• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spectrum Quantitative Analysis Based on Bootstrap-SVM Model with Small Sample Set

    2016-07-12 12:43:43MAXiaoZHAOZhongXIONGShanhai
    光譜學(xué)與光譜分析 2016年5期
    關(guān)鍵詞:針入度方根光譜

    MA Xiao, ZHAO Zhong, XIONG Shan-hai

    College of Information Science and Technology, Bejing University of Chemical Technology, Beijing 100029, China

    Spectrum Quantitative Analysis Based on Bootstrap-SVM Model with Small Sample Set

    MA Xiao, ZHAO Zhong*, XIONG Shan-hai

    College of Information Science and Technology, Bejing University of Chemical Technology, Beijing 100029, China

    A new spectrum quantitative analysis method based on Bootstrap-SVM model with small sample set is proposed in this paper.To build the spectrum quantitative analysis model for bitumen penetration index, altogether 29 bitumen samples were collected from 6 companies.Based on the collected 29 bitumen samples, spectrum quantitative analysis model with proposed method for predicting bitumen penetration index has been built.To verify the feasibility and effectiveness of the proposed method, the comparative experiments of predicting the bitumen sample penetration index with the proposed method, partial least squares (PLS) and support vector machine (SVM) have also been done.Comparative experiment results have verified that the minimum prediction root mean squared error (RMSE) is achieved by using the proposed Bootstrap-SVM model with the small sample set.The proposed method provides a new way to solve the problem of building the spectrum quantitative analysis model with small sample set.

    Spectrum quantitative analysis; Small sample set; Bootstrap; Support vector machines; Partial least squares

    Introduction

    Spectrum quantitative analysis is an important research area in spectroscopy.Building a stable and accurate prediction model is the premise of spectrum quantitative analysis for unknown samples.Successful applications of spectrum quantitative analysis methods can now be seen in a wide variety areas, such as multiple linear regression (MLR)[1], principle component regression (PCR)[2], partial least squares (PLS)[3], artificial neural networks (ANN)[4]and support vector machine(SVM)[4].MLR, PCR and PLS are usually applied to build the linear prediction model and ANN, SVM can be applied to build the nonlinear prediction model.In the real applications, it is often difficult to obtain complete information from samples due to the limitations of the sample sources.It is noticed that less effort has been made to the studies of spectrum quantitative analysis based on small sample set, while the spectrum quantitative analysis based on large sample set has been well studied[1-4].In the cases of small sample set, it is usually difficult to build the stable and accurate prediction models for spectrum quantitative analysis with traditional methods.Hence, it is important to study the modeling methods for spectrum quantitative analysis with small sample set.

    In this paper, how to build quantitative analysis model of the bitumen penetration index spectrum with small sample set is studied.Bitumen as pavement gumming material is widely used in road engineering.Bitumen penetration index is one of the important indicators which reflect the hardness of the pitch, consistency and ability to resist shear failure.Although the bitumen penetration index is a physical property, it is closely related with the content of the bitumen components.Aromatics saturation and aromatics have the high penetration indexes,while the penetration indexes of the resin and asphaltene are very low.According to the JTGF40-2004 issued by Ministry of Transportation of the People's Republic of China, the bitumen penetration index is measured by “Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering (JTJ 052—2000)”.This is time-consuming, difficult to operate and is also found of using toxic solvents.Therefore, it is necessary to work out a fast, clean and convenient method to measure the bitumen penetration index.Infrared spectroscopy analysis is a nondestructive detection and also a rapid analysis method, which can be applied to measure the bitumen penetration index.In this paper, a new spectrum quantitative analysis method based on Bootstrap-SVM model with small sample set is proposed for building the bitumen penetration index prediction model.The paper is organized as follows: in Section 1, the sample processing with Bootstrap algorithm and machine learning with SVM are presented.The detailed description of the experiment is presented in Section 2.Section 3 is devoted to comparative experiments and discussion.The paper is concluded in Section 4.

