• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Empirical Mode Decomposition and Independent Component Analysis for the Interpretation of Rock-Mineral Spectrum

    2016-07-12 12:45:32WUFangJIANGXipingYUHanwenXIULiancun
    光譜學(xué)與光譜分析 2016年5期
    關(guān)鍵詞:巖礦數(shù)目南京

    WU Fang, JIANG Xi-ping*, YU Han-wen, XIU Lian-cun

    1.College of Science,Nanjing Agricultural University,Nanjing 210095,China 2.Nanjing Artillery College,Nanjing 211132,China 3.Nanjing Institute of Geology and Mineral Resource,Nanjing 210016,China

    Application of Empirical Mode Decomposition and Independent Component Analysis for the Interpretation of Rock-Mineral Spectrum

    WU Fang1, JIANG Xi-ping1*, YU Han-wen2, XIU Lian-cun3

    1.College of Science,Nanjing Agricultural University,Nanjing 210095,China 2.Nanjing Artillery College,Nanjing 211132,China 3.Nanjing Institute of Geology and Mineral Resource,Nanjing 210016,China

    Rock-mineral spectrum is a mixture of varied mineral spectra, through which we can obtain information about its components quickly and conveniently without any damage to the sample.Empirical mode decomposition (EMD) cannot directly decompose source signals from information of the mixture, and independent component analysis (ICA) requires the number of mixed signals to be no less than the number of source signals.Combining these two methods, mixed signals can be decomposed using EMD method to obtain intrinsic mode function (IMF), while certain IMFs together with mixed signals can be used as input data matrix of ICA to obtain the source signals.This method overcomes the shortcomings of IMF and ICA.Studies have shown that, the higher content of source signals contained in the mixed signal, the better estimation can be obtained through EMD and ICA.The number of IMFs that participate in ICA decomposition determines the number of approximation of source signals.The accuracy of source signal estimation increases with the correlation coefficient between IMF and mixed signals.By applying this method to quantitative analysis of rock-mineral spectrum, information of the component minerals in rock-mineral can be obtained, which improves the efficiency of component analysis in detecting rock-minerals outside.

    Empirical mode decomposition; Independent component analysis; Rock-mineral spectrum

    Introduction

    Rock-mineral spectra obtained from spectrum scanner features high spectral resolution and abundant information.Since rock-mineral has a variety of components, its rock-mineral spectrum is a mixture of various mineral spectra.The rock-mineral spectrum is known as “mixed pixel”, while the mineral spectra are called end-members.Mixed pixels are very common in all types of remote sensing hyper-spectral images[1]and synthetic aperture radar images[2].Decomposition of mixed pixels is fundamental to the interpretation of mixed pixel information.It is of great importance in resource investigations and geological prospecting to find fast and accurate decomposition methods to obtain the types and contents of the minerals according to the features of rock-mineral spectrum[3].

    In practice, most of measurement signals are mixed signals from various source signals, which are non-stationary and nonlinear.Empirical Mode Decomposition (EMD) and Independent Component Analysis (ICA) are two analytical techniques for non-stationary and nonlinear signals proposed in recent years.Some researchers already applied the two methods to extract information of source signals from measurement signals.Chen Jin-yang applied ICA method in array signal processing[4].He et al.[5]applied ICA method to classify spectral remote sensing images.Badaoui et al.[6]applied cyclic Wiener filtering and ICA methods, which separated the mechanical noise and combustion noise of an internal-combustion engine.Zhang et al.[7]proposed a noise source identification method based on EMD and ICA techniques, which can identify the sources of combustion noises and mechanical noises of a diesel engine.

    However, EMD cannot directly decompose the measurement signals.And ICA method requires that the number of measurement signals should be no less than the number of source signals.Thus, merely one of the two methods cannot interpret the measurement signals.To remedy this, EMD method can be applied in adaptive decomposition of measurement signals, which obtains the Intrinsic Mode Functions (IMFs).The IMFs can be combined with the measurement signals as the input data matrix of ICA, which gives enough input signals and overcomes the limitation of ICA’s requirement.This helps to obtain information of source signals by separating measurement signals when the type and number of the source signals remain unknown.The rock-mineral spectrum in this research is a measurement signal, and hereby we use EMD and ICA techniques in decomposing rock-mineral spectrum to find out the types and contents of the minerals that compose the rock-mineral.

    1 Interpretation model of mixed signal

    The components in rock-mineral belong to compact mixture, and the nonlinear mixing characteristics of rock-mineral spectrum are distinct.Through the Hapke radiation transformation model, the spectral reflectivity can be transformed to single scattering albedo.Similarly, we can transfer the nonlinear mixed model to linear mixed model[8].In practice, rock-mineral spectra separation adopts the spectral linear mixed model.

    Suppose thatx=[x1,x2,…,xM] is the 1×Mspectral matrix of rock-mineral mixed pixels.The number of bands is Mand the number of end-members in the rock-mineral mixed pixel isN.si=[si1,si2,…,siM],i=1,2,…,N, thenS=[s1,s2,…,sN]Tis the end-member spectral matrix with dimensionN×M.The linear mixing model of spectra is

    x=aS

    (1)

    2.1 The basic idea of EMD

    EMD is first introduced by Huang in 1998[9].Based on the local time scale of signals, EMD can separate one time series signal into several IMFs and the residue.The IMFs range from low frequency to high frequency with the mean of zero.The steps of EMD method are listed as follows,

    (1) Calculate all the maxima and minima of signalx(t).

