻| 黄色 视频免费看| 一二三四在线观看免费中文在 | 国产免费一级a男人的天堂| 久久精品国产a三级三级三级| 毛片一级片免费看久久久久| 国产精品无大码| 久久精品aⅴ一区二区三区四区 | 久久精品久久久久久噜噜老黄| 亚洲成人av在线免费| 91精品三级在线观看| 成年女人在线观看亚洲视频| 国产乱人偷精品视频| 国产精品久久久久久久久免| 少妇熟女欧美另类| 日日爽夜夜爽网站| 欧美bdsm另类| 亚洲成色77777| 日本黄色日本黄色录像| 亚洲图色成人| 国精品久久久久久国模美| 国产一区二区在线观看日韩| 夫妻性生交免费视频一级片| 亚洲丝袜综合中文字幕| 中文字幕免费在线视频6| 色婷婷久久久亚洲欧美| 一区二区三区四区激情视频| xxx大片免费视频| 黄片无遮挡物在线观看| av网站免费在线观看视频| 看免费成人av毛片| 亚洲精品第二区| av卡一久久| 成人漫画全彩无遮挡| 有码 亚洲区| 中文精品一卡2卡3卡4更新| 最黄视频免费看| 日本与韩国留学比较| 蜜桃在线观看..| 超碰97精品在线观看| av国产久精品久网站免费入址| 色视频在线一区二区三区| 久久人人爽人人爽人人片va| 纵有疾风起免费观看全集完整版| 最近中文字幕2019免费版| 久久鲁丝午夜福利片| 尾随美女入室| 精品国产一区二区三区四区第35| 美女中出高潮动态图| 丁香六月天网| 十八禁高潮呻吟视频| 天天影视国产精品| 91精品国产国语对白视频| 日本午夜av视频| 高清不卡的av网站| 亚洲第一区二区三区不卡| 亚洲第一av免费看| 日韩 亚洲 欧美在线| 国语对白做爰xxxⅹ性视频网站| 国产高清国产精品国产三级| 美女xxoo啪啪120秒动态图| 国产亚洲欧美精品永久| 午夜激情久久久久久久| 在线观看三级黄色| 十分钟在线观看高清视频www| 中国三级夫妇交换| 日本与韩国留学比较| 亚洲av日韩在线播放| 久久久欧美国产精品| 久久久久久久大尺度免费视频| 9191精品国产免费久久| 亚洲内射少妇av| 亚洲国产精品专区欧美| 一区在线观看完整版| 日韩av不卡免费在线播放| 天堂中文最新版在线下载| 捣出白浆h1v1| 久热这里只有精品99| 一区二区日韩欧美中文字幕 | 香蕉精品网在线| 91精品伊人久久大香线蕉| 欧美性感艳星| 成人漫画全彩无遮挡| 亚洲欧洲精品一区二区精品久久久 | 国产日韩欧美在线精品| a级毛片黄视频| av在线播放精品| 视频中文字幕在线观看| xxxhd国产人妻xxx| 国产男女内射视频| 亚洲综合色惰| 2018国产大陆天天弄谢| 日本猛色少妇xxxxx猛交久久| 一级毛片电影观看| 亚洲欧洲日产国产| 国产视频首页在线观看| av一本久久久久| 黑人欧美特级aaaaaa片| 免费观看无遮挡的男女| 国产极品粉嫩免费观看在线| 永久免费av网站大全| 不卡视频在线观看欧美| 亚洲av在线观看美女高潮| www日本在线高清视频| 黑人欧美特级aaaaaa片| 99久久中文字幕三级久久日本| 亚洲内射少妇av| 久久久国产一区二区| 久久久久国产网址| 亚洲欧美一区二区三区黑人 | 久久精品国产亚洲av涩爱| 天堂中文最新版在线下载| 最新的欧美精品一区二区| 亚洲精品色激情综合| 国产亚洲欧美精品永久| 视频中文字幕在线观看| 色视频在线一区二区三区| 91久久精品国产一区二区三区| av国产精品久久久久影院| 