    1 Algorithms and theory

    1.1 Sample processing

    In the sample processing, Bootstrap resampling was applied to expand the sample set.Bootstrap resampling was proposed by Professor Efron[6].It is essentially a non-parametric resampling method which needs no assumption of the sample distribution.The basic idea of Bootstrap resampling is to simulate the sample generation process by repeating resampling data .Due to the limitations of the sample sources, the spectrum quantitative analysis model for predicting the bitumen penetration index has to be built based on small sample set.In this paper, Bootstrap resampling is applied to expand the sample set.The steps of sample processing with Bootstrap resampling are as follows:

    (1) Define the original sample set asX=(X1,X2,…,Xn).Randomly generate the integers asi1,i2,…,in∈[1,n];

    1.2 Noise injection

    In order to simulate the sampling process and improve the stability of the spectrum quantitative analysis model, noise injection[7-8]was applied to the expanded samples after resampling.Noise injected to the input values, output values and both input and output values are three ways of injection.The noise injection can be described as

    ZV=Z+V

    (1)

    ZVis the data matrix after the noise injection,Zis the source data matrix andVrepresents the noise matrix.So,

    then,

    (2)

    Mis the total number of samples.pis the length of each data sample.zvijdenotes the data items after noise injection.zijdenotes the original data item andvijdenotes the noise which is added tozij.In this paper, Gaussian white noise matrix withVi∈N(0,σ2) was chosen as the noise matrix.The noise intensity can be adjusted byσ.

    1.3 Support Vector Machine

    Support vector machine (SVM) was proposed based on statistical learning by Vapnik[9].The SVM is a machine learning method based on structural risk minimization which can be used to deal with small sample set, nonlinear and high dimensional machine learning problems.In order to obtain the best generalization ability, the precision of data approximation and the complexity of approximation functions are compromised during the machine learning process in SVM and the learning process is transferred into solving a convex quadratic programming problem.Therefore, the global optima can be gained.The problem of local minima can be avoided compared with the traditional machine learning methods with multilayer feed forward neural networks.In SVM, the nonlinear transformation is applied to transfer the samples into the high-dimensional feature space and the linear decision function can be constructed to classify the original samples in the high-dimensional feature space.Therefore, the complexity of learning process has nothing to do with the dimensions of sample set.In this paper, SVM is applied to build the spectrum quantitative analysis model for predicting the bitumen penetration index.

    2 Experiment

    2.1 Sample information

    29 bitumen samples have been collected from different factories.According to crude oil producers, the collected samples can be divided into two classes, the South America’s heavy oil and Xin Jiang’s thickened oil.The bitumen penetration indexes of the samples penetration were measured under the “Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering (JTJ 052-2000)”.The calibration set and validation set are shown in the table 1.

    Tabel 1 Bitumen samples category and distribution

    2.2 Instrument and working conditions

    The spectrum of bitumen was collected by attenuated total reflectance infrared spectroscopy in the analytical instrumentation center of Beijing University of Chemical Technology.The instrument parameters were set as follows: the wave number range was 4000~650 cm-1, resolution was 4 cm-1and scan times were 32.The samples needed to be heated to 70 ℃ when the infrared spectrum was measured and a few samples were evenly coated on the surface of the ATR crystal.The same sample was repeated three times and then the average spectrum was used as the infrared spectrum of the sample.

    2.3 Data processing

    The quantitative models of PLS, SVM and Bootstrap-SVM have been compared in this paper.The methods of first-order differential, data smoothing and mean center were applied to PLS.The data normalization was applied to SVM and Bootstrap-SVM.

    3 Result and discussion

    3.1 Spectrum analysis

    The main components of the road bitumen samples studied in this work are hydrocarbon, hydroxyl compound!and oxygenated compound.The penetration index is one of the physical properties of bitumen, but it is closely related to the chemical composition and content in bitumen.The infrared spectrum reflects the molecular vibration and rotational basic information of material.Therefore, the penetration index quantitative predicting model can be built with infrared spectrum analysis.The bitumen infrared absorption spectrum is shown in figure 1.

    Fig.1 ATR IR spectrum of Bitumen samples

    3.2 The spectrum quantitative analysis model with PLS

    PLS is widely applied to the quantitative analysis of infrared spectrum currently.The PLS model in this paper was built with the data after pre-processing.The first three principal components were selected by cross-validation and the input and output data mapping.The input and output principle components and the proportion of eigenvalues are shown in figure 2 and in figure 3 respectively.The prediction result of PLS is show in table 2.

    Fig.2 Eigenvalue vs.PC Number

    Fig.3 Eigenvalue vs.PC Number

    Table 2 Result of PLS

    sampleprediction16567.021268.865.729369.863.918462.164.19856667.74467073.296766.966.65887168.87496567.094106567.842RMSE2.889

    3.3 The spectrum quantitative analysis model with SVM

    For convenience,the Libsvm tools developed by Professor Lin Chih-Jen were applied to build the spectrum quantitative model with SVM.The parameter settings are as follows: the SVM model type selected as ε-SVR, the kernel function selected as RBF, the parameters set as -p1.5,-c0.01.The prediction results are shown in table 3.