    (2) Use cubic spline interpolation method to calculate the upper envelopexmax(t) and lower envelopexmin(t) of the signalx(t).Calculate the mean of upper and lower envelopesm(t)=[xmax(t)-xmin(t)]/2.

    (3) Calculateh(t)=x(t)-m(t).Confirm thath(t) satisfies the two conditions of IMF listed above.Otherwise, considerh(t) as the signal and repeat step (1) to (3).

    (4) Ifh(t) satisfies the two conditions of IMF, we leth(t)=h1(t)=IMF1.

    (5) Letd(t)=x(t)-h1(t), taked(t) as the new signal and repeat from step (1).Then we will have IMF2, IMF3, …, IMFn.

    (6) When IMFnsatisfies the stop condition, such as IMFnbeing monotonic, we have IMFn=rn(t).Then IMF1, IMF2,…,IMFn-1is the IMFs separated from the signal andrn(t) is the residue.

    Due to its prominent second order filter network feature, EMD may compromise for the intermittent components of the measurement signals[10].In this case, the result of EMD will produce model mixing.When this happens, an intrinsic mode function may contain multiple frequency components, even a false component, which lowers the accuracy of EMD.In practice, we can choose the helpful IMFs for the subsequent ICA decomposition through correlation analysis.

    1.2 The basic idea of ICA

    ICA is a signal processing method developed along with blind source separation method, the concept of which was first proposed by French scholars Juneii and Herault in 1983[11].When the source signals contained in a measurement signal are mutually independent and there is at most one Gaussian signal, we can perform blind source separation on measurement signals acquired by more than one sensor.The source signals hidden in the measurement signals can be obtained.

    The linear mixing model isx=aS.xis the signal detected whileSis the source signal andais the mixing matrix.ICA process is listed as follows,

    (1) Choose the objective function.

    (2) Maximize or minimize the objective function by numerical calculation.

    (3) Find the linear transformation matrixW(also known as separation matrix).Lety=Wx, whereW maximizes the non-Gaussian of each component ofy.Thenywould be an estimate ofS.

    It has to be noted that the order and amplitude ofy’s components is uncertain.Besides, ICA requires that the number of detected signals is no less than the number of source signals.

    1.3 EMD-ICA information interpretation model

    EMD can break down measurement signals into the sum of a series of IMFs from high to low frequency and a residue.As the frequency component of source signals in measurement signals is not single, we cannot identify source signals through EMD alone.On the other hand, although ICA can decompose measurement signals into a series of independent components, the number of independent components obtained is limited by the number of measurement signals.The combination of EMD and ICA leads to source signals from one measurement.The EMD-ICA information interpretation model includes the following steps:

    (1) decompose the mixed pixels using EMD method for multiple IMFs.

    (2) select useful IMFs to make a data matrix together with mixed pixels.

    (3) perform ICA on the data matrix to obtain independent components.

    (4) analyze independent components.

    2 Information interpretation of rock-mineral spectrum

    ing matrix represents the contents of the spectra of Malachite, Microcline and Pyrophyllite in the mixed pixel.For example, in MMP205030, the content of Malachite is 20%, Microcline is 50%, and Pyrophyllite is 30%.

    Fig.1 Spectra of malachite, microcline and pyrophyllite

    Fig.2 Spectra of mixed pixels

    In this study, we apply EMD-ICA information interpretation model to process the three mixed pixels respectively, compare and analyze the results of decomposing different mixed pixels.When the number of end-members in a mixed pixel is unknown, we find a method to choose appropriate number of IMFs in order to obtain the end-member information accurately.

    2.1 Information Interpretation through EMD-ICA

    First apply EMD method to the mixed pixels MMP205030, MMP302050 and MMP503020.Decomposition of each mixed pixel produces 8 IMFs.The correlation coefficients between these IMFs and corresponding mixed pixel spectra are shown in Table 1.

    Table 1 IMFs’correlation coefficients with corresponding mixed pixel spectrum

    MMP205030, MMP302050 and MMP503020 are all mixtures of the spectra of Malachite, Microcline and!Pyrophyllite.To separate the three independent components from one mixed pixel, we need to select 2 IMFs from each line of data in table 1 respectively and combine them with the corresponding mixed pixel spectra as the input data matrix of ICA decomposition.Studies have shown that, the larger the correlation coefficient between the IMF and mixed pixel spectrum, the better quality of independent components can be obtained through ICA decomposition (the absolute value of the correlation coefficient with end-member spectrum is higher).Therefore, when decomposing mixed pixel MMP205030, corresponding IMF4 and IMF8 should be chosen.On the other hand, both IMF5 and IMF8 were chosen to decompose MMP302050 and MMP503020 respectively.Through EMD-ICA information interpretation, MMP205030 obtains independent components IC1,IC2 and IC3, MMP302050 obtains independent components IC4,IC5 and IC6, and MMP503020 obtains independent components IC7,IC8 and IC9.Table 2 presents the correlation coefficients between the independent components and end-member spectra.