欧美日韩av久久| tube8黄色片| 91精品三级在线观看| 成年美女黄网站色视频大全免费| av在线观看视频网站免费| 99香蕉大伊视频| 99香蕉大伊视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧洲国产日韩| 高清黄色对白视频在线免费看| 欧美xxⅹ黑人| 亚洲精品aⅴ在线观看| 亚洲熟女精品中文字幕| xxx大片免费视频| 日韩大片免费观看网站| 人人妻人人澡人人看| av片东京热男人的天堂| 最新中文字幕久久久久| 少妇人妻 视频| 久久久久精品久久久久真实原创| av在线观看视频网站免费| 男女边摸边吃奶| 91国产中文字幕| 亚洲精品日韩在线中文字幕| 亚洲精品乱码久久久久久按摩| 26uuu在线亚洲综合色| av片东京热男人的天堂| 成人黄色视频免费在线看| 视频在线观看一区二区三区| 侵犯人妻中文字幕一二三四区| 一级黄片播放器| 国产无遮挡羞羞视频在线观看| 亚洲精品456在线播放app| 亚洲成人一二三区av| 蜜桃国产av成人99| 亚洲av综合色区一区| 建设人人有责人人尽责人人享有的| 久久人人爽人人片av| 曰老女人黄片| 国产成人a∨麻豆精品| 男人爽女人下面视频在线观看| 久久久精品区二区三区| 高清在线视频一区二区三区| 久久精品熟女亚洲av麻豆精品| 亚洲欧美成人精品一区二区| 欧美日本中文国产一区发布| 大陆偷拍与自拍| 亚洲av欧美aⅴ国产| 日韩一本色道免费dvd| 男女免费视频国产| 亚洲熟女精品中文字幕| 精品午夜福利在线看| 又粗又硬又长又爽又黄的视频| 国产亚洲欧美精品永久| 激情五月婷婷亚洲| 久久青草综合色| 日韩免费高清中文字幕av| 亚洲高清免费不卡视频| 人人澡人人妻人| 美女xxoo啪啪120秒动态图| av卡一久久| 韩国高清视频一区二区三区| 久久久久精品性色| 99久久精品国产国产毛片| 免费日韩欧美在线观看| 水蜜桃什么品种好| 最近的中文字幕免费完整| 国产精品国产三级国产专区5o| 蜜桃国产av成人99| 国产在线一区二区三区精| 少妇精品久久久久久久| 日韩欧美一区视频在线观看| a级片在线免费高清观看视频| 精品人妻熟女毛片av久久网站| 久久久久久久久久久免费av| 中文字幕人妻丝袜制服| 天天操日日干夜夜撸| av播播在线观看一区| 久久精品国产自在天天线| 女人精品久久久久毛片| 久久久国产一区二区| 色视频在线一区二区三区| 久久97久久精品| 成年人午夜在线观看视频| 香蕉精品网在线| 亚洲人成网站在线观看播放| 永久网站在线| 亚洲色图 男人天堂 中文字幕 | 一级毛片电影观看| 热99国产精品久久久久久7| 蜜桃国产av成人99| 男人添女人高潮全过程视频| 精品酒店卫生间| 一级,二级,三级黄色视频| 91aial.com中文字幕在线观看| 精品午夜福利在线看| 嫩草影院入口| 免费看av在线观看网站| 国产精品麻豆人妻色哟哟久久| 亚洲国产毛片av蜜桃av| 久久久久久久国产电影| 国产精品国产三级国产专区5o| 免费黄网站久久成人精品| tube8黄色片| 不卡视频在线观看欧美| 亚洲精品国产av成人精品| 亚洲av在线观看美女高潮| av在线老鸭窝| 秋霞伦理黄片| 久久久久国产网址| 国产精品 国内视频| 制服诱惑二区| 亚洲精品日韩在线中文字幕| 亚洲精品视频女| 久久人妻熟女aⅴ| 母亲3免费完整高清在线观看 | 欧美成人午夜免费资源| 国产毛片在线视频| 99视频精品全部免费 在线| 永久免费av网站大全| 精品国产乱码久久久久久小说| 制服人妻中文乱码| 欧美精品亚洲一区二区| 天天躁夜夜躁狠狠躁躁| 国产亚洲av片在线观看秒播厂| 色5月婷婷丁香| a级毛片在线看网站| 少妇人妻久久综合中文| 亚洲欧美清纯卡通| 久久人人97超碰香蕉20202| 欧美激情国产日韩精品一区| 亚洲精品视频女| 精品国产一区二区久久| 91精品伊人久久大香线蕉| 少妇人妻精品综合一区二区| 日本欧美视频一区| 精品熟女少妇av免费看| 汤姆久久久久久久影院中文字幕| 美女国产视频在线观看| 免费av中文字幕在线| 亚洲国产最新在线播放| 狠狠精品人妻久久久久久综合| 色5月婷婷丁香| 欧美精品人与动牲交sv欧美| 最黄视频免费看| 91久久精品国产一区二区三区| 丰满少妇做爰视频| 老熟女久久久| 久久久国产精品麻豆| 久久久亚洲精品成人影院| 久久久久精品久久久久真实原创| 欧美少妇被猛烈插入视频| 18禁在线无遮挡免费观看视频| 午夜激情av网站| 精品人妻一区二区三区麻豆| 久久av网站| 交换朋友夫妻互换小说| 一区二区av电影网| 久久ye,这里只有精品| 日韩免费高清中文字幕av| 飞空精品影院首页| 国产午夜精品一二区理论片| 国产有黄有色有爽视频| av免费观看日本| av一本久久久久| 国产精品久久久久成人av| 在线亚洲精品国产二区图片欧美| 午夜视频国产福利| 欧美日韩综合久久久久久| 国产精品偷伦视频观看了| 久久久国产一区二区| 亚洲综合精品二区| 日本91视频免费播放| 美女脱内裤让男人舔精品视频| 最新中文字幕久久久久| 亚洲av福利一区| 久久人人爽av亚洲精品天堂| 成人二区视频| 欧美+日韩+精品| 波多野结衣一区麻豆| 黄片播放在线免费| 亚洲国产欧美日韩在线播放| 日韩熟女老妇一区二区性免费视频| 爱豆传媒免费全集在线观看| 一级毛片我不卡| 亚洲精品一区蜜桃| 日韩成人伦理影院| 男人操女人黄网站| 黄色毛片三级朝国网站| 黑人巨大精品欧美一区二区蜜桃 | 母亲3免费完整高清在线观看 | 在线精品无人区一区二区三| 国产黄色免费在线视频| 欧美少妇被猛烈插入视频| 成年人午夜在线观看视频| 精品亚洲乱码少妇综合久久| 亚洲,欧美,日韩| a级毛片在线看网站| 91久久精品国产一区二区三区| 亚洲欧美日韩另类电影网站| 中国美白少妇内射xxxbb| a级毛片在线看网站| 2018国产大陆天天弄谢| 在线 av 中文字幕| 天天影视国产精品| 亚洲一码二码三码区别大吗| 一边亲一边摸免费视频| 久久久久网色| 伊人久久国产一区二区| 免费观看av网站的网址| 亚洲综合色网址| 51国产日韩欧美| 国产主播在线观看一区二区| 亚洲一区二区三区欧美精品| 国产高清videossex| 热re99久久精品国产66热6| 亚洲av成人av| 精品无人区乱码1区二区| 久久青草综合色| 中文亚洲av片在线观看爽 | 操出白浆在线播放| 黄色a级毛片大全视频| 久久久精品区二区三区| 欧美亚洲 丝袜 人妻 在线| 午夜成年电影在线免费观看| a级毛片黄视频| 一a级毛片在线观看| 久久久久久久精品吃奶| 成人三级做爰电影| 欧美日韩瑟瑟在线播放| 免费少妇av软件| 久久99一区二区三区| 成人三级做爰电影| 在线观看免费视频日本深夜| 午夜福利,免费看| 