    Table 3 Result of SVM

    3.4 The spectrum quantitative analysis model with Bootstrap-SVM

    Firstly, the original sample set was expanded by resampling method as described in 1.1.The calibration set of 19 samples was expanded to 200.Then, the 200 samples were injected with noise as described in 1.2.The noise intensity should be adjusted because the noise level has a great influence on the accuracy of the analysis model.If the intensity of noise is too small, the samples after noise injection are similar to the original samples.And if the intensity of noise is too large, it would generate the abnormal samples.Man-made factors, instrument factors, temperature and other factors may result in subtle differences in measurement of the spectrum.It is found that the subtle differences of spectrum would cause large errors of prediction.So the intensity of noise can be determined by several tests.In this paper, the intensity of noise was taken asσx=0.001,σy=0.1.The SVM model was built by using Libsvm tool.The parameters were chosen as -p2.0,-c0.03.The prediction results with 10 validation samples are shown in table 4.

    Table 4 Result of Bootstrap-SVM

    4 Conclusion

    In this paper, a new spectrum quantitative analysis method based on Bootstrap-SVM model with small sample set is proposed.Based on the collected 29 bitumen samples, spectrum quantitative analysis model with proposed method for predicting bitumen penetration index has been built.The comparative experiments of predicting the bitumen sample penetration index with the proposed method, partial least squares (PLS) and support vector machine (SVM) have also been done.Comparative experiment results have verified that the minimum prediction root mean squared error (RMSE) is achieved by using the proposed Bootstrap-SVM model with the small sample set.In this paper, it is found that the nonlinear models such as SVM and Bootstrap-SVM could predict the bitumen penetration index more precisely.Though SVM based on statistical learning theory can be applied to build the predicting model with small sample set, the accuracy and generalization ability of SVM model with small sample set can be improved obviously by Bootstrap resampling and noise injection.

    [1] BIAN Zhao-qi,ZHANG Xue-gong.Pattern Recognition.Beijing: Tsinghua University Publishing Company, 2000.192.

    [2] Luo Wentao, Liu Guili.Modern Scientific Instruments, 2013, 6(3): 94.

    [3] Roggo Y, Roeseler C, Ulmschneider M.J.Pharm.Biomed.Anal., 2004, 36(4): 777.

    [4] Fontalvo-Gomez M, Colucci J A, Velez Natasha, Romanach R J.Applied Spectroscopy, 2013, 67(10): 1142.

    [5] Mao R, Zhu H, Zhang L.A.Chen.Proc.ISDA, 2006, (1): 17.

    [6] Lanouette R, Thibault J, Valade J L.Comput.Chem.Eng.,1999, 23(9): 1167.

    [7] Luigi Fortuna, Salvatore Graziani, Maria Gabriella Xibilia.IEEE Transaction on Instrumentation and Measurement, 2009, 58(8): 2444.

    [8] Efron B.The Annals and Statistics,1979, 7(1): 1.

    [9] Grandvalet Y, Boucheron S.Neural Comput.,1997, 9(5): 1093.

    *通訊聯(lián)系人

    O657.3

    A

    基于Bootstrap-SVM在小樣本條件下光譜定量分析研究

    馬 嘯,趙 眾*,熊善海

    北京化工大學(xué)信息科學(xué)與技術(shù)學(xué)院,北京 100029

    提出了一種在小樣本條件下建立光譜定量分析的新方法-Bootstrap-SVM模型。以道路瀝青為研究對(duì)象,共收集29個(gè)來自6個(gè)不同單位的瀝青樣本,利用所提方法建立了瀝青針入度定量分析模型。Bootstrap-SVM由Bootstrap重抽樣、噪聲注入及SVM三個(gè)步驟組成。為了對(duì)比所提方法的優(yōu)勢(shì),對(duì)比了目前常用的PLS模型以及SVM模型。研究結(jié)果表明Bootstrap-SVM,PLS,SVM預(yù)測(cè)均方根誤差分別為0.773 5,2.889,1.784 4,所提方法預(yù)測(cè)精度最好,為小樣本條件下光譜定量分析提供了一種新的有效方法。

    小樣本; Bootstrap; 支持向量機(jī)

    2015-03-02,

    2015-07-09)

    Foundation item:Fundamental Research Founds for Central Universities (YS1404)

    10.3964/j.issn.1000-0593(2016)05-1571-05

    Received:2015-03-02; accepted:2015-07-09

    Biography:MA Xiao, (1990—), Master degree candidate in Beijing University of Chemical Technology e-mail: maxiao2014job@163.com *Corresponding author e-mail: zhaozhong@mail.buct.edu.cn