    Table 2 Correlation coefficients between the independent components and end-member spectra

    While analyzing the three independent components IC1, IC2 and IC3 of MMP205030, it is found that IC1 has the largest correlation with Microcline spectrum, thus IC1 is the estimated value of Microcline spectrum.Similarly, IC2 and IC3 are the estimated values of Malachite and Pyrophyllite respectively.Besides, in mixed pixel MMP205030, the contents of Malachite, Microcline and Pyrophyllite are 20%, 50% and 30% respectively.Through EMD-ICA information interpretation, it can be found that the higher spectral content of an end-member, the better estimated value of corresponding end-member spectrum can be obtained.In this case, as the content of Microcline is the largest, the absolute value of the correlation coefficient between IC1 and Microcline is the largest (0.844 0); as the content of Malachite is the smallest, the absolute value of the correlation coefficient between IC2 and Malachite is small (0.708 3); as the content of Pyrophyllite is between other two minerals, the correlation coefficient between IC3 and Pyrophyllite is in the middle (0.8120).

    In table 2, experimental data of MMP302050,MMP503020 also indicates that EMD-ICA information interpretation model can effectively obtain information of end-members in mixed pixel spectrum.Similarly, the higher spectral content of an end-member, the better estimated value of the corresponding end-member spectrum can be obtained.

    Take mixed pixels MMP205030, MMP302050 and MMP503020 as input data matrix, ICA can be applied directly to the decomposition and obtain 3 independent components, which are the estimated values of spectra of Malachite, Microcline and Pyrophyllite respectively.The correlation coefficients between them and end-member spectra are 0.839 8,0.889 5 and 0.934 6.As we can see, the quality of independent components obtained from direct ICA decomposition is higher than that of independent components obtained from single mixed pixels processed by EMD-ICA information interpretation model.This is because mixed pixel groups contain more end-member information, which lead to better estimated value of end-member spectra.However, if there are not enough mixed pixels, only EMD-ICA information interpretation model can be adopted.The independent components obtained through this method still contain plenty of information on end-member spectra.

    2.2 Information Interpretation with an unknown number of end-members

    In practice, the number of end-member is hard to predict.After mixed pixels are processed by EMD, most IMFs are obtained.Some of these IMFs need to be selected to compose the input data matrix of ICA decomposition together with mixed pixel spectra.

    Table 3 Correlation coefficients between independent components and end-member spectra (two independent components separated from each mixed pixel)

    MMP205030MMP302050MMP503020IC10IC11IC12IC13IC14IC15Malachite0.38480.01760.7224-0.3419-0.09030.8824Microcline-0.02750.87700.03460.5658-0.75360.4937Pyrophyllite0.72330.35830.51500.85300.31530.1681

    The IMF, which has relatively higher correlation coefficient to the mixed pixel spectrum, contains more end-member information.Since IMF8 has the largest correlation coefficient in each row of data, it is selected and combined with corresponding mixed pixel spectrum as input spectra of ICA.The correlation coefficients between the two independent components obtained and end-member spectra are shown in table 3.

    Through the analysis of experimental data in Table 3, we found that when only 2 independent components were decomposed from a mixed pixel, the 2 independent components obtained correspond to the end-members with relatively higher contents in the mixed pixel respectively.It can be found that the higher spectral content of end-member, the better quality can be achieved for corresponding independent components.For example, in mixed pixel MMP205030, the content of Microcline spectrum is the highest (50%), while the content of Pyrophyllite spectrum comes the second (30%).IC11 is the approximation of Microcline spectrum while IC10 is the approximation of Pyrophyllite spectrum.The absolute value of correlation coefficient of IC11 is 0.877 0, while the absolute value of correlation coefficient of IC10 is 0.723 3.IC11 is of higher quality than IC10.The conclusion is similar for other mixed pixels.

    Therefore, when applying EMD-ICA to interpret rock-mineral spectra, IMF can be selected according to the value of correlation coefficient (from large to small), and thus obtain information of end-members with higher contents in the mixed pixel.If the number of decomposed independent components is less than the number of end-members, the independent components correspond to end-members with higher spectral contents.It can be concluded that the quality of corresponding independent component improves with the amount of content.If the number of decomposed independent components equals the number of end-members, the independent components are of the highest quality.If the number of decomposed independent components exceeds the number of end-members, the amount of data to be calculated in EMD-ICA increases.In this case, the quality of independent components is not ideal enough.

    3 Interpretation of rock-mineral spectrum with real measurement data

    The core sample was collected at 31.95 N, 118.83 E.The scanned core spectrum has a wavelength ranging from 1 300 to 2 500 nm with the interval of 2 nm.After pre-procession of the core spectrum with Principal Component Analysis (PCA), only the 3 major components were kept.The spectrum of the core is shown in figure 3.

    The refined core spectrum was treated with EMD, which obtained 10 IMFs with correlation coefficients of 0.003 1, 0.000 4, 0.071 1, 0.145 7, 0.152 2, 0.361 5, 0.546 8, 0.546 8, 0.543 8 and 0.964 7 respectively to the core spectrum.Then, the two IMFs with highest correlation coefficients were used in the data matrix together with the original core spectrum.Followed by ICA treatment, 3 independent components were obtained, namely IC16, IC17 and IC18.The correlation coefficient of each component can be calculated independently with respect to the standard mineral spectra in USGS library.The results showed that IC16 has the highest correlation to Spessartine, with the coefficient value 0.726.Similarly, IC17 has the highest correlation to Smectite with the coefficient value 0.938, while IC18 has the highest correlation to Chrysocolla with the coefficient value 0.962.The core spectrum can also be analyzed with the portable near-infrared mineral analyzer (model BJKF-Ⅱ).The results from BJKF-Ⅱ were not exactly the same as that from EMD-ICA, but with good correlation.