大香蕉久久成人网| 久久ye,这里只有精品| 久久婷婷成人综合色麻豆| 90打野战视频偷拍视频| 女人被狂操c到高潮| 国产精品电影一区二区三区 | а√天堂www在线а√下载 | 男女午夜视频在线观看| 国产有黄有色有爽视频| 夫妻午夜视频| 国产精品久久久久久精品古装| 国产精品九九99| 黄色片一级片一级黄色片| 欧美国产精品va在线观看不卡| 欧美在线黄色| a在线观看视频网站| 国产成人免费无遮挡视频| 色在线成人网| 久久精品国产亚洲av高清一级| 极品人妻少妇av视频| 免费一级毛片在线播放高清视频 | 亚洲九九香蕉| 亚洲欧美激情综合另类| av国产精品久久久久影院| 嫩草影视91久久| 日韩视频一区二区在线观看| 老司机午夜福利在线观看视频| 水蜜桃什么品种好| 欧美日本中文国产一区发布| 日本一区二区免费在线视频| 黑人操中国人逼视频| 久久久国产欧美日韩av| 久久精品国产亚洲av高清一级| 高清av免费在线| 亚洲精品成人av观看孕妇| 欧美老熟妇乱子伦牲交| 国产欧美日韩一区二区精品| 国产1区2区3区精品| 新久久久久国产一级毛片| 少妇裸体淫交视频免费看高清 | 一级毛片高清免费大全| 精品人妻1区二区| 天堂中文最新版在线下载| 欧美中文综合在线视频| 黄网站色视频无遮挡免费观看| www.999成人在线观看| 午夜老司机福利片| 又黄又粗又硬又大视频| 久久亚洲精品不卡| 国产精品偷伦视频观看了| 中文字幕av电影在线播放| 男女午夜视频在线观看| 天天操日日干夜夜撸| 久久人妻av系列| 男人舔女人的私密视频| 午夜亚洲福利在线播放| svipshipincom国产片| 亚洲精品中文字幕在线视频| 露出奶头的视频| 欧美日韩亚洲国产一区二区在线观看 | 女性被躁到高潮视频| 久久狼人影院| 视频在线观看一区二区三区| 久久 成人 亚洲| 国产精品香港三级国产av潘金莲| 18在线观看网站| 国产成人精品久久二区二区免费| 国产蜜桃级精品一区二区三区 | 老司机亚洲免费影院| 中文字幕人妻丝袜一区二区| 老司机午夜福利在线观看视频| 黄网站色视频无遮挡免费观看| 极品教师在线免费播放| 国产在线精品亚洲第一网站| 国产精品久久久av美女十八| 大香蕉久久成人网| 99国产精品99久久久久| 亚洲视频免费观看视频| bbb黄色大片| 久热爱精品视频在线9| 精品久久久久久久毛片微露脸| 高清在线国产一区| 欧美+亚洲+日韩+国产| 性色av乱码一区二区三区2| 91大片在线观看| 国产深夜福利视频在线观看| 免费人成视频x8x8入口观看| 久久国产亚洲av麻豆专区| 久久精品熟女亚洲av麻豆精品| 18禁黄网站禁片午夜丰满| 男男h啪啪无遮挡| 国产一区二区三区视频了| 51午夜福利影视在线观看| 国产精品一区二区免费欧美| av天堂在线播放| 久久九九热精品免费| 国产精品乱码一区二三区的特点 | 三级毛片av免费| 老熟妇乱子伦视频在线观看| 日韩熟女老妇一区二区性免费视频| 成人影院久久| 无遮挡黄片免费观看| 久久九九热精品免费| av电影中文网址| 宅男免费午夜| 亚洲免费av在线视频| 国产亚洲av高清不卡| 久99久视频精品免费| 免费日韩欧美在线观看| 99re6热这里在线精品视频| 国产单亲对白刺激| 不卡一级毛片| 在线看a的网站| 国精品久久久久久国模美| 精品一区二区三卡| 亚洲五月婷婷丁香| 国产成+人综合+亚洲专区| 