    猜你喜歡
    針入度方根光譜
    方根拓展探究
    基于三維Saab變換的高光譜圖像壓縮方法
    道路瀝青材料針入度與溫度的關(guān)聯(lián)及其數(shù)學(xué)模型的驗(yàn)證
    石油瀝青(2022年1期)2022-04-19 13:10:32
    道路石油瀝青針入度與溫度的關(guān)聯(lián)優(yōu)化及其數(shù)學(xué)模型的建立
    石油瀝青(2021年3期)2021-08-05 07:41:06
    改善SBS改性瀝青產(chǎn)品針入度指數(shù)的方法探究
    石油瀝青(2019年4期)2019-09-02 01:41:50
    瀝青針入度測(cè)量不確定度評(píng)定
    均方根嵌入式容積粒子PHD 多目標(biāo)跟蹤方法
    揭開心算方根之謎
    星載近紅外高光譜CO2遙感進(jìn)展
    數(shù)學(xué)魔術(shù)
    国产免费男女视频| 伊人久久大香线蕉亚洲五| 99国产极品粉嫩在线观看| 中文字幕人成人乱码亚洲影| 亚洲精品色激情综合| 最近最新中文字幕大全免费视频| 女人被狂操c到高潮| 黄色a级毛片大全视频| 国产精品99久久99久久久不卡| 97碰自拍视频| 国产av不卡久久| 亚洲国产精品999在线| 久久亚洲精品不卡| 男女视频在线观看网站免费 | 国产精品一区二区免费欧美| 中文亚洲av片在线观看爽| 欧美日本亚洲视频在线播放| 免费高清在线观看日韩| 无人区码免费观看不卡| 国产成人精品久久二区二区免费| 97碰自拍视频| 俄罗斯特黄特色一大片| 最新在线观看一区二区三区| 精品国产国语对白av| 日韩欧美 国产精品| 午夜福利欧美成人| 99久久无色码亚洲精品果冻| 日韩欧美在线二视频| 少妇熟女aⅴ在线视频| 日本五十路高清| 国产精品九九99| 一本一本综合久久| 免费在线观看日本一区| 精品一区二区三区视频在线观看免费| 国产精品免费一区二区三区在线| 午夜福利视频1000在线观看| 我的亚洲天堂| ponron亚洲| 天堂动漫精品| 中文字幕人妻熟女乱码| 人人澡人人妻人| 侵犯人妻中文字幕一二三四区| 国产一区在线观看成人免费| 日本免费a在线| 国产视频内射| netflix在线观看网站| 亚洲专区中文字幕在线| 99国产综合亚洲精品| 国产成人av教育| 国产精品野战在线观看| 国产精品综合久久久久久久免费| 老汉色av国产亚洲站长工具| 精品熟女少妇八av免费久了| 中文字幕高清在线视频| 国产三级在线视频| 国产黄色小视频在线观看| 国产区一区二久久| 国产伦一二天堂av在线观看| 久久久久久九九精品二区国产 | 香蕉国产在线看| 91大片在线观看| 一级黄色大片毛片| 香蕉av资源在线| 久久精品国产亚洲av高清一级| 一区二区三区精品91| 18禁裸乳无遮挡免费网站照片 | 成熟少妇高潮喷水视频| 国产精品 欧美亚洲| 日韩一卡2卡3卡4卡2021年| 亚洲av电影不卡..在线观看| 好男人在线观看高清免费视频 | 久久久久久久午夜电影| www日本黄色视频网| 91麻豆精品激情在线观看国产| 女性生殖器流出的白浆| 亚洲av熟女| 国产色视频综合| 夜夜夜夜夜久久久久| 国产激情久久老熟女| 高潮久久久久久久久久久不卡| 在线十欧美十亚洲十日本专区| 久久国产精品影院| 999久久久国产精品视频| 波多野结衣高清无吗| 2021天堂中文幕一二区在线观 | 欧美丝袜亚洲另类 | 午夜激情福利司机影院| 很黄的视频免费| 国产精品 欧美亚洲| 波多野结衣巨乳人妻| 美国免费a级毛片| 好看av亚洲va欧美ⅴa在| 777久久人妻少妇嫩草av网站| 身体一侧抽搐| 亚洲美女黄片视频| 99国产极品粉嫩在线观看| 