    Fig.3 Spectrum of core

    4 Conclusions

    Through integrated application of EMD and ICA methods, we can overcome the limitation of ICA’s requirement that the number of mixed pixels should be no less than that of end-members.The end-member information can be extracted from single mixed pixel, and mixed pixel decomposition can be conducted even when there is no prior knowledge about the number of end-members.From simulation data, we find that the contents of end-member spectra in mixed pixels exert significant influence on decomposition results.The higher content of end-member spectrum, the larger correlation between independent component and the end-member spectrum can be obtained.When the number of decomposed independent components is less than the number of end-members in the mixed pixel, the independent components separated through EMD-ICA will correspond to end-members with higher spectral contents in the mixed pixel.This research is of practical importance to quantitative analysis of rock-mineral spectrum, which reveals the types and contents of its mineral composition.

    Acknowledgement: Many thanks to Huang Jun-jie from Nanjing Institute of Geology and Mineral Resource for their great help in the research.

    [1] M D M, A L D.IEEE Transactions on Geoscience and Remote Sensing,2004, 42(1): 271.

    [2] Cao Hengzhi, Yu Xianchuan, Zhang Libao.Journal of Remote Sensing, 2009, 13(2): 217.

    [3] Manrice D Craig.IEEE Transactions on Geoscience and Remote Sensing, 1994, 32: 542.

    [4] Chen Jinyang.Research on Independent Component Analysis and Its Application in Array Signal Processing.PLA Information Engineering University, Master Thesis, 2011.

    [5] He H, Yu X C, Peng W L.Geoscience and Remote Sensing Symposium, 2007, 3: 1658.

    [6] Badaoui M EI, Daniere J, Guillet F, et al.Mechanical Systems and Signal Processing, 2005, 19(6): 1209.

    [7] Zhang Junhong, Li Linjie, Liu Hai, et al.Transactions of CSICE, 2012, 30(6): 544.

    [8] Wang Runsheng, Gan Fuping, Yan Bokun, et al.Remotesensing Forland & Resources, 2010, 83: 1.

    [9] Huang N E, Shen Z, Long S R.Proc.R Soc., 1998, 454(1971): 903.

    [10] Flandrin P, Rilling G, Goncalves P.IEEE Signal Process, Letters, 2004, 11(2): 112.

    [11] Hyv?rinen A, Oja E.Neural Networks,2000, 13(4-5): 411.

    *通訊聯(lián)系人

    O657.3

    A

    應(yīng)用經(jīng)驗(yàn)?zāi)B(tài)分解和獨(dú)立成分分析解譯巖礦光譜

    吳 芳1,蔣夕平1*,于瀚文2,修連存3

    1.南京農(nóng)業(yè)大學(xué)理學(xué)院,江蘇 南京 210095 2.南京炮兵學(xué)院,江蘇 南京 211132 3.南京地質(zhì)礦產(chǎn)研究所,江蘇 南京 210016

    巖礦光譜由多種礦物光譜混合而成,解譯巖礦光譜能夠得到巖礦的組分信息,且該方法具有快速、方便、不損壞樣品的特點(diǎn)。經(jīng)驗(yàn)?zāi)B(tài)分解(empirical mode decomposition, EMD)不能直接分離出混合信號(hào)中的源信號(hào),獨(dú)立成分分析(independent component analysis, ICA)要求混合信號(hào)數(shù)目不小于其所包括的源信號(hào)數(shù)目。將EMD和ICA兩種方法相融合,首先用EMD分解混合信號(hào)得到本征模態(tài)函數(shù)(intrinsic mode function, IMF),再選擇一定數(shù)目的IMF與混合信號(hào)一起組成ICA的輸入數(shù)據(jù)矩陣,經(jīng)過ICA運(yùn)算可以獲取單一混合信號(hào)中的源信號(hào)信息,克服了EMD和ICA兩種方法各自的缺陷。研究表明,綜合應(yīng)用EMD和ICA方法可以獲取單一混合信號(hào)中的源信號(hào)信息,混合信號(hào)中源信號(hào)含量越大,得到的源信號(hào)近似值越理想。參與ICA分離的IMF數(shù)目決定了分離得到的源信號(hào)近似值的數(shù)目,并且選擇的IMF與混合信號(hào)相關(guān)系數(shù)越大,得到的源信號(hào)近似值越理想。運(yùn)用該方法定量分析巖礦光譜,可以獲取組成巖礦的礦物信息,比較適用于野外作業(yè)巖礦的快速分析鑒定及成分初步分析。

    經(jīng)驗(yàn)?zāi)B(tài)分解; 獨(dú)立成分分析; 巖礦光譜

    2015-01-02,

    2015-04-18)

    Foundation item:National Key Scientific Instrument and Equipment Development Project (China) (2012YQ050250),F(xiàn)undamental Research Funds of Nanjing Agricultural University (KYZ201425)

    10.3964/j.issn.1000-0593(2016)05-1592-06

    Received:2015-01-02; accepted:2015-04-18

    Biography:WU Fang, (1974—), female, a lecturer in College of Science, Nanjing Agricultural University e-mail: wufang318@njau.edu.cn *Corresponding author e-mail: jiangxp@njau.edu.cn