在线免费观看的www视频| 女人被狂操c到高潮| 国产精品久久久久久精品古装| 女人久久www免费人成看片| 欧美人与性动交α欧美精品济南到| 国产免费男女视频| 精品国产一区二区三区四区第35| 亚洲七黄色美女视频| 啦啦啦视频在线资源免费观看| 在线永久观看黄色视频| 老司机午夜十八禁免费视频| 天堂俺去俺来也www色官网| 香蕉丝袜av| 99久久99久久久精品蜜桃| 啦啦啦 在线观看视频| 搡老乐熟女国产| 亚洲国产看品久久| 国产97色在线日韩免费| 国产高清视频在线播放一区| 国产精品久久视频播放| 亚洲一区二区三区不卡视频| 91精品三级在线观看| 亚洲精品国产色婷婷电影| 国产不卡一卡二| 久久草成人影院| 国产精品影院久久| 亚洲一卡2卡3卡4卡5卡精品中文| 又紧又爽又黄一区二区| 精品免费久久久久久久清纯 | 欧美黑人精品巨大| 亚洲一区高清亚洲精品| 99久久人妻综合| 国产熟女午夜一区二区三区| 一区二区三区激情视频| 最近最新免费中文字幕在线| 国产精品乱码一区二三区的特点 | 欧美久久黑人一区二区| 免费少妇av软件| 国产麻豆69| 三上悠亚av全集在线观看| 91国产中文字幕| 一二三四在线观看免费中文在| 亚洲七黄色美女视频| 搡老熟女国产l中国老女人| 亚洲成av片中文字幕在线观看| 免费久久久久久久精品成人欧美视频| 18禁观看日本| 欧美色视频一区免费| 黑人巨大精品欧美一区二区mp4| 18禁美女被吸乳视频| 欧美乱码精品一区二区三区| 成人免费观看视频高清| 人人澡人人妻人| 另类亚洲欧美激情| 自拍欧美九色日韩亚洲蝌蚪91| 精品人妻1区二区| 操出白浆在线播放| 精品一区二区三区视频在线观看免费 | 久久ye,这里只有精品| 午夜福利欧美成人| 欧美丝袜亚洲另类 | 国产成人影院久久av| 亚洲色图av天堂| а√天堂www在线а√下载 | 亚洲熟妇熟女久久| 夜夜躁狠狠躁天天躁| 久久中文看片网| 男女高潮啪啪啪动态图| 日韩精品免费视频一区二区三区| 一级片'在线观看视频| 欧美在线黄色| 99久久综合精品五月天人人| tube8黄色片| 少妇的丰满在线观看| 搡老岳熟女国产| 色综合欧美亚洲国产小说| 国产高清激情床上av| 久久热在线av| 国产午夜精品久久久久久| 精品卡一卡二卡四卡免费| 国产免费现黄频在线看| 美女福利国产在线| 成人亚洲精品一区在线观看| 9191精品国产免费久久| 国内毛片毛片毛片毛片毛片| 女人爽到高潮嗷嗷叫在线视频| 国产精品自产拍在线观看55亚洲 | 宅男免费午夜| 欧美大码av| 亚洲av美国av| 亚洲在线自拍视频| 宅男免费午夜| 黄片播放在线免费| 男女床上黄色一级片免费看| 夜夜躁狠狠躁天天躁| 亚洲久久久国产精品| 我的亚洲天堂| 亚洲成av片中文字幕在线观看| 亚洲情色 制服丝袜| 国产精品二区激情视频| 我的亚洲天堂| 亚洲精品粉嫩美女一区| 看黄色毛片网站| 精品久久久久久久毛片微露脸| 亚洲中文日韩欧美视频| 久久久国产精品麻豆| 亚洲国产欧美网| 精品国产一区二区三区久久久樱花| 欧美日韩国产mv在线观看视频| 色94色欧美一区二区| 韩国av一区二区三区四区| 91av网站免费观看| 岛国在线观看网站| 亚洲av欧美aⅴ国产| 又紧又爽又黄一区二区| 超色免费av| 国产无遮挡羞羞视频在线观看| 久9热在线精品视频| 999久久久国产精品视频|