日韩欧美三级三区| 亚洲国产欧洲综合997久久, | 国产色视频综合| 欧美丝袜亚洲另类 | 夜夜躁狠狠躁天天躁| 欧美国产日韩亚洲一区| 中文字幕最新亚洲高清| 欧美一级a爱片免费观看看 | 桃色一区二区三区在线观看| bbb黄色大片| 1024手机看黄色片| 色精品久久人妻99蜜桃| 亚洲色图 男人天堂 中文字幕| 日韩高清综合在线| 亚洲五月天丁香| 大型av网站在线播放| 亚洲九九香蕉| 国产成年人精品一区二区| 亚洲熟妇中文字幕五十中出| 国产精品日韩av在线免费观看| 免费搜索国产男女视频| 国产单亲对白刺激| 日日摸夜夜添夜夜添小说| 在线十欧美十亚洲十日本专区| 亚洲专区中文字幕在线| 他把我摸到了高潮在线观看| 亚洲无线在线观看| 国产精品自产拍在线观看55亚洲| 亚洲人成77777在线视频| 欧美日韩亚洲综合一区二区三区_| 欧美日韩乱码在线| a级毛片在线看网站| 禁无遮挡网站| 国产极品粉嫩免费观看在线| 亚洲avbb在线观看| 亚洲 欧美一区二区三区| 亚洲人成网站在线播放欧美日韩| 精品国产一区二区三区四区第35| 亚洲中文av在线| 亚洲精华国产精华精| 欧美日韩一级在线毛片| 国产成人一区二区三区免费视频网站| 99热6这里只有精品| 一卡2卡三卡四卡精品乱码亚洲| 真人做人爱边吃奶动态| 国产亚洲精品一区二区www| 少妇 在线观看| 亚洲熟女毛片儿| 日本熟妇午夜| 久久婷婷成人综合色麻豆| 天天躁狠狠躁夜夜躁狠狠躁| 宅男免费午夜| av在线天堂中文字幕| 1024手机看黄色片| 亚洲成a人片在线一区二区| 国产在线精品亚洲第一网站| 欧美乱色亚洲激情| 国产99白浆流出| 亚洲精品久久成人aⅴ小说| 亚洲av成人av| videosex国产| 香蕉丝袜av| 久久精品成人免费网站| 狂野欧美激情性xxxx| 欧美一级毛片孕妇| 久久国产精品人妻蜜桃| 国产免费男女视频| 亚洲精品中文字幕在线视频| 老汉色∧v一级毛片| 国产亚洲精品第一综合不卡| 两个人免费观看高清视频| 亚洲av成人av| 中亚洲国语对白在线视频| 精品一区二区三区四区五区乱码| 观看免费一级毛片| 欧美 亚洲 国产 日韩一| 国产亚洲av高清不卡| 国产精品久久久av美女十八| 久久香蕉国产精品| 51午夜福利影视在线观看| 久久香蕉激情| 国产av一区在线观看免费| 99精品在免费线老司机午夜| 曰老女人黄片| 亚洲第一av免费看| 90打野战视频偷拍视频| 91国产中文字幕| 狂野欧美激情性xxxx| 久久久久免费精品人妻一区二区 | 久久伊人香网站| 黄色毛片三级朝国网站| 日本熟妇午夜| 身体一侧抽搐| 超碰成人久久| 一边摸一边做爽爽视频免费| 精品一区二区三区视频在线观看免费| 波多野结衣av一区二区av| 国产欧美日韩精品亚洲av| www.www免费av| 久久精品国产99精品国产亚洲性色| 国产1区2区3区精品| 99久久久亚洲精品蜜臀av| 亚洲av日韩精品久久久久久密| 国产v大片淫在线免费观看| 妹子高潮喷水视频| 91av网站免费观看| 国产片内射在线| 成人国产一区最新在线观看| 一本久久中文字幕| 国产精品国产高清国产av| 免费高清视频大片| 亚洲精品国产一区二区精华液| 成人av一区二区三区在线看| a级毛片在线看网站| 真人做人爱边吃奶动态| 91国产中文字幕| 欧美最黄视频在线播放免费| 国产欧美日韩一区二区三| 国产极品粉嫩免费观看在线| 久久香蕉精品热| 久久中文字幕人妻熟女| 脱女人内裤的视频| 午夜福利欧美成人| 国产亚洲欧美98| 午夜两性在线视频| 日日干狠狠操夜夜爽| 亚洲在线自拍视频| 久久99热这里只有精品18| 很黄的视频免费| 欧美成人午夜精品| 成人午夜高清在线视频 | 免费高清视频大片| 欧美成人免费av一区二区三区| 