    猜你喜歡
    巖礦數(shù)目南京
    有機(jī)物“同分異構(gòu)體”數(shù)目的判斷方法
    南京比鄰
    “南京不會(huì)忘記”
    《巖礦測(cè)試》第八屆編輯委員會(huì)
    《巖礦測(cè)試》 第八屆編輯委員會(huì)
    《巖礦測(cè)試》第八屆編輯委員會(huì)
    《巖礦測(cè)試》第八屆編輯委員會(huì)
    南京·九間堂
    金色年華(2017年8期)2017-06-21 09:35:27
    又是磷復(fù)會(huì) 又在大南京
    《哲對(duì)寧諾爾》方劑數(shù)目統(tǒng)計(jì)研究
    亚洲国产精品一区二区三区在线| 国产97色在线日韩免费| av国产精品久久久久影院| 日韩 亚洲 欧美在线| 日本五十路高清| 精品少妇黑人巨大在线播放| 脱女人内裤的视频| 久久久精品区二区三区| 免费在线观看完整版高清| 永久免费av网站大全| 日韩制服骚丝袜av| 啦啦啦视频在线资源免费观看| 亚洲中文字幕日韩| 午夜福利乱码中文字幕| 高清黄色对白视频在线免费看| 国产一区二区在线观看av| 黄色a级毛片大全视频| 老司机亚洲免费影院| 悠悠久久av| 黄片小视频在线播放| 国产熟女欧美一区二区| 一本—道久久a久久精品蜜桃钙片| 亚洲,一卡二卡三卡| 日韩一区二区三区影片| 国产伦理片在线播放av一区| 中文欧美无线码| 免费av中文字幕在线| 不卡av一区二区三区| 亚洲精品一区蜜桃| 叶爱在线成人免费视频播放| 各种免费的搞黄视频| 丝袜美足系列| 男女午夜视频在线观看| 男女之事视频高清在线观看 | 一区二区三区四区激情视频| 在线亚洲精品国产二区图片欧美| 国产一区二区激情短视频 | 亚洲情色 制服丝袜| 日韩 亚洲 欧美在线| 青春草视频在线免费观看| 欧美日韩综合久久久久久| 99热国产这里只有精品6| 人人澡人人妻人| 久久国产精品影院| 国产成人一区二区在线| 两性夫妻黄色片| 国产人伦9x9x在线观看| 国产精品一二三区在线看| 久久毛片免费看一区二区三区| 国产成人精品久久二区二区91| 桃花免费在线播放| 欧美精品啪啪一区二区三区 | 免费看不卡的av| 伊人亚洲综合成人网| 大码成人一级视频| 九色亚洲精品在线播放| 亚洲视频免费观看视频| 欧美成狂野欧美在线观看| 欧美大码av| 国产视频一区二区在线看| 一区二区日韩欧美中文字幕| 在线观看免费日韩欧美大片| 中文字幕av电影在线播放| 老司机靠b影院| 久久亚洲国产成人精品v| 亚洲一区二区三区欧美精品| 人人澡人人妻人| 丰满饥渴人妻一区二区三| 宅男免费午夜| 欧美人与性动交α欧美精品济南到| 校园人妻丝袜中文字幕| 伊人久久大香线蕉亚洲五| 欧美精品啪啪一区二区三区 | 黄片小视频在线播放| 一区二区三区精品91| 国产一区二区 视频在线| 国产亚洲av高清不卡| 两个人免费观看高清视频| cao死你这个sao货| 久久热在线av| 天天躁夜夜躁狠狠躁躁| 人体艺术视频欧美日本| 多毛熟女@视频| 777久久人妻少妇嫩草av网站| 美女午夜性视频免费| 免费女性裸体啪啪无遮挡网站| 国产97色在线日韩免费| 一级a爱视频在线免费观看| 国产av一区二区精品久久| av网站免费在线观看视频| 大片电影免费在线观看免费| 国产亚洲av高清不卡| 免费在线观看完整版高清| 久久九九热精品免费| 亚洲情色 制服丝袜| 999精品在线视频| 亚洲精品美女久久久久99蜜臀 | av在线老鸭窝| 日韩人妻精品一区2区三区| 激情五月婷婷亚洲| 丝袜在线中文字幕| 亚洲人成77777在线视频| e午夜精品久久久久久久| 一本综合久久免费| 国产午夜精品一二区理论片| 欧美成狂野欧美在线观看| av在线播放精品| 国产深夜福利视频在线观看| 男女免费视频国产| 搡老乐熟女国产| 久久久久久免费高清国产稀缺| 男女床上黄色一级片免费看| 精品一区二区三区四区五区乱码 | 大香蕉久久网| 日韩中文字幕视频在线看片| 亚洲精品成人av观看孕妇| 18禁国产床啪视频网站| 亚洲国产av新网站| 亚洲精品日本国产第一区| 久久亚洲精品不卡| 婷婷色综合大香蕉| 超碰成人久久| 在线精品无人区一区二区三| 亚洲成国产人片在线观看| 亚洲一区中文字幕在线| 精品人妻熟女毛片av久久网站| 99热国产这里只有精品6| 丰满少妇做爰视频| h视频一区二区三区| 汤姆久久久久久久影院中文字幕| 啦啦啦视频在线资源免费观看| 精品人妻一区二区三区麻豆| 日韩av在线免费看完整版不卡| 精品一区二区三区av网在线观看 | 91精品国产国语对白视频| 亚洲av在线观看美女高潮| 