亚洲精品av麻豆狂野| 日本五十路高清| 麻豆av在线久日| 日日爽夜夜爽网站| 国产主播在线观看一区二区| 人成视频在线观看免费观看| 高潮久久久久久久久久久不卡| 婷婷精品国产亚洲av在线| 国产精品香港三级国产av潘金莲| 免费高清在线观看日韩| 精品无人区乱码1区二区| 中出人妻视频一区二区| 中文在线观看免费www的网站 | 亚洲欧洲精品一区二区精品久久久| 欧美中文综合在线视频| 一级毛片高清免费大全| 精品国产国语对白av| 久久久久久久久中文| 国产1区2区3区精品| 亚洲国产欧美网| 色婷婷久久久亚洲欧美| 欧美成人午夜精品| 97人妻精品一区二区三区麻豆 | 老鸭窝网址在线观看| 黄色片一级片一级黄色片| 日韩欧美在线二视频| 国产熟女xx| 国产成人欧美| av在线播放免费不卡| 18禁美女被吸乳视频| 亚洲成a人片在线一区二区| 久久国产精品人妻蜜桃| 亚洲午夜精品一区,二区,三区| 少妇粗大呻吟视频| 国产欧美日韩一区二区三| 久久久国产精品麻豆| 丝袜人妻中文字幕| 亚洲国产中文字幕在线视频| 韩国av一区二区三区四区| 久久香蕉精品热| www日本黄色视频网| 国产精品日韩av在线免费观看| av超薄肉色丝袜交足视频| aaaaa片日本免费| 亚洲欧洲精品一区二区精品久久久| 我的亚洲天堂| 日韩精品中文字幕看吧| 亚洲国产毛片av蜜桃av| 久久久精品欧美日韩精品| 一级作爱视频免费观看| 久久伊人香网站| 欧美 亚洲 国产 日韩一| 嫩草影视91久久| 国产欧美日韩精品亚洲av| 麻豆国产av国片精品| 国产又黄又爽又无遮挡在线| 美女国产高潮福利片在线看| 日韩欧美国产一区二区入口| 婷婷六月久久综合丁香| av有码第一页| 桃红色精品国产亚洲av| 精品午夜福利视频在线观看一区| 亚洲国产日韩欧美精品在线观看 | 黄片播放在线免费| 一级a爱视频在线免费观看| www.自偷自拍.com| 成人亚洲精品一区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲在线自拍视频| 亚洲中文字幕日韩| 国产精品久久久人人做人人爽| 欧美在线一区亚洲| 午夜福利成人在线免费观看| 日本熟妇午夜| 午夜福利在线在线| 听说在线观看完整版免费高清| 久久精品91无色码中文字幕| 久久草成人影院| 久久精品亚洲精品国产色婷小说| 国产高清视频在线播放一区| 啦啦啦免费观看视频1| 国产精品av久久久久免费| 真人一进一出gif抽搐免费| 国产av一区在线观看免费| 国产免费男女视频| 亚洲精品中文字幕在线视频| 久久婷婷人人爽人人干人人爱| а√天堂www在线а√下载| 日韩一卡2卡3卡4卡2021年| 亚洲精品av麻豆狂野| 色哟哟哟哟哟哟| 19禁男女啪啪无遮挡网站| 欧美zozozo另类| 可以免费在线观看a视频的电影网站| 亚洲av片天天在线观看| 日韩精品青青久久久久久| 欧美激情 高清一区二区三区| 精品一区二区三区av网在线观看| 丝袜美腿诱惑在线| 美女 人体艺术 gogo| 欧美国产精品va在线观看不卡| 国产精品久久久久久亚洲av鲁大| 亚洲精品国产精品久久久不卡| 在线观看午夜福利视频| 国产精品永久免费网站| 国产亚洲精品久久久久久毛片| 国产欧美日韩一区二区三| 18禁裸乳无遮挡免费网站照片 | 中文字幕av电影在线播放| www.自偷自拍.com| 国产一区二区三区在线臀色熟女| 精品一区二区三区四区五区乱码| 欧美久久黑人一区二区| 国产一级毛片七仙女欲春2 | 欧美一级毛片孕妇| 国产成人精品久久二区二区免费| av天堂在线播放| 久久久精品欧美日韩精品| 美女 人体艺术 gogo| 中文资源天堂在线| 美女免费视频网站| 一级片免费观看大全| 久久午夜综合久久蜜桃| 亚洲一区二区三区色噜噜| 国产精品免费一区二区三区在线| 一本久久中文字幕| 日韩大尺度精品在线看网址| 欧美亚洲日本最大视频资源| 黑丝袜美女国产一区| www.精华液| 不卡一级毛片| 琪琪午夜伦伦电影理论片6080| 婷婷丁香在线五月| 侵犯人妻中文字幕一二三四区| avwww免费| 国产精品久久视频播放| 黄色丝袜av网址大全| 精品不卡国产一区二区三区| 久热这里只有精品99| 亚洲精华国产精华精| 正在播放国产对白刺激| 亚洲中文字幕一区二区三区有码在线看 | 免费看a级黄色片| 淫秽高清视频在线观看| 热99re8久久精品国产| 丁香六月欧美| 嫩草影视91久久| 叶爱在线成人免费视频播放| 亚洲成国产人片在线观看| 搡老熟女国产l中国老女人| 搡老岳熟女国产| 亚洲黑人精品在线| 中文字幕最新亚洲高清| 国产亚洲av高清不卡| 丰满的人妻完整版| 成人手机av| 啦啦啦观看免费观看视频高清| 久久久久久免费高清国产稀缺| 露出奶头的视频| 日本撒尿小便嘘嘘汇集6| 一二三四在线观看免费中文在| 亚洲人成77777在线视频| 可以免费在线观看a视频的电影网站| 成人永久免费在线观看视频| 精华霜和精华液先用哪个| 日韩av在线大香蕉| 久久午夜综合久久蜜桃| 国产午夜福利久久久久久| 亚洲av成人av| 日本一区二区免费在线视频| 精品高清国产在线一区| 国产精品久久久av美女十八| 国产成人精品久久二区二区91| 国产久久久一区二区三区| 18禁观看日本| 欧美在线一区亚洲| 一本精品99久久精品77| 999久久久精品免费观看国产| 欧美激情 高清一区二区三区| 成年人黄色毛片网站| 看片在线看免费视频| 国产一级毛片七仙女欲春2 | 最新美女视频免费是黄的| 欧美三级亚洲精品| 久久中文字幕一级| 一本精品99久久精品77| 亚洲三区欧美一区| 国产黄a三级三级三级人| 夜夜夜夜夜久久久久| 亚洲精品一卡2卡三卡4卡5卡| 91麻豆精品激情在线观看国产| 老司机午夜十八禁免费视频| 亚洲最大成人中文| 男女床上黄色一级片免费看| 一级作爱视频免费观看| 中文字幕av电影在线播放| 国产男靠女视频免费网站| 精品久久久久久久末码| 男女那种视频在线观看| 日本免费一区二区三区高清不卡| 丝袜美腿诱惑在线| 99热这里只有精品一区 | 色在线成人网| 午夜福利在线观看吧| netflix在线观看网站| 欧美激情 高清一区二区三区| 国产精品美女特级片免费视频播放器 | 不卡一级毛片| 黄色视频,在线免费观看| 亚洲国产中文字幕在线视频| 欧美三级亚洲精品| 哪里可以看免费的av片| e午夜精品久久久久久久| 白带黄色成豆腐渣| 天堂动漫精品| 午夜久久久在线观看| 日韩免费av在线播放| 亚洲精品久久国产高清桃花| 中文资源天堂在线| 国产精品,欧美在线| 老司机午夜十八禁免费视频| 国产视频一区二区在线看| 女生性感内裤真人,穿戴方法视频| 国产不卡一卡二| 大型黄色视频在线免费观看| 99久久无色码亚洲精品果冻| 欧美最黄视频在线播放免费| 欧美日韩黄片免| 亚洲九九香蕉| 亚洲第一电影网av| 嫩草影视91久久| 国产精品久久视频播放| netflix在线观看网站| 国产高清激情床上av| 一级作爱视频免费观看| 一级a爱视频在线免费观看| 国产一区二区三区在线臀色熟女| 熟女少妇亚洲综合色aaa.| 亚洲 国产 在线| 青草久久国产| 91九色精品人成在线观看| 久久久久久久久久黄片| 久久久久久亚洲精品国产蜜桃av| 亚洲熟女毛片儿| www.999成人在线观看| e午夜精品久久久久久久| 国产亚洲精品久久久久久毛片| 日韩av在线大香蕉| 天天一区二区日本电影三级| 久久狼人影院| 国产熟女午夜一区二区三区| 搞女人的毛片| АⅤ资源中文在线天堂| 精品午夜福利视频在线观看一区| 少妇粗大呻吟视频| 大型av网站在线播放| 精品卡一卡二卡四卡免费| 亚洲av成人av| 日本在线视频免费播放| av中文乱码字幕在线| 桃红色精品国产亚洲av| 欧美 亚洲 国产 日韩一| 91av网站免费观看| 日日爽夜夜爽网站| 亚洲第一青青草原| 最新美女视频免费是黄的| 亚洲片人在线观看| 国产亚洲欧美98| 不卡一级毛片| 老鸭窝网址在线观看| 99久久99久久久精品蜜桃| 亚洲,欧美精品.