肉色欧美久久久久久久蜜桃| av天堂久久9| 国产高清视频在线播放一区 | 亚洲免费av在线视频| 超碰成人久久| 精品人妻熟女毛片av久久网站| 亚洲国产av影院在线观看| 久久热在线av| 超碰97精品在线观看| 老司机影院成人| 亚洲一卡2卡3卡4卡5卡精品中文| 中文精品一卡2卡3卡4更新| 久久久久久久精品精品| 精品久久久精品久久久| 伊人久久大香线蕉亚洲五| 少妇粗大呻吟视频| 午夜福利乱码中文字幕| 国产亚洲精品久久久久5区| 美女主播在线视频| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久成人av| 丝袜在线中文字幕| 精品视频人人做人人爽| 日韩熟女老妇一区二区性免费视频| 国产精品国产三级专区第一集| 一本色道久久久久久精品综合| 国产男女内射视频| 搡老乐熟女国产| 国产成人av激情在线播放| 精品少妇内射三级| 亚洲精品国产av成人精品| 日韩中文字幕欧美一区二区 | 国产不卡av网站在线观看| 亚洲,欧美,日韩| 人人妻人人爽人人添夜夜欢视频| 赤兔流量卡办理| 国产精品国产av在线观看| 看免费成人av毛片| 美女大奶头黄色视频| 在线观看免费日韩欧美大片| 亚洲国产av影院在线观看| 欧美久久黑人一区二区| 亚洲欧美中文字幕日韩二区| 丝袜喷水一区| 欧美日韩综合久久久久久| 国产一区二区在线观看av| 亚洲 欧美一区二区三区| 黄网站色视频无遮挡免费观看| 午夜免费观看性视频| 纵有疾风起免费观看全集完整版| 精品欧美一区二区三区在线| 超碰成人久久| 搡老岳熟女国产| 免费观看人在逋| 七月丁香在线播放| 午夜福利视频精品| 免费少妇av软件| 国产精品国产三级专区第一集| 中文字幕高清在线视频| 国产精品久久久人人做人人爽| 美女主播在线视频| 欧美成人午夜精品| av天堂在线播放| 天堂中文最新版在线下载| 制服人妻中文乱码| 一个人免费看片子| 在线观看免费日韩欧美大片| 免费日韩欧美在线观看| 成人免费观看视频高清| 国产高清videossex| 午夜精品国产一区二区电影| 男女之事视频高清在线观看 | 无遮挡黄片免费观看| 国产黄色免费在线视频| 超碰成人久久| 国产精品一区二区在线观看99| 国产精品免费大片| 女人高潮潮喷娇喘18禁视频| 国产黄色免费在线视频| 欧美精品啪啪一区二区三区 | 中文字幕另类日韩欧美亚洲嫩草| 久久精品久久精品一区二区三区| 欧美变态另类bdsm刘玥| 中文精品一卡2卡3卡4更新| 每晚都被弄得嗷嗷叫到高潮| 日韩大码丰满熟妇| 色婷婷久久久亚洲欧美| 国产成人精品在线电影| 日本av手机在线免费观看| 国产在线观看jvid| 黄色片一级片一级黄色片| 欧美日韩av久久| 亚洲成色77777| 一级毛片电影观看| 久久久精品国产亚洲av高清涩受| 亚洲熟女毛片儿| 99国产综合亚洲精品| 欧美大码av| av在线老鸭窝| 极品人妻少妇av视频| 亚洲五月色婷婷综合| 国产精品av久久久久免费| 国产精品一区二区在线不卡| 国产精品香港三级国产av潘金莲 | 亚洲成人免费av在线播放| 亚洲美女黄色视频免费看| 又黄又粗又硬又大视频| 日韩欧美一区视频在线观看| 色精品久久人妻99蜜桃| 色综合欧美亚洲国产小说| 精品第一国产精品| 在现免费观看毛片| 乱人伦中国视频| 国产精品.久久久| 少妇的丰满在线观看| 亚洲国产欧美日韩在线播放| 久久精品成人免费网站| 老司机亚洲免费影院| 国产精品.久久久| www.精华液| 天堂俺去俺来也www色官网| 国产精品国产三级专区第一集| 亚洲伊人久久精品综合| 国精品久久久久久国模美| 久久国产精品影院| 91成人精品电影| 久久人妻熟女aⅴ| 黄色片一级片一级黄色片| 大片免费播放器 马上看| 欧美+亚洲+日韩+国产| 久久精品人人爽人人爽视色| 成人国产av品久久久| 久久久久久久大尺度免费视频| 亚洲国产欧美日韩在线播放| 日韩欧美一区视频在线观看| 色精品久久人妻99蜜桃| cao死你这个sao货| 国产精品秋霞免费鲁丝片| 又粗又硬又长又爽又黄的视频| 国产老妇伦熟女老妇高清| 三上悠亚av全集在线观看| 看十八女毛片水多多多| 亚洲精品日韩在线中文字幕| 免费av中文字幕在线| www日本在线高清视频| 91成人精品电影| 在线看a的网站| 国产精品秋霞免费鲁丝片| 亚洲 欧美一区二区三区| 成人国产一区最新在线观看 | 香蕉国产在线看| 亚洲自偷自拍图片 自拍| 国产亚洲欧美在线一区二区| 50天的宝宝边吃奶边哭怎么回事| 久久亚洲国产成人精品v| 亚洲精品国产一区二区精华液| 老熟女久久久| 日本一区二区免费在线视频| 在现免费观看毛片| 国产av一区二区精品久久| 丝袜美腿诱惑在线| 桃花免费在线播放| 天天躁日日躁夜夜躁夜夜| 新久久久久国产一级毛片| 欧美在线一区亚洲| 国产精品一区二区免费欧美 | 日本91视频免费播放| 美女大奶头黄色视频| 亚洲精品久久午夜乱码| 日韩制服丝袜自拍偷拍| 国产免费福利视频在线观看| 国产高清videossex| 天天躁夜夜躁狠狠躁躁| 精品免费久久久久久久清纯 | 国产亚洲一区二区精品| 欧美日韩综合久久久久久| 国产av国产精品国产| 国产不卡av网站在线观看| 国产精品免费大片| 一区福利在线观看| 亚洲成国产人片在线观看| 老熟女久久久| 国产欧美日韩综合在线一区二区| 国产亚洲一区二区精品| 欧美精品一区二区免费开放| 亚洲欧美激情在线| 这个男人来自地球电影免费观看| av电影中文网址| 波野结衣二区三区在线| 亚洲成人手机| 国产国语露脸激情在线看| 少妇 在线观看| 天堂中文最新版在线下载| 亚洲欧美一区二区三区久久| 丝袜美腿诱惑在线| 中文字幕精品免费在线观看视频| 国产亚洲精品久久久久5区| 午夜91福利影院| 国产三级黄色录像| 亚洲精品久久午夜乱码| 免费少妇av软件| 最新的欧美精品一区二区| 777米奇影视久久| 日韩免费高清中文字幕av| 国产日韩欧美在线精品| 麻豆av在线久日| 亚洲一区中文字幕在线| 美女大奶头黄色视频| 国产老妇伦熟女老妇高清| 天堂中文最新版在线下载| 婷婷色综合www| 叶爱在线成人免费视频播放| 精品少妇久久久久久888优播| 1024香蕉在线观看| 人人澡人人妻人| 国产伦理片在线播放av一区| 人人妻人人添人人爽欧美一区卜| 欧美日本中文国产一区发布| 亚洲,一卡二卡三卡| 精品人妻熟女毛片av久久网站| 黄片播放在线免费| 中文字幕人妻丝袜一区二区| 一区二区三区四区激情视频| 视频区欧美日本亚洲| 黄色毛片三级朝国网站| 午夜福利在线免费观看网站| 国精品久久久久久国模美| 国产主播在线观看一区二区 | 亚洲一区中文字幕在线| 亚洲视频免费观看视频| 欧美日韩成人在线一区二区| 欧美性长视频在线观看| 精品福利永久在线观看| 亚洲专区国产一区二区| 在线观看免费日韩欧美大片| 欧美 日韩 精品 国产| 美女主播在线视频| av线在线观看网站| 一本—道久久a久久精品蜜桃钙片| 免费黄频网站在线观看国产| 久久久国产一区二区| 国产精品香港三级国产av潘金莲 | 老汉色av国产亚洲站长工具| 真人做人爱边吃奶动态| 老司机影院毛片| 国产免费一区二区三区四区乱码| 免费观看av网站的网址| 丝袜脚勾引网站| 日韩人妻精品一区2区三区| 一二三四在线观看免费中文在| 老鸭窝网址在线观看| 老司机在亚洲福利影院| 亚洲精品日韩在线中文字幕| 亚洲av综合色区一区| 美女主播在线视频| 日本五十路高清| 日韩大片免费观看网站| 成人国产一区最新在线观看 | 亚洲综合色网址| 视频区图区小说| 99国产精品99久久久久| 国产亚洲精品第一综合不卡| 欧美精品一区二区大全| 午夜福利影视在线免费观看| 日本a在线网址| 亚洲国产精品成人久久小说| 男女边摸边吃奶| 精品少妇一区二区三区视频日本电影| 如日韩欧美国产精品一区二区三区| 亚洲精品在线美女| 人人妻人人澡人人看| 精品人妻一区二区三区麻豆| 久久久国产一区二区| 欧美变态另类bdsm刘玥| xxxhd国产人妻xxx| 90打野战视频偷拍视频| 久久精品亚洲熟妇少妇任你| 亚洲精品自拍成人| 免费看av在线观看网站| 又大又黄又爽视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 欧美少妇被猛烈插入视频| 亚洲国产精品999| 亚洲 欧美一区二区三区| 成人亚洲精品一区在线观看| 国产精品熟女久久久久浪| 永久免费av网站大全| 秋霞在线观看毛片| 精品熟女少妇八av免费久了| 国产野战对白在线观看| 夫妻午夜视频| 老汉色av国产亚洲站长工具| 天天躁日日躁夜夜躁夜夜| 大话2 男鬼变身卡| 亚洲专区国产一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 精品亚洲成a人片在线观看| av网站在线播放免费| 国产欧美日韩一区二区三 | 亚洲精品国产色婷婷电影| 久久亚洲国产成人精品v| 免费在线观看日本一区| 久久中文字幕一级| 亚洲欧美精品综合一区二区三区| 亚洲熟女精品中文字幕| 精品人妻一区二区三区麻豆| 热re99久久精品国产66热6| 国产精品一国产av| 十八禁高潮呻吟视频| 各种免费的搞黄视频| 人妻 亚洲 视频| 50天的宝宝边吃奶边哭怎么回事| 久久女婷五月综合色啪小说| 一边摸一边抽搐一进一出视频| 国产精品国产三级专区第一集| 欧美成人精品欧美一级黄| av片东京热男人的天堂| 