| 成熟少妇高潮喷水视频| 久久国产乱子伦精品免费另类| 日韩高清综合在线| 激情在线观看视频在线高清| 国产黄色小视频在线观看| 99精品在免费线老司机午夜| 国产蜜桃级精品一区二区三区| 日本撒尿小便嘘嘘汇集6| 亚洲 国产 在线| 亚洲五月婷婷丁香| 日本熟妇午夜| 淫秽高清视频在线观看| 国产成人av激情在线播放| 国产在线观看jvid| 亚洲色图 男人天堂 中文字幕| 亚洲午夜精品一区,二区,三区| 淫秽高清视频在线观看| 精品国内亚洲2022精品成人| 欧美黄色片欧美黄色片| 国产成人啪精品午夜网站| 啦啦啦免费观看视频1| 很黄的视频免费| 悠悠久久av| 这个男人来自地球电影免费观看| 欧美激情久久久久久爽电影| 国产精品自产拍在线观看55亚洲| 高潮久久久久久久久久久不卡| 1024香蕉在线观看| 成人亚洲精品av一区二区| 亚洲真实伦在线观看| 欧美人与性动交α欧美精品济南到| 少妇 在线观看| 男女之事视频高清在线观看| 国产1区2区3区精品| 亚洲精品粉嫩美女一区| 看免费av毛片| 黄片小视频在线播放| 亚洲男人的天堂狠狠| 午夜a级毛片| 欧美中文日本在线观看视频| 久久国产乱子伦精品免费另类| 国产日本99.免费观看| 欧美+亚洲+日韩+国产| bbb黄色大片| 伊人久久大香线蕉亚洲五| av福利片在线| 日韩免费av在线播放| 麻豆国产av国片精品| 国产亚洲av高清不卡| 这个男人来自地球电影免费观看| 亚洲午夜精品一区,二区,三区| 男女之事视频高清在线观看| 久久久久免费精品人妻一区二区 | 国产一区二区在线av高清观看| 两个人看的免费小视频| 久久婷婷人人爽人人干人人爱| 欧美成人免费av一区二区三区| 国产精品影院久久| 女警被强在线播放| 99久久久亚洲精品蜜臀av| 久久九九热精品免费| 在线观看免费视频日本深夜| 欧美zozozo另类| 两性午夜刺激爽爽歪歪视频在线观看 | 啦啦啦观看免费观看视频高清| 国产精品久久久久久精品电影 | 人人妻,人人澡人人爽秒播| 精品熟女少妇八av免费久了| 国产午夜福利久久久久久| 国产成人影院久久av| 一级黄色大片毛片| 欧美成人一区二区免费高清观看 | 国产成人精品无人区| 搞女人的毛片| 中文字幕另类日韩欧美亚洲嫩草| 好看av亚洲va欧美ⅴa在| 黑丝袜美女国产一区| 成人欧美大片| АⅤ资源中文在线天堂| 亚洲欧美日韩高清在线视频| 久久中文看片网| 国产人伦9x9x在线观看| 国产精品,欧美在线| 观看免费一级毛片| 亚洲片人在线观看| 精品欧美一区二区三区在线| 人人妻人人澡欧美一区二区| 国产国语露脸激情在线看| 夜夜看夜夜爽夜夜摸| 精品久久久久久久末码| 老司机在亚洲福利影院| a级毛片在线看网站| 精品不卡国产一区二区三区| 午夜免费激情av| 在线观看66精品国产| 国产精品 国内视频| 精品不卡国产一区二区三区| 俺也久久电影网| 在线观看www视频免费| 男人操女人黄网站| 国产高清视频在线播放一区| bbb黄色大片| 日韩欧美国产一区二区入口| 人人妻人人澡人人看| 国产精品久久久久久亚洲av鲁大| 天堂动漫精品| 日本在线视频免费播放| 国产蜜桃级精品一区二区三区| 欧美国产日韩亚洲一区| 午夜免费观看网址| 国产在线精品亚洲第一网站| 国产三级黄色录像| 国产亚洲精品一区二区www| 免费看美女性在线毛片视频|