久久精品熟女亚洲av麻豆精品| 国产日韩一区二区三区精品不卡| 成人亚洲精品一区在线观看| 一边摸一边抽搐一进一出视频| 久久99精品国语久久久| 亚洲专区中文字幕在线| 一本—道久久a久久精品蜜桃钙片| 国产主播在线观看一区二区 | 国产熟女欧美一区二区| 97精品久久久久久久久久精品| 后天国语完整版免费观看| av天堂在线播放| 亚洲精品国产一区二区精华液| 人妻一区二区av| 大片免费播放器 马上看| 在线看a的网站| 黄网站色视频无遮挡免费观看| 视频区图区小说| 久久国产精品男人的天堂亚洲| 欧美大码av| 五月开心婷婷网| 夜夜骑夜夜射夜夜干| 视频在线观看一区二区三区| 久久久久久久大尺度免费视频| 一本色道久久久久久精品综合| 亚洲人成网站在线观看播放| 午夜福利视频精品| av网站免费在线观看视频| 婷婷成人精品国产| 各种免费的搞黄视频| 1024香蕉在线观看| 亚洲国产欧美网| 亚洲黑人精品在线| 午夜视频精品福利| 中文精品一卡2卡3卡4更新| 亚洲国产精品999| 99久久99久久久精品蜜桃| 国产女主播在线喷水免费视频网站| 久久久精品区二区三区| 桃花免费在线播放| 国产91精品成人一区二区三区 | 亚洲一码二码三码区别大吗| 国产精品偷伦视频观看了| 国产老妇伦熟女老妇高清| 人体艺术视频欧美日本| 91精品伊人久久大香线蕉| 亚洲男人天堂网一区| 欧美日韩亚洲国产一区二区在线观看 | 免费少妇av软件| 多毛熟女@视频| 九草在线视频观看| 2021少妇久久久久久久久久久| 国产黄色免费在线视频| 亚洲伊人色综图| 黑人猛操日本美女一级片| 国产一区二区激情短视频 | 欧美少妇被猛烈插入视频| 国产精品二区激情视频| 高清欧美精品videossex| 十八禁人妻一区二区| 亚洲国产精品国产精品| 中文字幕最新亚洲高清| 最近中文字幕2019免费版| 日本欧美国产在线视频| 亚洲天堂av无毛| 日本欧美视频一区| 久久精品久久精品一区二区三区| 久久99一区二区三区| 午夜两性在线视频| 一级毛片 在线播放| 宅男免费午夜| 国产在视频线精品| 欧美精品一区二区免费开放| 国产在线观看jvid| 精品少妇久久久久久888优播| 男女之事视频高清在线观看 | 一级,二级,三级黄色视频| 国产爽快片一区二区三区| 成人三级做爰电影| 岛国毛片在线播放| 欧美日韩av久久| 18禁黄网站禁片午夜丰满| 久久狼人影院| 亚洲色图综合在线观看| 国产精品久久久久久人妻精品电影 | 久久久久精品国产欧美久久久 | 免费看十八禁软件| 午夜免费成人在线视频| 亚洲欧洲精品一区二区精品久久久| 国产男女超爽视频在线观看| 亚洲熟女毛片儿| 首页视频小说图片口味搜索 | 夜夜骑夜夜射夜夜干| 久久九九热精品免费| 国产精品麻豆人妻色哟哟久久| 精品第一国产精品| 精品免费久久久久久久清纯 | 午夜激情久久久久久久| 国产一区二区三区综合在线观看| 欧美精品啪啪一区二区三区 | 一边亲一边摸免费视频| 在线天堂中文资源库| a 毛片基地| 久久久精品国产亚洲av高清涩受| 久久天堂一区二区三区四区| 午夜91福利影院| 一区二区三区精品91| 在线观看一区二区三区激情| 校园人妻丝袜中文字幕| 精品福利永久在线观看| 乱人伦中国视频| 丰满迷人的少妇在线观看| 天堂中文最新版在线下载| 女人被躁到高潮嗷嗷叫费观| av网站在线播放免费| 国产亚洲欧美在线一区二区| 亚洲精品第二区| 一本色道久久久久久精品综合| 91精品三级在线观看| 亚洲午夜精品一区,二区,三区| 人人妻人人澡人人看| 国产91精品成人一区二区三区 | 精品卡一卡二卡四卡免费| 欧美日韩成人在线一区二区| 搡老岳熟女国产| 免费一级毛片在线播放高清视频 | 久久这里只有精品19| 午夜精品国产一区二区电影| 极品人妻少妇av视频| 十八禁高潮呻吟视频| 国产成人欧美在线观看 | svipshipincom国产片| 成在线人永久免费视频| 婷婷色av中文字幕| 国产精品三级大全| 99国产综合亚洲精品| 999精品在线视频| 多毛熟女@视频| 香蕉丝袜av| 婷婷成人精品国产| 国产精品欧美亚洲77777| 丝袜美腿诱惑在线| 晚上一个人看的免费电影| 久久久精品94久久精品| 中文字幕人妻丝袜制服| 午夜精品国产一区二区电影| 国产人伦9x9x在线观看| 亚洲欧美精品自产自拍| 亚洲精品国产av蜜桃| 青春草亚洲视频在线观看| 高清黄色对白视频在线免费看| 亚洲图色成人| 欧美久久黑人一区二区| 交换朋友夫妻互换小说| 亚洲伊人色综图| 黄色怎么调成土黄色| 欧美精品人与动牲交sv欧美| 丁香六月天网| 日日摸夜夜添夜夜爱| 超色免费av| 在线观看免费视频网站a站| av电影中文网址|